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Theory of optical phase conjugation in disordered media:
Coherent properties of the backscattered field
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Recently it was shown that in disordered media, nonlinear backscattering of phase-conjugated signal

light is possible in the presence of only a single pump wave, in contrast to the case of an ordered medium
where two counterpropagating pump waves are necessary. Formally, this disorder-induced nonlinear
process corresponds to the cooperon-channel (back)scattering of the signal wave in the presence of
diffusion propagation of the pump wave. (The cooperon is the Cooper particle-particle diffusion propa-
gator. ) In this contribution, the question is considered whether the disorder-induced backscattering of
phase-conjugated light can restore the disturbed signal wave front as it does in the ordered case. Exam-
ining correlations of the outgoing waves corresponding to different incoming signal waves, it is shown

that the backscattered waves possess a "phase memory" even for a large difference of the angles of in-

cidence of incoming waves. This is in contrast to the case of linear backscattering, where such correla-
tions take place only at a very small difference of the angles of incidence (of the order of backscattering
peak width). Thus the phase conjugation in disordered media does possess the peculiar coherent proper-
ties of that in ordered media.

I. INTRODUCTION

Coherent wave phenomena originating in multiple
scattering of light in disordered media have attracted
considerable attention. Besides investigations of linear
optical effects, the problems of nonlinear optics in disor-
dered media are at present of considerable interest. Re-
cently the theory of nondegenerate phase conjugation of
light in disordered nonlinear media has been developed'
for the case of multiple linear scattering of probe (fre-
quency co; ), pump (to ), and signal (to, =2to —co; )

waves. It has been shown that even for 1«L (l is a
mean free path of elastic scattering of light and L is a
sample thickness), a peak of conjugated light may occur
in the direction opposite to the direction of incidence of
the probe wave. The peak intensity of this backscattered
signal wave may be some orders of magnitude larger than
the diffuse background at the same frequency co, . It is in
contrast to the well-known case of linear backscatter-
ing where only at most a factor of 2 is realized for the
signal-to-background ratio. The angular width 60„& of
the nonlinearly backscattered peak is considerably small-
er (bO„~-A, /L, A, is the wavelength) than that
( b, 8t —1(,/1 ) for the linear backseat tering. Another
feature of the considered optical mixing in disordered
media is that it may occur in presence of a single pump
wave, while in the case of ordered (transparent) media,
two counterpropagating pump waves are required. For-
mally the disorder-induced phase-conjugation process
corresponds to the Cooper-channel backscattering of the
probe wave in the presence of diffusion propagation of
the pump wave.

It should be stressed that in contrast to the case of
transparent media, in disordered media the amplitude E,
of the signal (conjugated) wave averaged over the realiza-

tions of the disorder is zero. In this situation it is not ob-
vious if the "phase conjugation" in disordered media
possesses the striking coherence properties of that in
transparent media, e.g., the restoration of a disturbed in-
cident wave front. To answer this question it is not
suScient to consider the disorder-averaged intensity of a
single signal wave, as it was done in Ref. 1, but it is neces-
sary to examine the correlations of the amplitudes of
several outgoing (signal) waves corresponding to diFerent
incoming (probe) waves. Such an analysis is just the sub-
ject of the present work.

II. FORMULATION AND GENERAL ANALYSIS
OF THE PROBLEM

First, we recall the basic properties of the optical-
phase-conjugation phenomenon (see, e.g., Ref. 6). Figure
1 shows the process of image formation due to nonlinear
(conjugating) reflection. Incident (probe) waves with am-
plitudes E (a = 1,2, . . . ) and wave vectors k,' starting
from point A of a source are disturbed by some linear
scatterer T, and are transformed into waves with wave
vectors k;a and amplitudes E,a= taE a. Phase-
conjugating reflection of these waves by the nonlinear
medium M results in the transformation

ia sa a 1'a

(2)

After the linear transformation at the scatterer
T, E, ~E,' =t E, , the signal field at point A has an
amplitude
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E/
Using E; =t E,', . the averaged intensity (6) takes the
form

& I,') = It l' g f pE *E
p .

a,P

Thus, the validity of relation (5) for the averaged intensi-
ty of the signal field depends crucially on the smoothness
of the correlation function f p. Below we shall show
that this function is constant in a rather wide region of
the parameters a,P.

III. CORRELATION FUNCTION OF
CON JUGATED LIGHT

FIG. 1. The process of the restoration of the initial field. The
waves from the source A pass the scatterer T and are reflected
(with phase conjugation) from the nonlinear medium M.

E,'-E;"=gE," . (4)

In this case the intensity I,'= lE,'l of the signal is obvi-
ously given by

Obviously, there is compensation for the random phase
caused by the scatterer T [we neglect in (3) a dependence
of the transmission coefficient lt l on u, assuming a not
too large aperture]. In the usual case of an ordered non-
linear medium the factor r is a constant and E,' is just
proportional to the conjugated amplitude of the incident
(probe) field at the same point A:

Consider the same geometry (Fig. 2} of conjugation as
in Ref. 1. A nonlinear disordered medium M occupies
the half-space z & 0. Weak probe waves (of frequency co;)
with amplitudes E; (a=1,2. . . ) and wave vectors k;
and an intense pump wave (of frequency co~) with an am-
plitude E and wave vector k are incident from outside
the surface with incidence angles 8; and 0 =0, respec-
tively. The conjugated signal waves (of frequency co, )

with amplitudes E, are generated with wave vectors k,
very close to —k; . The amplitude of the generated sig-
nal field may be written in the following form:

N
E, (r)=rt Jdr'G, (r, r'}E (r')E,' (r'),

C
(9)

with g being the nonlinear susceptibility and integration
over r' is carried out within the medium z&0. Here
G, (r, r') is the nonaveraged retarded Green's function of
the Maxwell equation for the field E, (r). The disorder is
described by a small random part 5e(r) of the dielectric
function, with the correlation function given by

I,' —lE l
=gE Ep .

a,P

CO (5E(r)5e(r')) = 5(r —r') .
4m.

C4 l
(10)

So, the image field reproduces the source field up to some
factor and conjugation.

A more complicated situation occurs for conjugation
by disordered media. In this case the factor r in (3) is a
random quantity vanishing under the averaging over dis-
order (see below). Therefore relation (4) does not hold for
the averaged signal amplitude. And what about the in-

tensity of the signal light at a given point of the "image"?
(Note that a measurement of intensity rather than of am-

plitude is a common recording procedure, for which ordi-
nary photography is an example. ) Now we are going to
check if relation (5) remains valid for the disorder-
averaged intensity of the signal (conjugated) field.

The disorder-averaged intensity (I,') of the signal field

can be expressed in the following form:

(I,') =g (E,'.E,',* ) =g t.t p &,E,.E,*,) .
a, P a, P

The presence of a random coe%cient r in the conjuga-
tion transformation (1) results in the appearance of some
factor f p in the following expression:

(E, E,p) =f pE;*E p .

E;

z(0

M

z)0

FIG. 2. Experimental geometry of phase conjugation.

In (9) the fields E~(r'), E,' (r') inside the medium can be
expressed by means of the Green's functions G, G
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through their amplitudes outside the medium E,E,.'.
Thus the amplitude (9) contains four Green's functions
and is illustrated in Fig. 3(a), in which the nonaveraged
Green's functions and the nonlinear-interaction vertex
are represented by heavy lines and a circle, respectively.
Therefore, the correlation function (E, E,i3 ) (7) involves
eight Green's functions. The averaging over disorder is
carried out in a conventional way. The disorder-
averaged amplitude (9) vanishes because of the random-
ness of its phase caused by disorder. Figure 3(b}describes
the main contribution to the correlation function (7) of
conjugated light to the lowest order in the parameter
A, jl ((1. Solid lines in the diagram correspond to the
averaged Green's functions. In the bulk region they are
given by the following expression (where a =i,p, s):

exp[(ik, —1 l21) Ir —r'I ]
(11}

4m)r —r'

Dashed lines in Fig. 3(b) correspond to the correlation
function (10). Each of the four sets of the three parallel
dashed lines represents an infinite series of ladder or max-
imally crossed diagrams, referred to as, respectively,
difFusion propagator S(r, r') or the Cooper particle-
particle diffusion propagator

E,(k, )

E;(k,p)

k,
E;

E;(k; )

E(k~)

C(r, r') =
3

2)(r, r'),12'
(12)

where D =cl/3 is the diffusion coeScient for light in the
disordered medium. The diffusion propagator 2)(r, r'}
obeys the equation

(i b co+DU' )2)(r, r') = —5(r—r')

and an effective boundary condition' at z =0
(13)

(14)

b,co in (13) is the difFerence between the frequencies of the
Green's functions G and G* in a ladder series; h in (14) is
a dimensionless phenomenological constant' depending
on the re6ectivity of the surface.

Note that in the particular case of a single probe wave

(k, =k;&) diagram 3(b) coincides with diagram 2(b) of
Ref. 1 describing the intensity of the phase-conjugated
light. The presence of Cooper propagators connecting
the probe and the signal light lines corresponds to the

(b)

FIG. 3. Diagrams describing phase conjugation of light by a
disordered medium: (a) nonaveraged amplitude of the signal
wave; (b) correlation function of amplitudes of backscattered
conjugated waves.

time-inverted propagation of the nonlinearly generated
signal wave along the path of the probe wave. The
diffusion propagators, connecting the pump-light lines,
describe the diffusion of the pump light inside the medi-
um. Diagram 3(b) contains the minimum number of
Cooper and diffusion propagators required to get the bulk
contribution to the correlation function (7). On the other
hand, extra Cooper (diffusion) propagators would result
in an additional small factor A, /l. In the leading order
given by diagram 3(b), the expression for the correlation
function (7) is evidently a convolution of two factors (cor-
responding to a and P waves, respectively} with some
kernel EC (see below) describing the diffusion propagation
of the pump field:

(E (k )E*(k )) ccE,*E&fdr dr'd. r"drprpr&[exp( —iQ r')C(r', r" }G,(r",r )G,'(r~, r~)]&(r~~rp)[a l ]

I

responding ones of the photon wave vectors outside the
medium. The components k„and k;, are connected with
the corresponding outside values by means of the refrac-
tion law having an imaginary part Imk-1/I, which de-
scribes the damping of an averaged field amplitude inside
the disordered medium.

Using the Fourier transformation with respect to
(r~~ I

j~
) in (12) to (14) one obtains directly for

C (Qt~'z, z ) at z', z" & 0

Q=k, +k; (16)

The components k, f
and k;~~ in (16) coincide with the cor-

In Eq. (15) all the integration variables r=(z, rf) are in-
side the medium (z &0, rf describes components parallel
to the surface); the presence of factors like exp( i Q r' )—
is due to the external lines of s and i photons in diagram
3(b) with Q being defined by (an index a or P is implied)
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C (Q~~'z', z" ) ~ —exp[ —
Q [z' —z"

( ]
(E, E,p ) = f d 0 dip(E, (k, )E,*(k,p) )

~E;*E;iaaf dQ (22)

1 —hgl
1+hgl

exp[ —Q (z'+z"}], (17)

where

Q =(/Q~~ iL—q, Reg &0, (18)

with Lz =(D/~co, —co;
~

)' . Just the functions (17)
(with indices a and P) appear in the integrand of (15)
after integration over r'

~~

and r&~~. Because of the fast de-

cay of the factor exp( —iQ, z'), the variable z' in (15) is re-
stricted to the region z'-1/l, while the other variable z"
in (15) takes values deeply in the bulk of the medium. Be-
ing interested in the vicinity of the backscattering peak
(where Q &(1/1) one can use instead of (17) the following
simplified expression, taking into account the lowest
power in Ql and Qz':

C(Q~~', z', z")-(z' —2hi)exp( —Qz") .

After integration over z ', z &, Eq. (15) reduces to

(E,(k, )E,*(k,@))

E,*E,g f dr"drpexp[ —Q z" —iQ„ri,
'

]

(19)

with

XR(r",rp )exp[ —
Q&zi3 +iQ~~i3r~~ii], (20}

%'(r",r&)= f dr dr&G, (r",r )G,*(r",r )]

XK(r, r&)G,*(r&,r&)G;(r&, r&)) . (21)

In (20) we have omitted factors which are the same for
the cases of different (aWP) and coincident (a=P) wave
vectors of the incident light. Also all optical Fresnel fac-
tors were omitted in (20): they depend smoothly on the
angles of incidence 8; (with the characteristic scale
b, 8; —1) and therefore are not important in the typical
cMe whcII th4 apcrtUrc is riot ioo iargc, wxxcn ihc a1Tgkc

difference is small as compared to, say, m/2.
The kernel K(r, r&) in (21) is represented by the part

in diagram 3(b) that corresponds only to the pump field.
Because of the fast decay of the averaged Green's func-
tions (11) and the short-correlation-length nature of the
disorder (10), the typical spacing between points r and r&

does not exceed I [see Fig. 3(b)]. As a consequence, the
same holds for points r" and r& in the kernel A(r", r& ) in

(21). It means that on a characteristic scale of the order
1/Q » I, in the integrand (20} the kernel %'(r",re } has a
short range and can be approximated by A' —5(r"—re�).
Integration over r", r& gives for the rhs of (20):
(Q +Q& ) '5'~'(Q~~ —

Q~~&). Integrating (20}over k, ,k,&

within the small solid angles Q, Q& around the directions
—k,. and —

k;& (the size of these solid angles is deter-
mined by the small linear angle AB„&-A,/Lz being the
angular width of the nonlinear conjugating backscatter-
ing peak'), we get the final expression for the correlation
function (E, E,"&):

In the derivation (22} it has been taken into account that
the presence of 5' '(Q~~

—
Q~~&) results in

Q~~ =Q~~&=
—Q.

In addition some geometrical factor ~ cosB;& arises as the
Jacobian of the transformation from II& to Q~~&. Such
smooth geometrical factors were again omitted in (22).
Thus we have arrived at expression (7) with the correla-
tion factor f & being independent of a and P. It is essen-
tial that the same factor corresponds also to the case of
coinciding k;, k;&, which is simply a particular case of
the previous derivation. This special case was considered
in Ref. 1. Note that the last integral in (22) just gives (up
to some proportionality factor) the integral intensity
0

p k of the backscattered peak.
%e have proved the smoothness pf the correlation

function f &
in (7) and, as a consequence, the validity of

relation (5) for the disorder-averaged intensity of the
phase-conjugated field. It means that a measurement of
the intensity (e.g. , by photography) of the image field will
reveal the interference structure of the source field, as it
takes place in the usual case of ordered media.

To stress the special role of phase conjugation for the
validity of (5), we demonstrate below that this relation
breaks down for ordinary linear backscattering ' by a
disordered medium.

IV. COMPARISON WITH LINEAR BACKSCATTERING

E,(k, } E, (k; )

E;(k,p)

/'IX
/

E,"(k,p)

FIG. 4. The diagram describing the correlation function of
amplitude of the linearly backscattered waves.

Consider the same scattering geometry as shown in
Fig. 2, but without a pump wave and with the nonlinear
medium substituted by a linear one. The correlation
function of the two backscattered (k, = —k;, k,&= —

k;&) waves is given by the diagram in Fig. 4. For the
case of a single probe wave (k;:—k;&) the known singular
part of this diagram at k, = —k; just describes the in-

tensity of the backscattered field. In the considered case
of different waves, the singular part survives if
k, = —

k;&, and as a consequence of k, = —k; we have

k, =k,&. The wave vector region allowed by these ap-
proximate equalities is restricted to the intersection of
narrow cones in the directions of the backscattering —k;
and —

k;&, with the aperture angle of the cones being just
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the angular width (b,8t-A, /1) of the linearly backscat-
tered peak. Hence, there is no correlation of the scat-
tered wave if the difference of the angles of incidence of
the incoming waves exceeds a small value 901. It means
that the factor f &

in the correlation function of linearly
scattered waves

(E E+ )=ft
is a sharp function of the angles of incidence (practicallyf' &-5 &). Therefore, in contrast to the case of phase
conjugation, for linear backscattering relation (5) is not
valid and the intensity of the scattered Geld does not
reproduce the variations of the intensity of the incoming
field.

V. AMPLITUDE OF THE BACKSCATTERED
CON JUGATKD FIELD

Consider another interesting feature of the
phenomenon. As was mentioned above, the amplitude (1)
of a conjugated backscattered wave E, =r E averaged
over disorder is zero because of the random phase of the
factor r . However, it is not clear if this amplitude is
zero (or negligible) in a given disordered sample, or
whether it vanishes only after averaging over an ensemble
of samples. Independence of the correlation function
f &

in (7) on a and P proved above allows us to suggest
that the randomness of all the factors r is described by a
single complex random variable r exp(iP) (with positive
r), which does not depend on the angle of incidence of in-
coming waves (neglecting a smooth variation on the scale
b0; —1). Thus, the phase P could be considered as a
characteristic parameter of a given sample. As a conse-
quence, the amplitude E, =g E, of the conjugated-
backscattered field generated by a given disordered non-
linear sample should not be zero. In fact it has a typical
magnitude ~E, ~

=Q(I, ) and its phase differs in a ran-
dom manner from sample to sample.

These coherence properties of the amplitude of the
conjugated light allow a simple qualitative explanation.
The conjugated light is generated by the mixing of two
pump waves and the conjugated probe wave with wave
vectors k~&, k~2, and k, , respectively. Because of multiple
scattering, these wave vectors have arbitrary directions in
the bulk of the disordered sample. As it was noted in
Ref. 1, the processes where k, +k zAO contribute to the
incoherent diffuse background at frequency co„while the

backscattered signal peak corresponds to the processes
with the phase-matching condition k &+k 2 =0. Consid-
er now expression (9) for the amplitude of the conjugated
field, where the quantity [E (r)] can be represented as

[E (r)] = g E„E„exp[i(k~, +k ~)-r] .
k l, k 2

To find out more about the coherent (backscattered) com-
ponent of the conjugated field one can extract from (24)
the terms corresponding to the phase-matching condition
k )+F2=0:

[E~(r)]„&=QE&E k =C—exp(i@),
k

P P
P

where C and 4 are the (positive) modulus and phase of
the complex quantity [E ]„i,. It is important that C and
4 are characteristic parameters for a given sample and

pump geometry and do not depend on the incident probe
field E;. Thus, the quantity (25) enters Eq. (9) simply as a
common multiplicative factor resulting in the coherence
of the amplitudes of backscattered conjugated signal
waves corresponding to different (coherent) incident
waves.

VI. CONCLUSIONS

We have shown that the phase-conjugated Geld gen-
erated in a disordered nonlinear medium is strongly
correlated even if the angular width of an incident probe
beam exceeds the angular width of the peak of the conju-
gated nonlinear backscattering of a single wave by several
orders of magnitude. This is in contrast to the case of
linear backscattering where such correlations are absent
outside the narrow angular region of the backscattering
peak.

As a consequence, the intensity of the backscattered
conjugated field in disordered media does reproduce in-
terference variations of the incoming field, as takes place
in the ordered case. Moreover, the amplitude of the
backscattered conjugated field reproduces the conjugated
amplitude of an incident (probe) field up to some constant
complex factor, which is a characteristic parameter for a
given sample and experimental configuration.
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