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The two-component random resistor network, i.e., the network composed of conducting and insulat-

ing bonds, both with finite values of conductance (g; and g, ), is analyzed. Based on the general scaling

assumption, a single crossover exponent for sma11 value of h =g;/g, for all multifractal moments of
current or voltage distributions is found not only in d =2 dimensions. This allows us to describe the be-

havior of 1/f noise of the two-component random resistor network over the entire region of concentra-
tion p of the conducting component: Three pictures of the relative noise intensity S versus the concen-
tration p are admissible, depending on the ratio of the microscopic-1/f-noise intensities of the com-

ponents.

I. INTRODUCTION

The 1/f noise, which arises from microscopic resis-
tance fiuctuations, in random resistor networks (RRN's)
is closely related to the fourth moment of the current dis-
tribution within the network. ' From this, and because
of connections to some structural properties of percolat-
ing cluster, the question of "how the moments of current
and voltage distributions scale in fractal and homogene-
ous regions" seems to be important. ' Recently, the
problem has been extended to the two-component ran-
dom resistor network, i.e., the network containing two
types of bonds, both of finite value of conductance. For
such a network the infinite number (one for each mo-
ment) of exponents describing the crossover from fractal
to homogeneous behavior has been suggested. In this
paper, the above result is not confirmed. We deal with
the infinite two-component network and consider the
crossover exponents associated with a ratio of conduc-
tances of insulating to conducting components (which are
trivially related to these mentioned above). We show that
these exponents take only one value 1/(t +q) for all mul-
tifractal moments of current and voltage distributions in
conducting and insulating phases. Upon this conclusion
the behavior of 1/f noise in the two-component RRN
above, at, and below the percolation threshold is re-
viewed. Existence of the two noise critical exponents
w =K +2q+2t and w'=K+2q +2t indicated recently by
Morozovsky and Snarsky and by Tremblay, Fourcade,
and Breton is confirmed and, in addition, conditions of
their observability are established. The scaling function
forms for moments of a distribution of power dissipated
in the network is also proposed.

II. MULTIFRACTAL MOMENTS OF CURRENT
AND VOLTAGE DISTRIBUTIONS
IN THE T%'O-COMPONENT RRN

Let us consider the random resistor network in which
the effect, important from a practical point of view, of the
nonzero conductance of the insulating phase is taken into
account. In this network, the ratio of "poor" g; and

"good" g, conductances, which form the whole network,
is given by a small parameter h =g, /g, . Two conduc-
tances, g; and g„occupy bonds of d-dimensional lattice
randomly with probabilities 1 —p and p, respectively. For
such a network, the moments of current, M„, and volt-

age, 8'„, distributions can be defined separately for the
insulating (i) and conducting (c) bonds:
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where G denotes the overall conductance of the network
(G=g; W;, +g, W„).

Some features of defined quantities are well known:
t t —2nt

For h ~0, W,„-e", M,„-c," if c)0 and

M;„—~e~ ", W;„—~e~
" if e(0, where exponents

t =t, and q =q, describe the c. dependence of the net-

where I (V ) denotes current (voltage) in bond a [be-
longing to either the (i) or (c) phase] after the external
current I (voltage V) is supplied to the network. All of
the next results are based on the natural assumption that
the quantities defined above are generalized homogeneous
functions in a neighborhood of the point h =0,
c=p —p, =0, i.e., near the percolation threshold p, . The
following relations are important

2n

W;„= — M;n, (2a)
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work conductance: G -g, E' for E )0 and G -g, l El
~ for

c(0. The exponents t„and q, are simply related to
infinite sets of multifractal exponents p(2n) and g'(2n) in-
troduced by de Arcangelis, Redner, and Coniglio ' or to
exponents x„of Rammal, Tannous, Breton, and Trem-
blay:

t„=(d —2n)v+p(2n)

To derive the above-threshold behavior of M, n, note that,
for c & 0, moments M, n should scale as h ". It is because,
in this region, all nonzero currents I of bonds a belong-
ing to the insulating phase scale as

I =g, V -g;V-g;I/G-g, I/(g, c')-.hI

[see Eq. (2a)] for E )0. Immediately we have
m;„(x)-x' "'~~ and w;„(x)-xr as x ~+ m and

=2nt +v[x„+d 2—n (d —1)],
q„=2nq —v [('(2n ) +2n —d],

(3a)

(3b)
h 2n( a —2n ) /f3

in

W -h c~in

(8)

(9)
where v denotes the correlation length exponent. These
sets of exponents describe dependence of moments Mn
and Wn on the lattice size L at the percolation threshold
in two limiting cases i.e., for random resistor networks
(g; =0) and for random resistor superconductor networks
(RRSN's) (g, = co ):

for e )0. Now, looking again at Eq. (2a), we get

+ A 2&i

5
(6d)

which at last allows us to determine the exponents a, P,
y, and 6:

Mn =M,n
-L " for RRN's

W„= W,„-L ' "' ' for RRN's

W„=W;„-L~' "' for RRSN's

(4a)

(4b)

(4c)

The number of introduced exponents have been numeri-
cally estimated.
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III. SCALING APPROACH
TO MULTIFRACTAL MOMENTS OF CURRENT

AND VOLTAGE DISTRIBUTIONS

=h m;„(e/h~),

W,„=W;„(e,h )=kr W;„(e/A, , h/iL)

=br';„(Elh ),

(Sa)

(5b)

where A, is the usual scaling parameter. The exponents a,
P, y, and 5 can be easily determined: For e & 0 moments,

qn qn
M,„and W;„must behave as

l
e

l

" and
l
e

l
",respec-

tively. Consequently, m, „(x)—lx l

~~ and w, „(x)—x lr~

as x ~—~. Thus, the relations

a—=q„, (6a)

Let us make the usual scaling hypothesis for each of
the moments in Eq. (1). First let us draw our attention to
the insulating phase:

M;„=M,„(e,h)=A, M;„(E/A, ~, hlk)

The most important conclusion is that the crossover ex-
ponents 5,P take only one value for all multifractal mo-
ments M,„and W;„, i.e. those relevant to RRSN [see Eq.
(4c)]. This is in contradiction to the result of de Ar-
cangelis and Coniglio who predicted different values of
crossover exponents for different moments. The second
important result is that multifractal exponents describing
current or voltage distributions in the insulating phase
above the percolation threshold are simply related [see
Eqs. (8), (9), and (6e) —(6g)] to those of the below-
threshold distributions. It can by utilized in analyzing
RRN's with a small, but nonzero, conductance of the in-
sulating phase.

In the same way, we can scale the multifractal mo-
ments M, n and W,„ in the conducting phase. In this
phase, voltages V scale as

V =I /g, -I /g, —VG /g, —Vg; l
e

l '/g, -h V

for c(0. This leads to the scaling forms for moments

M,„and W,„: Following the steps from Eq. (Sa) to Eq.
(6g), we get

2nq (6b) W =h "
u) (E/h '~"+~')

cn cn (10)

together with Eq. (2a), we obtain

2nq
p —cx t+q (6c)

must be fulfilled. Similarly, for c.=0, M;n and W;„scale
with h as h and h~, respectively. Taking into account
the h dependence of the lattice conductance G at the per-
colation threshold ( 8 =0 )

G h
—q/(t +q)

where the scaling function w,„(x)-x " as x~ ~ and
t —2n(t +q)

w,„(x)—lxl" as x ~—00. Thus, the conclusions
derived above can be extended: Multifractal moments in

the conducting phase have a single crossover exponent
(the same as moments in the insulating phase have). Ex-
ponents describing scaling of moments in the conducting
phase below the percolation threshold are related to those
of the above-threshold scaling. It is important when

analyzing RRSN's with a very large but finite conduc-
tance of the superconducting phase.



45 MULTIFRACTALITY AND 1/f NOISE IN THE TWO-. . . 207

IV. MOMENTS OF DISTRIBUTION
OF POWER DISSIPATED IN THE NETWORK g1/(t+q) ++ ++

I h2
SC

' 1/(W —K)

gCL W;~

n q
( /h 1/(t+q)

) ]

This can be reduced to the simpler scaling form

p h [f)( /g&/(t+q))+f ( /hl/(t+q))] (12)

[with u =t /(t +q)] only for n = 1 as was done by a num-
ber of authors, but it cannot be for the larger values of n

as it has been recently proposed by de Arcangelis and
Coniglio.

The moments of power dissipated in the network
driven by the unit voltage V = 1 are given by

P„=g,"W,„+g,"W,„

The obtained result was indicated earlier by Morozov-
sky and Snarsky and Tremblay, Fourcade, and Breton.
Morozovsky and Snarsky predicted the existence of the
exponent w considering a certain topological model of the
two-phase random medium. Tremblay, Fourcade, and
Breton performed finite-size-scaling simulations of the
(d =2) dimensional two-component random resistor net-
work in which the condition Eq. (17) was fulfilled with a
large over plus. They computed the value 6.5+0.3 of the
noise critical exponent which is in excellent agreement
with our prediction, Eq. (16), which yields w =6.32+0.03
and w =6.1+0.6 in d =2 and d =. 3, respectively, if the

V. 1/f NOISE ABOVE
THE PERCOLATION THRESHOLD

The macroscopic conductance fiuctuations (56) of net-
work conductance G can be expressed, according to the
Rammal-Tannous-Tremblay' formula, in terms of micro-
scopic conductance fluctuations 5g of bond conductance

g . For the two-component network and spatially un-

correlated fluctuations we have
1

ht+q
1 1

ht+q ~~ E- W —)("

(13)

where SG=((56) ), ss, =((5g, ) ), and ss, =((5g, ) )
denote the conductance noise intensities of the whole net-
work, and insulating and conducting bonds, respectively.
Above the percolation threshold, p„or, more precisely,
for e/h'/"+q')) I, Eq. (13) takes the form [see Eqs. (9)
and (10)]

p(p p.) p

S $ K 2q+ —K+ 2t
G gi gC (14)

where the well-known noise exponents' ~' and' ' ' '
are related to the exponents q2

= —~'+ 2q and

t2 = —~+2t, respectively. A more universal quantity, the
lattice relative noise S=SG/6 above p„depends on s as
follows: p ~~p

S-sh c ' ' q+sc
I C (15)

where s; =s;/g; and s, =s, /g, denote the bond relative
noise intensities of the insulating and conducting bonds,
respectively. It means that a much larger (than t~) value 1, 1

SC h2 W JC ht+q
1

ht+q

w =sr'+2t +2q (16)

Si (K K)/(t +q)
s

(17)

the exponent w can be observed in the region

of noise exponent is observed near the percolation thresh-
old if the first term of Eq. (15) prevails over the second
one. It occurs when the ratio of relative noise levels of
insulating to conducting phases is sufficiently large. To
be more precise, for

FIG. l. Double logarithmic plot of the lattice 1/f noise rela-
tive intensity S as a function of c, =p —p„where p is the concen-
tration of the metallic component in the two-component ran-
dom resistor network, and p, is the percolation threshold value.
Three cases are possible depending on the relation between the
ratio of bond conductances h =g;/g, and the ratio of bond I /f
noise relative intensities s;/s, . (a) s;/s, &&h'" ' "+ ', ex-

ponents ~, w, and ~' can be detected; (b) s,-/s, =h'" "' "+~', ex-
ponents a and ~' can be detected; (c) s;/s, (&h' ' "+~', ex-
ponents ~, w', and ~' can be detected.
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more recent estimations of exponents x', t, and q are uti-
lized

g h
—x'Ift+q)+ h

rl(t—+q)
I C (19)

This relation can by utilized to describe the noise of the
systems treated as "working" at the critical point.

VII. 1/f NOISE BELOW
THE PERCOLATION THRESHOLD

Eventually the derived scaling forms for the multifrac-
tal moments in Eqs. (1) make possible the determination
of 1/f noise behavior below the percolation threshold.
Putting Eqs. (5b) and (10) into Eq. (13) with s &0 and di-
viding by 6 —

~z~ q, we have

S-s, [s~ ~+s,h (s( (20)

It means that the critical exponent w'=«+2q +2t (much
larger then «') related to the above threshold noise ex-

ponent «can be observed below p, when the condition

Eq. (17) is fulfilled but in the opposite direction (i.e., with
the « sign). If not, the usual well-known exponent «'

describes the below-threshold behavior in the whole

range of s &0. The estimated values of the exponent w'

are 6.32j0.03 and 6.94+0.4 for d =2 and d =3, respec-
tively. Summing up the three cases of the 1/f noise rela-
tive intensity S versus concentration c=p —p, are possi-
ble depending on whether the condition Eq. (17) is
fulfilled (see Fig. 1).

VIII. CONCLUSIONS

We have supplied some arguments that there is a single
crossover exponent P= 1/(t+q) associated with the
small finite ratio h of the conductance of insulating to

VI. 1/f NOISE AT THE PERCOLATION THRESHOLD

At the percolation threshold, the lattice relative noise
S can be described by inserting Eqs. (Sb}and (10}into Eq.
(13), putting a=0, and dividing by the square of the lat-
tice conductance [Eq. (7)]:

conducting bonds for all multifractal moments not only
in two but also in higher dimensions. The only assump-
tion used was that the functions describing multifractal
moments are generalized homogeneous functions. Only
recently have I received a preprint by Tremblay, Albinet,
and Tremblay' which deals with the same problem in
quite a similar way. They also propose the scaling ap-
proach to analyzed problem. However, they only study
percolating networks, i.e., the c, )0 region. Arguments
that they used to arrive at particular scaling forms of
multifractal moments seem to be different from ours as
well. Numerical simulations which they perform confirm
that there is a single crossover exponents for n =1,2, 3
multifractal moments in d =2 and d =3 dimensions.

Apart from this, we have proposed the scaling forms
for moments of power dissipated in the network and re-
viewed the 1/f noise behavior in the two-component ran-
dom resistor network. The latter is described by Eqs.
(15)-(20), which agree with those obtained by Morozov-
sky and Snarsky. 7 Our approach, however, seems to be
more general than that of Morozovsky and Snarsky be-
cause of no restriction on the topology of the utilized
model. The topological model used by them loses, in
fact, the effect of multifractality of current distribution in
the percolating cluster —exponents t„and q„can be com-
puted in terms of exponents t, q, v, d, and n only.

One of the unusual conclusions is that the condition
Eq. (17) necessary to observe 1/f noise coming from in-
sulating phase, above p„ is not as strong as it was sug-
gested. We predict approximately s, »s, in d =2 or
s; »s, h in d =3 as sufficient enough to observe the
exponent w, above p, . Numerical checking of these pre-
dictions will be interesting.
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