## **VOLUME 45, NUMBER 4**

15 JANUARY 1992-II

## Raman scattering in C<sub>60</sub> and alkali-metal-doped C<sub>60</sub> films

Kai-An Wang and Ying Wang

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506

Ping Zhou

Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511

J. M. Holden and Song-lin Ren Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506

G. T. Hager and H. F. Ni Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511

P. C. Eklund

Department of Physics and Astronomy and Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506

G. Dresselhaus

Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

M. S. Dresselhaus

Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 14 October 1991)

The Raman-active modes of solid films of  $C_{60}$  and  $M_x C_{60}$  ( $x \sim 6$ ; M = K, Rb, Cs) have been studied experimentally. The mode activity is dominated by intraball interactions, and the effect of the  $M^+$ ions on the  $C_{60}$  spectrum is observed to be almost insensitive to the radius or mass of the alkali metal. The tangential modes of solid  $C_{60}$  are observed to soften in  $M_6C_{60}$  by  $\sim 60$  cm<sup>-1</sup>, which can be attributed to a charge-transfer-induced elongation of the intraball bond lengths, similar to that observed in graphite intercalation compounds. Conversely, the radial modes are found to upshift slightly, indicating that a competing mechanism counteracts the effect of the bond elongation.

In this paper we present results of Raman-scattering studies on thin solid films of C<sub>60</sub> and alkali-metalsaturated C<sub>60</sub>,  $M_x$ C<sub>60</sub> (M = K, Rb, Cs). Weight-uptake measurements and elemental analysis of K-saturated C<sub>60</sub> powders reported 6.7 < x < 7.3,<sup>1</sup> and previous structural studies of the K- and Cs-saturated C<sub>60</sub> reported x = 6.<sup>1</sup> Hereafter, we refer to the M-saturated C<sub>60</sub> compound as  $M_6C_{60}$ . The Raman-active modes of solid  $M_6C_{60}$  presented here are surprisingly independent of the mass or radius of the alkali-metal ions. A doping-induced downshift in three of the high-frequency tangential C<sub>60</sub> modes is found in reasonable agreement with similar studies on the intralayer modes in graphite intercalation compounds (GIC's),<sup>2,3</sup> where the downshift has been shown to follow the elongation of the intralayer C-C bond length.<sup>4</sup> The main result from this study is the simplicity of the observed Raman spectra, which stems from weak ball-ball and ball-M interactions. The Raman spectra of K-, Rb-, and Cs-doped  $C_{60}$  are essentially identical. These results, taken together, suggest that a model for superconductivity in the related  $M_3C_{60}$  compounds should be consistent with weakly coupled C<sub>60</sub> molecular anions whose electronic and vibrational properties have been modified by charge transfer.

Solid  $C_{60}$  is a van der Waals-bonded insulator<sup>5-7</sup> with an empty sixfold-degenerate conduction band.<sup>8</sup> Since each carbon atom in a C<sub>60</sub> ball bonds to three neighbors, as in graphite, there is a close connection between the nonplanar bonding of carbon atoms in a C<sub>60</sub> molecule and the planar  $sp^2$  trigonal bonding that occurs in graphite. Thus a certain subset of the normal modes of  $C_{60}$  associated with primarily tangential and radial displacement of the C atoms are intimately connected with the intralayer and interlayer modes of graphite, respectively. The metallic character of the  $M_{3}C_{60}$  compounds may be viewed as stemming from a transfer of electrons from the alkalimetal atoms to create a half-filled  $(t_{1u} \text{ symmetry}^8)$  conduction band. At saturation doping, i.e.,  $M_6C_{60}$ , the  $t_{1u}$ band is full in a rigid band scheme, and the solid should be insulating as observed.<sup>9</sup> Recently, superconductivity has been observed in binary and ternary alkali-metal-doped  $C_{60}$  by several groups.<sup>10-14</sup> The relatively high  $T_c$  values [e.g., 30 K in Cs-doped C<sub>60</sub> (Ref. 13) and 33 K in  $Cs_x Rb_y C_{60}$  (Ref. 14)] underscore the importance of understanding the nature of the vibrational modes and electron-phonon interaction in  $M_x C_{60}$ .

Pristine C<sub>60</sub> films were deposited onto silicon (100) substrates by sublimation in a vacuum of  $\sim 10^{-6}$  Torr.

<u>45</u> 1955

Alkali-metal doping was carried out in a sealed quartz tube containing the film (200°C) and alkali metal (100 °C) in opposite ends. The reactions were carried out for 1 h, which produced a color change in the films and a  $\sim$  37 cm<sup>-1</sup> downshift of the strongest Raman line of pristine  $C_{60}$  at 1469 cm<sup>-1</sup>. The ampoules were returned to the furnace for another hour under the same conditions and no further downshift of the peak was observed. Raman spectra (300 K) were collected in the Brewster angle backscattering geometry<sup>15</sup> and cylindrical focusing of low (P < 40 mW) laser radiation (spot size:  $1 \times 0.1 \text{ mm}^2$ ) was found necessary to prevent laser-induced damage to the  $C_{60}$  films.  $M_6C_{60}$  films were studied in their growth ampoules; pristine films were handled in air but the spectra were collected with N<sub>2</sub> gas flowing over the surface of the film.

Figure 1 shows low-resolution (6 cm<sup>-1</sup>) unpolarized Raman spectra of pristine  $C_{60}$  and  $M_6C_{60}$ ; all films were  $\sim 1000$  Å in thickness. Weak lines are observed in the C<sub>60</sub> spectrum at 1099 and 1248 cm<sup>-1</sup>. They are not due to a minority inclusion of C70, as no Raman lines are observed in our spectra near strong C70 line frequencies reported by Meijer et al. <sup>16</sup> The counterparts of the  $C_{60}$  lines in the  $M_6C_{60}$  films appear at 1094 and 1237 cm<sup>-1</sup>. The weak lines seen in Fig. 1 above  $1573 \text{ cm}^{-1}$  vary in strength from that shown in Fig. 1, to even weaker intensities in other samples. The doped spectra are all remarkably similar, exhibiting very little dependence on the mass, radius, or electronic levels of the respective alkalimetal constituents. The features at 520 and 965 cm<sup>-1</sup> in the  $C_{60}$  spectrum (Fig. 1) are identified with the silicon substrate.<sup>17</sup> These features vanish in the doped films, indicating higher optical absorption near the laser wavelength (4880 Å) in  $M_6C_{60}$  than in pristine  $C_{60}$ . Two (three) strongly polarized modes are observed for C<sub>60</sub>  $(M_6C_{60})$ , and are identified below on the basis of symmetry considerations. In contrast to the case of  $C_{60}$ , two of the  $M_6C_{60}$  lines at  $\sim 271$  and  $\sim 429$  cm<sup>-1</sup> are resolved as doublets at higher resolution. In Table I we collect the Raman data for  $C_{60}$  and  $Rb_6C_{60}$  films, including the depolarization ratio  $(I_{\rm HV}/I_{\rm HH})$  (Ref. 18) and the peak widths [full width at half maximum (FWHM)]. Similar data are obtained for K- and Cs-doped C<sub>60</sub> and will be presented elsewhere.<sup>19</sup>

Recent x-ray-diffraction experiments indicate that pristine  $C_{60}$  exhibits a simple cubic structure below 249 K, with space group Pa3 (or  $T_h^{6}$ ).<sup>20</sup> There are four balls per unit cell in this structure located at sites with  $T_h$  symmetry. The number of allowed Raman modes in this lowtemperature structure is therefore very large:  $31 A_g(1)$ modes,  $31 E_g(2)$  modes, and 89  $T_g(3)$  modes, where the symmetry label is followed by the mode degeneracy in parentheses. At room temperature, on the other hand, the balls are spinning with a long rotational time compared to a Raman-scattering event ( $\sim 10^{-14} \text{ sec}$ ).<sup>21</sup> On this time scale, the average site symmetry for each ball is even lower, and a large number of modes are therefore anticipated. What is observed here and in previous work by Meijer *et al.*<sup>16</sup> is ten Raman lines ( $2 A_g + 8 H_g$ ) for solid  $C_{60}$  ball with icosahedral symmetry  $I_h$ .<sup>22-25</sup> The  $A_g$ 



FIG. 1. Low-resolution ( $\sim 6 \text{ cm}^{-1}$ ) Raman spectra taken at T = 300 K for solid films of C<sub>60</sub> and saturation-doped  $M_x$ C<sub>60</sub> ( $x \sim 6$ , M = K, Rb, Cs). Polarization properties and FWHM's for Rb<sub>6</sub>C<sub>60</sub> and C<sub>60</sub> appear in Table I.

modes are identified by their polarized character and appear at 493 cm<sup>-1</sup> (radial<sup>24</sup>) and 1469 cm<sup>-1</sup> (tangential<sup>24</sup>); the remaining eight lines are unpolarized, consistent with  $H_g$  symmetry. Thus we conclude that the ball-ball interactions in solid C<sub>60</sub> are weak and the Raman activity turned on by these interactions is insufficient to allow experimental detection.

The T = 300 K structure of  $M_6C_{60}$  is Im(3) (or equivalently  $T_h^5$ ).<sup>1</sup> This symmetry will give rise to approximately twice as many C<sub>60</sub>-derived, Raman-active modes for  $M_6C_{60}$  than an isolated  $C_{60}$  molecule. However, only five new lines are observed; four can be identified as partners in doublets. The splitting between lines in these doublets is  $\sim 10-30$  cm<sup>-1</sup>, which are grouped as pairs in Table I. It is therefore reasonable to assign these pairs of lines to a splitting of the  $H_g$  symmetry modes of  $C_{60}$  activated by the incorporation of  $M^+$  ions. However, their polarization behavior indicates that a further lowering of the symmetry at 300 K must take place. The  $H_g$ modes of  $C_{60}$  should split into diagonally polarized  $E_g$  and off-diagonally unpolarized  $T_g$  modes under  $T_h^5$  symmetry. Numerous other Raman-active modes anticipated for solid  $M_6C_{60}$  are therefore found to exhibit insufficient Raman activity. It should be remarked that the Raman line shape for all the modes in  $C_{60}$  and  $M_6C_{60}$  is observed to be

| TABLE I. Experimental Raman-mode frequencies for C <sub>60</sub> and Rb <sub>x</sub> C <sub>60</sub> ( $x \sim 6$ ) at $T = 300$ K. Theoretical results for molecular C <sub>60</sub> |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| and previous experimental results on solid C <sub>60</sub> are included for comparison.                                                                                               |  |

|                               |                                   | C <sub>60</sub><br>t Theory               |                                 |                                                    |
|-------------------------------|-----------------------------------|-------------------------------------------|---------------------------------|----------------------------------------------------|
| Experim                       | ent                               |                                           |                                 |                                                    |
| This work                     | Meijer <i>et al.</i><br>(Ref. 16) | Negri, Orlandi, and Zerbetto<br>(Ref. 25) | Stanton and Newton<br>(Ref. 24) | This work                                          |
| 270.0 [4.2,0.52] <sup>a</sup> | 273                               | 258                                       | 263(69.3) <sup>b</sup>          | 271.5 [0.9,0.54]<br>277.0 [0.7,0.85]               |
| 430.5 [5.5,0.40]              | 437                               | 440                                       | 447(90.0)                       | 421.5 [0.8,0.61]<br>428.5 [ < 1,0.65]              |
| 493.0 [2.5,0.02] <sup>c</sup> | 496 <sup>c</sup>                  | 513 °                                     | 610(100) °                      | 500.0 [0.4,0.12] <sup>c</sup>                      |
| 708.0 [7.5,0.40]              | 710                               | 691                                       | 771 (96.5)                      | 657.5 [2.2,0.74]<br>676.5 [ < 1,0.00] <sup>d</sup> |
| 772.5 [9.0,0.38]              | 774                               | 801                                       | 924(30.5)                       | 760.5 [2.0,068]                                    |
| 1099 [7, ]                    | 1099                              | 1154                                      | 1261(9.6)                       | 1092.0 [11,0.78]<br>1120.5 [12,0.35]               |
| 1248 [7, ]                    | 1250                              | 1265                                      | 1407(2.1)                       | 1238.5 [0.8,0.57]                                  |
| 1426.0 [7.5,0.44]             | 1428                              | 1465                                      | 1596(0.8)                       | 1385.0 [8.7,0.60]                                  |
|                               |                                   |                                           |                                 | 1419.5 [11,0.14] <sup>d</sup>                      |
| 1468.5 [1.5,0.10] °           | ۱470 <sup>د</sup>                 | 1442 °                                    | ۲667(0.0) <sup>د</sup>          | 1432.5 [2.7,0.10] °                                |
| 1573.0 [9.5,0.52]             | 1575                              | 1644                                      | 1722(1.2)                       | 1483.5 [15,0.80]                                   |

<sup>a</sup>Numbers in brackets are natural line width (cm<sup>-1</sup>) and depolarization ratio  $(I_{HV}/I_{HH})$ , respectively.

<sup>b</sup>Number in parentheses is percentage of radial-mode character.

 $^{c}A_{g}$  modes.

<sup>d</sup>Polarized  $E_g$  mode.

Lorentzian and not Gaussian. The latter line shape results from inhomogeneous broadening from a random distribution of defects, such as might arise from incomplete intercalation of M atoms. Lower-frequency Ramanactive modes associated with interball motion are anticipated but have not been observed in this study. Collected in Table I are calculated frequencies for molecular C<sub>60</sub> according to Negri, Orlandi, and Zerbetto, <sup>25</sup> which exhibit the best agreement with experiment, and Stanton and Newton, <sup>24</sup> which provide another point of comparison, as well as an estimate of the percent radial character of the vibrational eigenmodes.

The observation that the downshift of the highestfrequency tangential modes in solid  $C_{60}$  is independent of the nature of the alkali-metal dopant is interpreted as a clear indication that the charge-transfer-induced elongation of the average C-C bond length dominates the effect, and the downshift is not significantly mediated by interball or *M*-ball interactions. Haddon *et al.*<sup>9</sup> reported previously the x-dependent downshift of the  $A_g$  mode of  $C_{60}$ at 1469 cm<sup>-1</sup> (Ref. 26) to 1445 cm<sup>-1</sup> in highly conducting K<sub>x</sub>C<sub>60</sub> ( $x \cong 3$ ) and 1430 cm<sup>-1</sup> in the highly doped but insulating compound ( $x \cong 6$ ). In agreement with our view, they also identify this softening with electron donation to the ball. In addition, we find that other highfrequency tangential modes also soften upon doping to x = 6. The solid  $C_{60}$  lines at 1426 and 1469 cm<sup>-1</sup> downshift by ~40 cm<sup>-1</sup>, and the 1573-cm<sup>-1</sup> line downshifts by ~100 cm<sup>-1</sup> in solid  $M_6C_{60}$ . Previous theoretical studies by Chan, Ho, and Kamitakahara<sup>2</sup> of charge-transfer effects on the Raman-active intralayer modes in GIC's report a charge-transfer shift  $(\Delta \omega_{cl}/q_c) = -880$  cm<sup>-1</sup>/e, where  $q_C$  is the average charge per C atom donated to the graphene layers in units of electrons per C atom. Assuming six electrons transferred per C<sub>60</sub>, and using an average mode downshift of 60 cm<sup>-1</sup> for the highest three tangential modes, we arrive at  $(\Delta \omega_{cl}/q_C) = -600$  cm<sup>-1</sup>/e, or ~70% of the effect in GIC's.<sup>2</sup>

In GIC's, a universal relationship between C-C bond length and  $q_{\rm C}$  was proposed first by Pietronero and Strassler<sup>3</sup> on the basis of empirical calculations. Later, Chan *et al.*<sup>4</sup> performed *ab initio* calculations of the effect and found a weaker relationship between the C-C bond length ( $d_{\rm CC}$ ) and  $q_{\rm C}$ . X-ray- and neutron-diffraction studies in the alkali-metal GIC's do show a clear universal relationship between  $d_{\rm CC}$  and  $q_{\rm C}$ . A value  $q_{\rm C} = -0.1 e$  in GIC's is associated with an elongation  $\Delta d_{\rm CC} = 0.010$  Å (Ref. 4). In contrast to the high-frequency tangential C<sub>60</sub> modes, the low-frequency radial C<sub>60</sub> mode at 493 cm<sup>-1</sup> ( $A_g$ ) increases by ~7 cm<sup>-1</sup> upon doping to  $M_6C_{60}$ , indi**RAPID COMMUNICATIONS** 

cating that a competing effect overwhelms the effect of C-C bond elongation. This conclusion is supported by recent theoretical calculations indicating that an electrostatic interaction arising from the charged  $C_{60}$  ball is partly responsible for the upshift.<sup>27</sup>

<sup>1</sup>O. Zhou et al., Nature (London) 351, 462 (1991).

- <sup>2</sup>C. T. Chan, K. M. Ho, and W. A. Kamitakahara, Phys. Rev. B **36**, 3499 (1987).
- <sup>3</sup>L. Pietronero and S. Strassler, Phys. Rev. Lett. 47, 593 (1981).
- <sup>4</sup>C. T. Chan, W. A. Kamitakahara, K. M. Ho, and P. C. Eklund, Phys. Rev. Lett. **58**, 1528 (1987).
- <sup>5</sup>W. Kratschmer, L. D. Lamb, K. Fostiropoulous, and D. R. Huffman, Nature (London) **347**, 354 (1990).
- <sup>6</sup>H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Carl, and R. E. Smalley, Nature (London) **318**, 162 (1985).
- <sup>7</sup>R. M. Fleming *et al.*, in *Clusters and Cluster-Assembled Materials*, edited by R. S. Averback, D. L. Nelson, and J. Bernhole, MRS Symposia Proceedings No. 206 (Materials Research Society, Pittsburgh, 1991), p. 691.
- <sup>8</sup>R. E. Curl and R. E. Smalley, Nature (London) **242**, 1017 (1988).
- <sup>9</sup>R. C. Haddon et al., Nature (London) 350, 320 (1991).
- <sup>10</sup>A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Korton, Nature (London) **350**, 600 (1991).
- <sup>11</sup>M. J. Rosseinsky et al., Phys. Rev. Lett. 66, 2830 (1991).
- <sup>12</sup>K. Holczer *et al.*, Science **252**, 1154 (1991).
- <sup>13</sup>S. P. Kelty, C. C. Chen, and C. M. Lieber, Nature (London) 352, 223 (1991).
- <sup>14</sup>K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo, and S. Kuroshima, Nature (London) **352**, 222 (1991).
- <sup>15</sup>The laser radiation is incident at  $\sim$ 45° to the surface normal and polarized in the plane of incidence.
- <sup>16</sup>G. Meijer et al., in Clusters and Cluster-Assembled Materi-

The work was supported, in part, by the University of Kentucky Research Foundation and Center for Applied Energy Research, and by EPRI (Grant No. RP7911-20). Research at MIT was supported by National Science Foundation Grant No. 88-1896-DMR.

als (Ref. 7), p. 619.

- <sup>17</sup>K. Uchinokura, T. Sekine, and E. Matsuura, Solid State Commun. 11, 47 (1972).
- <sup>18</sup>HH is horizontally polarized incident light and scattered light. HV is horizontally polarized incident light and vertically polarized scattered light.
- <sup>19</sup>Ping Zhou, Kai-An Wang, Ying Wang, P. C. Eklund, M. S. Dresselhaus, G. Dresselhaus, and R. A. Jishi (unpublished).
- <sup>20</sup>P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., and A. B. Smith III, Phys. Rev. Lett. **66**, 2911 (1991). Also see A. B. Harris *et al.*, Phys. Rev. Lett. (to be published); W. I. F. David *et al.*, Nature (London) **353**, 147 (1991).
- <sup>21</sup>C. S. Yannoni, R. D. Johnson, G. Meijer, D. S. Bethune, and J. R. Salem, J. Phys. Chem. 95, 9 (1991).
- <sup>22</sup>D. E. Weeks and W. G. Harter, J. Chem. Phys. **90**, 4744 (1989).
- <sup>23</sup>Z. C. Wu, D. A. Jelski, and T. F. George, Chem. Phys. Lett. 137, 291 (1987).
- <sup>24</sup>R. E. Stanton and M. D. Newton, J. Phys. Chem. **92**, 2141 (1988).
- <sup>25</sup>F. Negri, G. Orlandi, and F. Zerbetto, Chem. Phys. Lett. 144, 31 (1988).
- <sup>26</sup>S. J. Duclos *et al.*, Solid State Commun. (to be published). These authors reported that C<sub>60</sub> films not exposed to air exhibit a strong line at 1458 cm<sup>-1</sup> rather than 1469 cm<sup>-1</sup> as reported in this work and Ref. 9.
- <sup>27</sup>R. A. Jishi and M. S. Dresselhaus (unpublished).