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On the basis of first-principles total-energy calculations, we predict the ultrahigh-pressure destabiliza-
tion of the bce structure in the group-VIB elements Cr, Mo, and W through a becc— hcp phase transition
at pressures of about 7.0, 4.2, and 12.5 Mbar, respectively. In Mo and W, a subsequent hcp—fcc transi-
tion is also predicted at about 6.2 and 14.4 Mbar, respectively. The overall driving mechanism for these
transitions is a continuous sp —d transfer of electrons upon compression, although other factors play an
important quantitative role, especially the hard-core-like interaction between the large cores of these ele-
ments, which disfavors the bce structure and serves to lower the bcc—hcp transition pressures. While
the actual predicted transition pressures are sensitive to the details of the calculations, the qualitative
trends are not, and the bcc—hcp transition in Mo should be within reach of static diamond-anvil-cell
experiments. In this regard, we have also calculated accurate 300-K isotherms for bcc Cr, Mo, and W

valid up to the 5-6-Mbar pressure range.

I. INTRODUCTION

Structural phase stability in transition and rare-earth
metals is controlled to a large extent by the number of
valence d electrons per atom, Z,. Simple rigid-band mod-
els""? with Z, as the single variable parameter can explain
most of the observed trends, and these models, in turn,
are well supported by first-principles quantum-
mechanical calculations.® The rare earths have been the
most systematically studied of the two groups of elements
regarding trends with both atomic number and pressure.
In these metals, Z, is found to increase both with de-
creasing atomic number through the series and with in-
creased pressure for a given element, such that, for either
variation, the same sequence of structures is predicted, in
agreement with experiment.* In transition metals, on the
other hand, Z; is increased by increasing atomic number,
and, except for the late members of each series, also by
the application of high pressure. The variation of Z;
with atomic number explains the canonical hcp-bee-hep-
fcc sequence of structures observed across the nonmag-
netic 4d and 5d transition series and is responsible for the
extreme stability of the bce structure in the group-VIB
elements Mo and W compared with the stable hcp struc-
ture of the corresponding group-VIIB elements Tc and
Re. The general increase in Z; with pressure shared in
common between the rare-earth and transition metals re-
sults from an sp —d transfer of valence electrons under
compression. This so-called s —d transition® arises from
the fact that the spatially extended s and p states feel the
effects of high pressure more strongly than do the local-
ized d states. Thus, the corresponding s and p energy
bands rise in energy faster than do the d bands, transfer-
ring electrons from s- and p-like states to d-like states in
the process.

Unlike the rare earths, the central transition metals are
relatively incompressible in nature, making their phase
diagrams difficult to study at the multimegabar pressures
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needed to induce phase changes in these materials. Al-
though there has been long-standing speculation on a
possible high-pressure bcc— hcp transition in Mo based
on empirical alloy data,® this question has only recently
been investigated, where, in collaboration with other
workers, we produced direct experimental and theoretical
evidence for such a phase transition.” The experimental
evidence consisted of acoustic-velocity data obtained
along the shock Hugoniot which showed a sharp break at
about 2.1 Mbar (and =4000 K). This is indicative of a
solid-solid phase transition and occurs well prior to melt-
ing, which was detected at about 3.9 Mbar in the same
series of experiments. These experiments do not, howev-
er, provide any information about the structure of the
final phase of the solid-solid transition. The correspond-
ing theoretical evidence was in the form of preliminary
first-principles total-energy calculations, based on the
linear-muffin-tin-orbital (LMTO) method, which predict-
ed a zero-temperature bcc— hcp transition near 3.2 Mbar
in the nonrelativistic limit. The purpose of the present
paper is to follow up on the theoretical aspects of this
work with a more in-depth analysis on the low-
temperature energetics of the group-VIB metals. This in-
cludes refined relativistic LMTO calculations on Mo,
which raise the predicted zero-temperature bcc— hep
transition pressure to above 4 Mbar, and LMTO calcula-
tions on the other group-VIB elements Cr and W. Other
workers are actively pursuing additional ultrahigh-
pressure experiments on these metals. Preliminary
acoustic-velocity measurements have now been made on
W, revealing an analogous solid-solid phase transition at
about 4.3 Mbar.® Diamond-anvil-cell experiments on Mo
and W at multimegabar pressures are also in progress.® '
In these experiments, Mo has already been taken above 4
Mbar, but with no evidence yet of a phase transition. '°

II. ELEMENTARY STRUCTURAL PREDICTIONS

Before proceeding with the full theoretical analysis, it
is instructive to consider some of the immediate implica-
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tions for high-pressure phase stability in the central tran-
sition metals based on the aforementioned rigid-band
model for the electronic structure with variable Z,.
These implications can be inferred from Fig. 1, where we
have schematically plotted the bce-fce and hep-fee energy
differences as a function of Z; one would obtain from
such a model for the nonmagnetic 3d, 4d, and 5d series at
ambient conditions. If there exists positive sp —d elec-
tron transfer with compression, which is true at least
through the group-VIIB metals (Mn, Tc, and Re), then
increasing pressure for a given element corresponds
structurally to moving to the right in Fig. 1. As a practi-
cal matter sp-d electron transfer can only induce changes
AZ, <1 under compression, so that the structural conse-
quences of high pressure for most of the central transi-
tion metals can be inferred by examining the elemental
group just to the right of the one under consideration.
For example, if the group to the right has the same crys-
tal structure, then no high-pressure phase transitions are
expected. From Fig. 1, one thus predicts that the group-
VB elements (V, Nb, and Ta) should remain bcc under
high pressure since their neighbors to the right (Cr, Mo,
and W) are also bcc. Experimentally, shock-compressed
Ta, unlike Mo and W, shows no break in its acoustic ve-
locity prior to melting at about 3 Mbar,!! suggesting
that, indeed, no solid-solid transition has occurred. Simi-
larly, one expects the group-VIIB metals [Mn (nonmag-
netic), Tc, and Re] to remain stable in the hcp structure.
Within this group, Re has been studied in the diamond-
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FIG. 1. Schematic representation of bcc-fcc and hep-fcc en-
ergy differences as a function of d-band occupation for the non-
magnetic 3d, 4d, and 5d transition-metal series at ambient con-
ditions. Equating positive pressure with increasing Z, permits
elementary predictions about the high-pressure phase stability
of each group of elements, as discussed in the text.
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anvil cell to 2.16 Mbar with no evidence of a structural
change.!? Furthermore, corresponding theoretical total-
energy calculations show that the hcp structure becomes
slightly more stable with respect to bcc (the structure of
the group-VIB elements to the left) under compression. !*
This is consistent with a gradual s —d transition and pos-
itive AZ,; under high pressure.

For the remaining elemental groups shown in Fig. 1,
on the other hand, high-pressure structural phase transi-
tion are suggested. In the group-IVB metals (Ti, Zr, and
Hf), for example, one immediately predicts an hcp— bcc
transition. In this case, there is known to be an inter-
mediate @ phase, which is a hexagonal distortion of bcc,
so that the actual sequence is hcp—w—bcc. This full se-
quence has recently been demonstrated for both Zr and
Hf in diamond-anvil-cell experiments,'*!> as well as in
theoretical total-energy calculations.!® Moreover, in the
case of Hf, the final bcc structure has been shown to have
a wide stability range, from 0.71 to at least 2.52 Mbar, 15
suggesting that bcc is indeed the ultimate phase as pre-
dicted from Fig. 1. In the group-VIB metals (Cr, Mo,
and W), which is the central focus of the present paper,
the elementary prediction is for the complementary
bcc— hep transition. As we shall demonstrate in Sec. 111,
this prediction is indeed consistent with full first-
principles calculations. Finally, in the group-VIII ele-
ments there is the possibility of a hcp—fcc transition for
the Fe-group elements [Fe (nonmagnetic), Ru, and Os] if
there remains positive sp —d electron transfer under high
pressure. However, diamond-anvil-cell measurements on
e-Fe indicate that the high-pressure hcp phase remains
stable to at least 3 Mbar.!” Perhaps more likely is the re-
verse fcc—hcp transition in the Co-group elements [Co
(nonmagnetic), Rh, and Ir], which could occur if the nor-
mal sp—d electron transfer has been reversed into a
d —sp transfer due to competing sp-d hybridization
effects. This possibility remains to be investigated, al-
though the existence of reverse d —sp electron transfer
has been theoretically established in two other fcc transi-
tion metals to the right of the Co group, namely, Cu (Ref.
18) and Pt. "

III. FIRST-PRINCIPLES
STRUCTURAL CALCULATIONS

The high-pressure electronic structure and energetics
of Cr, Mo, and W have been studied theoretically within
the framework of the Kohn-Sham local-density formal-
ism,?° utilizing the first-principles linear-muffin-tin-
orbital band-structure method?""?* together with Hedin-
Lundqvist exchange and correlation.?* All of the present
self-consistent LMTO calculations have employed the
atomic-sphere approximation (ASA), the combined-
correction term to this approximation,?""?? and s, p, d,
and f angular momentum components. Because the
LMTO-ASA approach is best suited to highly symmetric
and relatively close-packed structures, we have confined
our attention in the present study to bcc, fcc, and ideal
hcp crystal lattices at zero temperature. Our analysis of
phase stability in the group-VIB metals is based on calcu-
lations of the total energy of each solid (excluding zero-
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point vibrational contributions) as a function of atomic
volume  and crystal structure over a wide volume
range, typically 0.4=Q/Q,=<1.1, where Q, is the equi-
librium volume. As has been well established for simple
metals,?* total-energy differences between relatively
close-packed structures in transition metals at fixed
volume are almost identical to Gibbs free-energy
differences at fixed pressure, so we have focused on only
the former. Corresponding pressure-volume relations
have been calculated for the bce and fce structures of
each metal and used to translate the average phase-
transition volumes so obtained to transition pressures.
These relations have also been used to calculate room-
temperature isotherms for bcc Cr, Mo, and W, as dis-
cussed in Sec. IV.

In the present LMTO calculations, the 3d metal Cr has
been treated in a nonrelativistic mode, while the 5d metal
W has been treated in a semi- or scalar-relativistic mode
in which all relativistic corrections except spin orbit are
included. For the intermediate 4d metal Mo, we have
done parallel nonrelativistic and scalar-relativistic calcu-
lations. While relativistic corrections in Mo are generally
small, we have found that they do have a significant im-
pact on the predicted transition pressures, as will be dis-
cussed below. In all cases both the core and valence elec-
trons have been treated self-consistently. Full energy
bands have been calculated for the valence states and for
the large outer-core states (3s and 3p in Cr; 4s and 4p in
Mo; 5s, S5p, and 4f in W), while an atomic treatment has
been used for the remaining inner-core states. The broad
valence bands have been sampled with a high number of
k points in the Brillouin zone (BZ), while the narrow
outer-core bands have been sampled with a lesser fixed
number of points. In our structural calculations, the
number of valence-band points was increased until little
or no further difference in bee-fcc and hep-fec energy
differences was found, and the results reported below are
based on 506, 505, and 252 k points in the irreducible BZ
wedges for the bec, fcc, and hep structures, respectively.
The preliminary structural results on Mo presented in
Ref. 7, on the other hand, were based on a nonrelativistic
treatment with 285, 240, and 150 k points.

In the LMTO-ASA method, each Wigner-Seitz po-
lyhedron is approximated by an atomic sphere of radius
Rys in which the electron density n(r) is spherically
averaged. The corresponding one-electron potential ¥V (r)
for an elemental metal of atomic number Z, is then given
by
2

Z,e
Vir)=—

+o(r)to(r), (1)
where v (7) and v, (r) are the Coulomb potential and the
local exchange-correlation potential, respectively, arising

from n(r). In the present work, the total energy per
atom, E,, has been evaluated in the form

1 Rys
Eoa=y ZE.~ J, T (o (N v, ()

—&(P)]dr+E . ()
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The first term in Eq. (2) is the usual sum over occupied
one-electron eigenvalues and includes both the valence
and outer-core energy bands, E,=E (k), and the discrete
inner-core levels. The second term represents the
double-counting and exchange-correlation corrections of
the local-density formalism evaluated within the ASA.
The third and final term in Eq. (2) is a additional electro-
static correction, which has variously been called the
muffin-tin, Ewald, or Madelung correction in the LMTO
literature, and is given by

2 l. 8 _aE
Ees:%[n(Rws)Qe] ., (3)
Rws
where ap is the familiar electrostatic Ewald (or
Madelung) constant of the lattice in question

(ap=1.79186 for bee, 1.791 75 for fec, and 1.791 68 for
ideal hcp). This latter term is retained here as a desirable
improvement over the strict ASA for both the
structural-energy differences and the pressure-volume re-
lations, although its quantitative impact on the present
results is typically small. Pressures can be obtained ei-
ther by differentiating Eq. (2) with respect to volume or
using the equivalent Pettifor-Liberman surface integral
expression? for the contribution of the first two terms.
The latter approach has been used in the present work.

Within the LMTO-ASA framework, structural ener-
gies may be obtained in several different ways. To deter-
mine the best approach for the present intended applica-
tions, we have investigated this question in considerable
detail for the case of nonrelativistic Mo. Three methods
have been tried: (i) direct total-energy subtraction, (ii)
valence binding-energy subtraction, and (iii) the so-called
Andersen force theorem.?® In the total-energy subtrac-
tion method, a full self-consistent calculation for each
volume and structure of interest is required and one cal-
culates the total-energy difference between two struc-
tures, AE,,,, directly from Eq. (2). This method suffers
from the obvious problem of having to include extremely
large, but structurally irrelevant, inner-core energy con-
tributions in E, . In the absence of ultrahigh levels of
convergence, such inner-core energies can give rise to
small but damaging amounts of numerical noise. In the
present study, we have been able to obtain satisfactory
bee-fee total-energy differences, since these are relatively
large and require convergence of AE, to only about *+1
mRy. Satisfactory hcp-fcc differences, however, which
require convergence to about +£0.1 mRy, could not be ob-
tained. Method (ii), based on valence binding-energy sub-
traction, readily solves this problem. This method has
been adapted from our work on the complementary gen-
eralized pseudopotential theory (GPT) of transition met-
als'® and has not previously been applied in the context of
LMTO-ASA calculations. The basic idea is to separate
E,, into valence, core, and valency-core overlap contri-
butions:

E . =Eyn tEe TOE

core val-core *

4)

The valence binding energy Ey; 4 is that associated with
all states treated as energy bands and the core energy
E .. that associated with the remaining inner-core states.
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The residual valency-core overlap energy 8E, ... arises
from the nonlinear dependence of v, and €, on the elec-
tron density n. This term is consequently restricted to
only exchange-correlation contributions from the inner-
core regions of space where valence and core wave func-
tions overlap. One then assumes that E_ . and 8E
are independent of structure, so that

AE,=AEy;, - (5)

val-core

This method immediately eliminates the core-noise prob-
lem of method (i) and, in our test study on Mo, readily
produced satisfactory bcc-fcc and hep-fec  energy
differences, with a typical convergence level of 0.1
mRy. Method (iii), based on the Andersen force theorem,
goes one step further by effectively developing AE,,, as
an expansion in 8n, the difference in electron density be-
tween the two structures in question. One thereby ob-
tains to first order in 6~ the simplified result

AE =A [zE(k) +AE, . 6)
k

In this expression the sum over inner-core energy levels
as well as the double-counting and exchange-correlation
corrections of Eq. (2) have dropped out. Moreover, the
band-structure contribution to Eq. (6) refers to a restrict-
ed variation in which E(k) is calculated for the two
structures in question with the same atomic-sphere po-
tential ¥ (r). In all our applications of this result, ¥V (r)
has been chosen to be the self-consistent potential for the
fcc structure. In our test study on Mo, Eq. (6) produced
bee-fcc and hep-fec energy differences as a function of
volume which were in close agreement with those ob-
tained from Eq. (5), so we regard methods (ii) and (iii) as

TABLE 1. Calculated bee-fcc and hep-fee structural energy
differences for the group-VIB metals at equilibrium (Q=Q,).
Theoretical treatments are nonrelativistic (nonrel.) or scalar rel-
ativistic (rel.), as indicated. All energies in mRy.

Present®  Skriver®  Mattheiss® Chan?

Cr (nonrel):

bee-fee —28.9 —28.9¢ —29.6°

hcp-fec 33 3.8°
Mo (nonrel):

bee-fce —30.0 —29.9

hep-fee 2.0 0.5
Mo (rel):

bee-fee —31.8 —34.0 —32.8

hcp-fee 2.7 2.6
W (rel):

bee-fee —38.3 —38.8 —37.1 —40.3

hcp-fcc 4.8 5.0 3.9

*LMTO-ASA using Eq. (6), with band treatment of outer core
and AE correction included via Eq. (3).

®*LMTO-ASA from Ref. 3, with atomic treatment of outer core
and AE,, =0.

‘Linear-augmented-plane-wave method from Ref. 27, with
atomic treatment of outer core.

4 Ab initio pseudopotential method from Ref. 28.

*Scalar relativistic.
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essentially equivalent for structural calculations on the
group-VIB metals. The principal advantage of the An-
dersen force-theorem method (iii) is that only one fully
self-consistent calculation per volume is required. For
this reason, the remainder of our structural calculations
on Cr, Mo, and W have been carried out using this
method.

At equilibrium (Q=(1,), there have been several previ-
ous calculations of bee-fcc and hep-fee structural energy
differences for the group-VIB metals using local-density
band-structure methods.>?”?® In Table I we compare
these results with our present values for Cr, Mo, and W
obtained via Eq. (6). There is seen to be good overall
agreement. In each case the observed bcc structure is
stabilized with a large negative bcc-fcc energy difference,
which increases in magnitude from Cr to Mo to W, and a
small positive hep-fce energy difference, which is smallest
for Mo and largest for W. The small quantitative
differences seen in Table I are attributable to secondary
approximations, either inherent in the various methods
or made by physical choice.

Our corresponding LMTO-ASA calculations of bee-fec
and hcp-fcc energy differences for the group-VIB metals
as a function of volume are presented in Figs. 2—4 for Cr,
(relativistic) Mo, and W, respectively. (The result for
nonrelativistic Mo is analogous to the relativistic case
and is not shown.) The behavior of the large bce-fec en-
ergy difference with decreasing volume is quite similar in
all three metals. This quantity decreases slowly to a
minimum value and then increases rapidly and dramati-
cally over a relatively narrow volume range, becoming
large and positive beyond twofold compression and thus
ensuring the ultrahigh-pressure destabilization of the bcc
structure. The behavior of the smaller hcp-fcc energy
difference with decreasing volume, on the other hand,
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FIG. 2. Present theoretical bce-fcc and hep-fee total-energy
differences for Cr as a function of volume.



Energy relative to fcc (mRy)

-40 [P | . L [P R | M
.5 .6 .7 .8 .9 1.0 1.1
Relative atomlc volume Q/0

FIG. 3. Present theoretical bee-fecc and hep-fce total-energy
differences for Mo as a function of volume from the scalar-
relativistic treatment.

shows some subtle variation from metal to metal. In Cr
and Mo, this quantity initially stays rather constant at a
small positive value before dropping rapidly to a negative
minimum. It then rises again towards zero, crossing the
bece-fece curve in the process and thereby indicating a
bcc—hcp transition. In Cr, the hcp-fcc difference
remains negative at the smallest volume considered, while
in Mo it returns to a positive value indicating a subse-
quently hcp—fcc transition. In W, the hcp-fcc energy
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FIG. 4. Present theoretical bce-fec and hep-fee total-energy
differences for W as a function of volume.
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TABLE II. Predicted average transition volumes (£ /€)
and pressures (P) for Cr, Mo, and W from the present theoreti-
cal calculations. Treatments are nonrelativistic (nonrel.) or sca-
lar relativistic (rel.), as indicated. Here Q,=280.94 for Cr, 105.1
for Mo, and 107.0 for W, with all values in a.u. Pressures are
given in Mbar.

beec—hep hep—fec
Treatment 0/Q, P 0/Q, P
Cr: nonrel. 0.470 7.0
Mo: nonrel. 0.625 3.1 0.565 4.5
rel. 0.580 4.2 0.515 6.2
W: rel. 0.440 12.5 0.420 14.4

difference displays a more symmetric oscillation about
zero with decreasing volume, returning to a slightly posi-
tive value at the smallest volume considered with both
bcc—hep and hep—fee transitions predicted. Average
transition volumes obtained from these total-energy cal-
culations together with the corresponding transition pres-
sures are given in Table II. In these results the transition
volumes have been determined graphically to an estimat-
ed accuracy of +0.005 in Q/Q, All of the predicted
phase transitions occur in the vicinity of twofold
compression with the transition volumes in the range
0.420=Q/Q,=0.625. In this regime, pressure is in-
creasing rapidly with decreasing volume, so that the pre-

12 | T l
5s, 5p bands

0.8

0.4

5s bottom

Energy (Ry)
o

Mo: LMTO

| | |
0.2 0.4 0.6 0.8 1.0 1.2

Relative atomic volume /g

FIG. 5. Lowering of the 4d bands and the Fermi level E rel-
ative to the 5s and 5p bands with decreasing volume for nonrela-
tivistic Mo. Nominal end to the s —d transition occurs when
E- falls below the bottom of the 5s band. Included in the calcu-
lation but not shown are the complicating effects of sp-d hybrid-
ization and the emergence of the outer-core 4s and 4p bands
from below. Occupied portion of the 4d bands is shaded.
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dicted transition pressures are sensitive to the calcula-
tional details. The general trends, however, seem to be
clearly established and, in particular, note that the lowest
transition pressures are predicted for the 4d element Mo
and the highest for the 5d element W. This unusual or-
dering is similar to what occurs in the group-IVB met-
als, 4716 where the 4d element Zr has the lowest transi-
tion pressures for both the hcp—w and w—bcc transi-
tions.

As suggested in Sec. II, the overall driving mechanism
for the present phase transitions is an sp —d transfer of
electrons with compression. The importance of this
mechanism in the group-VIB metals can be immediately
appreciated from Fig. 5, where we have plotted the rela-
tive movement under high pressure of the 4d valence en-
ergy bands and Fermi level E; with respect to the bottom
of the 5s band for the case of (nonrelativistic) Mo. This
plot illustrates the dramatic lowering of these d bands
below the valence s and p bands with decreasing volume.
In the context of the LMTO-ASA method, the corre-
sponding variation in the band-electron populations may
be monitored by integrating the angular momentum com-
ponents of the valence electron density. Specifically, we
define Z,; to be the integrated ! =2 component of this
density. While the additional competing effects of sp-d
hybridization and the emergence of the outer-core energy
bands from below combine to limit the amount of elec-
tron transfer, AZ;, which can actually occur at high
pressure, in the volume regime of the present phase tran-
sitions Z; is indeed found to be monotonically increasing
with decreasing volume for a given crystal structure.
This is shown in Figs. 6-8 for Cr, (relativistic) Mo, and
W, respectively. Here we have plotted Z,(Q) for the bcc
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FIG. 6. Calculated d-band occupation for bcc and fec (or
hcp) Cr as a function of volume. The quantity AZ,=0.43 is the
net increase between equilibrium (Q2=9Q;) and the end of the
beec— hep transition (2=0.47Q,).
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FIG. 7. Calculated d-band occupation for bee and fec (or
hcp) Mo as a function of volume from the scalar-relativistic
treatment. The quantity AZ, =0.34 is the net increase between
equilibrium (Q2=€,) and the end of the bcc—hcp transition
(2=0.58Q).

and fcc structures in each case, noting that the result for
the hcp structure is almost the same as for fcc. We have
also indicated in each plot the net amount of electron
transfer AZ; which corresponds to the bcc— hcp transi-
tion. These amounts are 0.43, 0.34, and 0.50
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FIG. 8. Calculated d-band occupation for bcec and fcc (or
hcp) W as a function of volume. The quantity AZ;=0.50 is the
net increase between equilibrium (Q=.,) and the end of the
bee— hep transition (2 =0.44Q,).
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electrons/atom for Cr, Mo, and W, respectively, and
correlate with the calculated transition pressures of 7.0,
4.2, and 12.5 Mbar. These results are also in accord with
one’s expectation from Fig. 1 that roughly one-half an
electron per atom must be transferred to drive the
beec— hep transition.

In addition to the overall influence of sp —d electron
transfer on phase stability, other factors appear to be im-
portant here in raising or lowering the transition pres-
sures for an individual element. In particular, the large
ion cores in the group-VIB metals lead to a repulsive
hard-core-like interaction between near neighbors under
high pressure. As is well known, hard-core repulsing dis-
favors the bce structure with respect to the more close-
packed fcc and hep structures because of the shorter bee
nearest-neighbor distance. In the present context, such
an interaction thus serves to lower the bcc—hcp transi-
tion pressure. We believe that this effect is at least par-
tially responsible for the relatively low-transition pres-
sures we find in Mo, since the repulsive core interaction
enters sooner as a function of compression in this metal
than in either Cr or W. This is demonstrated in Fig. 9,
where we have plotted the core component of the total
pressure for the group-VIB metals as a function of 0/,
in the vicinity of our predicted transitions. The core
pressure is clearly seen to be largest in Mo and smallest in
W, in exact inverse order to the calculated bcc— hcp
transition pressures. Figure 9 also helps to explain the
sensitivity of our calculated transition pressures in Mo to
relativistic effects, as displayed in Table II. One expects
relativistic effects to shrink the size of the ion core and
thus reduce direct core interactions, so that the core pres-
sure is lowered and the bcc—hcp transition pressure is
raised. As demonstrated in Fig. 9 and Table II, this is
indeed what happens in our calculations.
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FIG. 9. Calculated core pressures for Cr, Mo, and W in the
vicinity of the present bcc—hcp and hcp—fcc phase transi-
tions.

IV. EQUATION OF STATE

The pressure-volume relations developed in connection
with our structural studies have also been applied to the
calculation of reliable 300-K isotherms for bcc Cr, Mo,
and W up to the 5-6-Mbar pressure range. As in the
structural calculations, the question of the equation of
state for the group-VIB elements has been considered
most extensively in the case of nonrelativistic Mo. In
general, total energies and pressures in metals at finite
temperature may be calculated as a sum of zero-
temperature, ion-thermal, and electron-thermal contribu-
tions. >3 Thus, for the total pressure at volume Q and
temperature 7T, one has

P(Q,T)=Py(Q)+P; (Q,T)+Py(Q,T) . (7

In this expression the zero-temperature pressure P is im-
mediately available to us from our LMTO results, as is
the electron-thermal pressure P, for kpT/Ep<<1,
which may be obtained from the standard low-
temperature expansion of the band-structure energy in-
volving the density of electronic states at the Fermi level
E.. The additional ion-thermal pressure P;, , however,
requires a separate treatment of phonons in the solid and,
above the melting temperature, itinerant ion motion in
the liquid. This is complicated in the central transition
metals because of the need to take into account both cen-
tral and angular forces, but can be addressed by means of
generalized pseudopotential theory. The GPT method
provides transferable interatomic potentials and forces
within the local-density framework which can be used to
calculate phonons from quasiharmonic lattice dynamics
and, more generally, to perform molecular-dynamics
simulations of the high-temperature solid and the liquid.
In the case of nonrelativistic Mo, the GPT has been ap-
plied in detail to obtain ion-thermal energies and pres-
sures via quasiharmonic lattice dynamics, and then a
complete equation of state for the solid has been con-
structed by means of Eq. (7).>**! The principal Hugoniot
for Mo has been calculated with this equation of state
and found to be in good agreement with experiment up to
the maximum pressure considered ( =4 Mbar). 0
Our present goal is more modest than the full equation
of state and accordingly a more approximate procedure
has been developed to obtain the 300-K isotherm at high
pressure. In this regard, it has been first noted that,
within quasiharmonic lattice dynamics, the high-
temperature ion-thermal pressure becomes
P

Q,T)=P,.(Q)+37,,,(Qk T/, (8)

ion( zero(
where P, is the small zero-point vibrational contribu-
tion to the pressure and ¥, is the familiar ion-Griineisen
parameter. Detailed GPT studies on nonrelativistic Mo
(Ref. 31) have shown that P, () and ¥;,,(Q)/Q are
rather slowly varying functions of volume for a given
crystal structure. Therefore, along the 300-K bcc iso-
therm, it is reasonable to take P,,, =const and P, =0,
since P, , >>P,, and at high pressure Py, >>P; . In addi-
tion, it is convenient to normalize P (,300) to experi-
ment by requiring that P(£,,300)=0, where £, is the
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TABLE III. Cohesive properties of bcc Cr, Mo, and W from
the present theoretical calculations. Treatments are nonrela-
tivistic (nonrel.) or scalar relativistic (rel.), as indicated. The
calculated equilibrium volume (., has been obtained from the
condition Py(Q)=0. The values of the bulk modulus B, and
its first pressure derivative B are those obtained from universal
equation-of-state fits to the calculated pressure-volume rela-
tions, as discussed in the text, with B, and B evaluated at the
experimental equilibrium volume (£,). Units: Q. in a.u.; Py
and B, in Mbar.

Treatment Q. Py(Qy) B, B
Cr: nonrel. 74.21 —0.172 2.07 4.53
expt. 80.94% 0.0 1.98°
Mo: nonrel. 105.2 0.002 2.65 4.38
rel. 103.2 —0.045 2.48 4.99
expt. 105.12 0.0 2.63¢ 4.44°
\\A rel. 105.3 —0.047 2.99 4.51
expt. 107.0* 0.0 3.11° 4.29°

Room-temperature value from Ref. 32.
"Room-temperature value quoted from Table 1 of Ref. 35.
‘Room-temperature value from Ref. 36.

observed room-temperature equilibrium volume.>*? These
three conditions are met by calculating the 300-K iso-
therm as simply

P300(Q)=P(Q,300)=Py(Q)— Py(Qy) , 9)

which amounts to a rigid shift of the zero-temperature re-
sult by an amount —Py(£,). At the high pressures of in-
terest here, this procedure is adequate as long as | Py(Q,)|
is a small constant (of roughly the same order as P, ), so
that Py({2) alone yields a good estimate of the equilibri-
um volume. As shown in Table III, this is indeed the
case for the group-VIB metals, especially for Mo and W
where |Py(Q,)| <50 kbar. By comparison, we calculate
P;,.(,300)=18 kbar for nonrelativistic Mo.

For expected further applications, the 300-K isotherms
so obtained have been fit with the modified universal
equation-of-state form3>3*

Py (X)=Pr[(1—X)/X?*]exp[n(1—X)+B(1—X)*], (10)

TABLE IV. Universal equation-of-state parameters (Pr,7,
and f3) obtained from fits to the present theoretical 300-K iso-
therms for bcc Cr, Mo, and W, as described in the text.
Theoretical treatments are nonrelativistic (nonrel.) or scalar rel-
atjvistic (rel.), as indicated. The quantity P,,,, is the upper pres-
sure limit for each fit, with Py and P_,, in Mbar.

Treatment Py n B Poax
Cr: nonrel. 6.2233 5.3012 0.0 6.0
Mo: nonrel. 7.9647 5.0696 0.0 2.0
nonrel. 7.8358 5.6734 —4.89 5.5
rel. 7.4322 5.9902 0.0 2.0
rel. 7.2098 7.1139 —9.10 5.5
W: rel. 8.9565 5.2637 0.0 3.0
rel. 8.9104 5.4957 —1.89 5.5
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FIG. 10. Present theoretical 300-K isotherm calculated for
bce Cr compared against the shock-reduced data of Ref. 37.

where X=(Q/Q,)'?, P;=3B;, and n=1.5(By—1).
Here B, and By are the isothermal bulk modulus and its
first pressure derivative, respectively, at 3=, In our
calculational procedure, the shape of the pressure-volume
relation has been unaltered by temperature, so that
By=B, and Br=B|,. The additional parameter 8 in Eq.
(10) can be directly related to the second pressure deriva-
tive By. In the standard form of the universal equation
of state one takes S=0, which is both appropriate and
optimum here for small values of 1 —X. The values of B,
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FIG. 11. Present theoretical 300-K isotherms for bcc Mo cal-
culated from both the nonrelativistic and the scalar-relativistic
treatments compared against the shock-reduced data of Ref. 37.
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FIG. 12. Present theoretical 300-K isotherm calculated for
bcec W compared against the shock-reduced data of Ref. 37.

and B( we have obtained with B=0 for all three metals
are compared with experiment®>3® in Table III. The
agreement is seen to be very good, especially for Mo and
W. For larger values of 1 —X in Mo and W, however, the
additional parameter 3 is necessary to extend Eq. (10) all
the way up to the desired 5-6-Mbar pressure range.
With =0, good fits to Py, could be obtained for these
metals only up to about 2—3 Mbar. In the case of Cr, on
the other hand, allowing a nonzero value of 8 did not im-
prove the overall fit below 6 Mbar, so we have main-
tained B=0 in this metal. A complete set of fitting pa-
rameters we have obtained in connection with Eq. (10) is
given in Table IV. In deriving these parameters, LMTO
data bases of 8, 9, and 6 pressure points (equally spaced
in Q/9Q,) were used for Cr, Mo, and W, respectively.
Over the pressure ranges indicated in Table IV (i.e., up to
P_...), these data were generally fit to an accuracy of
better than 1% in the cases of Mo and W, but a some-
what lower accuracy in the case of Cr.

Our full calculated 300-K isotherms for bcc Cr, Mo,
and W are compared with the shock data of McQueen
et al.’" in Figs. 10~ 12, respectively. This data, which ex-
tends only to the 1.5-2.5-Mbar range, has been reduced
from the measured Hugoniots under conditions similar to
those assumed in Eq. (9), namely, with P,,,=0.0 and
YiontQ)/Q=const in Eq. (8) and with P, =0.0. The
overall agreement between theory and experiment is
again seen to be very good, although in Mo and W theory
predicts slightly stiffer isotherms above 2 Mbar than sug-
gested by the data. Also note in the case of Mo that there
is only a small difference between the nonrelativistic and
scalar-relativistic results.

V. DISCUSSION AND CONCLUSIONS

It finally remains to compare and attempt to reconcile
our predicted ultrahigh-pressure phase transitions in the
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group-VIB elements with the existing diamond-anvil-cell
(DAC) measurements® '° and shock-wave data”® on these
metals. In Table V we summarize all of the current
theoretical and experimental results relevant to the high-
pressure destabilization of the bcc structure in Cr, Mo,
and W. The present theoretical analysis yields a predict-
ed zero-temperature bcc—hcp transition in these metals
at about 7.0, 4.2, and 12.5 Mbar, respectively, assuming
no intermediate low-symmetry phase occurs between bcc
and hcp. The room-temperature DAC studies on Mo
and W have been carried out to 4.16 and 3.78 Mbar, re-
spectively, with the bcc structure observed to remain
stable in both metals. These results are then still con-

o

Temperature (10° K)

Pressure (Mbar)

FIG. 13. Schematic representation of two possible pressure-
temperature phase diagrams for Mo consistent with the present
theoretical calculations and current experimental data. (a) A
strongly temperature-dependent bce-hep phase line. (b) A new
high-temperature solid phase.



45 ULTRAHIGH-PRESSURE STRUCTURAL PHASE TRANSITIONS . . .

2013

TABLE V. Summary of current data on the high-pressure destabilization of the bcc structure in the
group-VIB metals. Theory represents the present prediction of a bcc—hcp transition, with the corre-
sponding transition pressures from Table II. Pressures (P) are given in Mbar and temperatures (T) are

given in K.
Theory Diamond-anvil cell Shock compression
P T P T P T
Cr: 7.0 0
Mo: 42 0 >4.16° 300 2.1° 4.000¢
W: 12.5 0 >3.78° 300 4.3° 110004

2Reference 10.
"Reference 7.
‘Reference 8.

9Present estimate based on the calculated Hugoniot temperature at the measured pressure.

sistent with our calculations, even though no evidence of
a phase transition has yet been obtained. In the case of
W, our calculations indicate that there is little immediate
prospect of observing such a phase transition by further
increases in DAC pressure, while in the case of Mo, on
the other hand, the prospect would appear to be excel-
lent. In the corresponding high-temperature shock-wave
studies of Mo and W, evidence for the destabilization of
the bee structure through a solid-solid phase transition
has been found at 2.1 and 4.3 Mbar, respectively. These
transition pressures represent 50 and 35 % of our predict-
ed zero-temperature values and clearly suggest very large
high-temperature effects on the solid phase diagrams of
these metals. We estimate the transition temperatures in
the shock-wave experiments to be about 4000 K in Mo
and 11000 K in W. Two possible phase diagrams which
could reconcile theory and experiment here are indicated
schematically in Fig. 13 for the case of Mo. The first pos-
sibility [Fig. 13(a)] is for a very strong temperature
dependence to the bce-hep phase line. Preliminary GPT
calculations on Mo suggest that quasiharmonic phonons
alone probably cannot account for such a large quantita-
tive effect, so that either large anharmonic effects and/or
large electron-thermal effects would be necessary. A
large electron-thermal contribution is, in fact, expected
here due to the increase in the density of states at E in
the hcp structure over the bee structure for a group-VIB
metal.*® The second possibility [Fig. 13(b)] is for an addi-
tional high-temperature solid phase, such that the shock
measurements are actually detecting a transition to this
phase rather than to hcp. It is unclear, however, what
the nature of such a phase might be. Alloys of Mo and
W with transition elements to the right of the group-VIB
metals do reveal several candidate structures, but the ma-
jority of these are characteristic of compound formation
and not likely to occur in the elemental metal. Two ex-
ceptions are the A15 or B-W structure which occurs in
Mo-Re and Mo-Os alloys and the A12 or a-Mn structure
which occurs in Mo-Re and W-Re alloys. ¥

One further interesting experimental possibility is to
attempt to lower the room-temperature bcc— hcp transi-
tion pressure by alloying bce group-VIB metals with hep
group-VIIB or group-VIII elements. In this regard,
perhaps the most interesting system for study would be
the Mo-Re alloy. For this system, the bcc Mo-rich solid
solution forms at high temperature for Re concentrations
up to ~40%,*° so that presumably the bcc—hcp transi-
tion pressure, even if in pure Mo it is above the 4.2 Mbar
we calculate, could be reduced to well within the DAC
measurement range. If the bcc—hcp transition can
indeed be observed in Mo or a dilute Mo-Re alloy, it
would then also be of great interest to examine the tem-
perature dependence of the phase line in an attempt to
distinguish between the two hypothetical phase diagrams
shown in Fig. 13.

In the future it may be possible to map out entire
theoretical pressure-temperature phase diagrams for the
group-VIB metals by combining LMTO and GPT calcu-
lations. The LMTO approach can be extended to finite
temperature within the regime of k3T << E to examine
the effects of electron-thermal contributions on the bcc-
hcp phase line. The GPT approach, on the other hand,
can be combined with molecular-dynamics or Monte Car-
lo simulation to examine the corresponding effects of
ion-thermal contributions, to search for new possible
high-temperature solid phases, and to investigate melting.
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FIG. 5. Lowering of the 4d bands and the Fermi level Ef rel-
ative to the 5s and 5p bands with decreasing volume for nonrela-
tivistic Mo. Nominal end to the s—d transition occurs when
Ep falls below the bottom of the 5s band. Included in the calcu-
lation but not shown are the complicating effects of sp-d hybrid-
ization and the emergence of the outer-core 4s and 4p bands
from below. Occupied portion of the 4d bands is shaded.



