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Spin-singlet-spin-triplet oscillations in quantum dots
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Two interacting electrons confined to a disk on a semiconductor surface are considered in a perpen-
dicular magnetic field. As it is appropriate for experimental realizations, we use a two-dimensional

harmonic-oscillator well to confine the electrons in the plane of the disk. We predict oscillations be-

tween spin-singlet and spin-triplet ground states as a function of the magnetic field strength. Phase di-

agrams describing this peculiar manifestation of the electron-electron interaction in a quantum dot are
calculated for GaAs and experiments to verify them are proposed.

Nanostructure technologies allow the lateral con-
finement of two-dimensional electron gases in heterojunc-
tions or metal-oxide-semiconductor structures to widths

comparable to the effective Bohr radius a* of the host
semiconductor. ' In this case we have electron systems
with discrete energy spectra that are commonly called
zero-dimensional systems or quantum dots. Since
their widths in the x-y plane are much larger than their
extent in the z direction, which is the growth direction of
the underlying semiconductor structure, quantum dots
may be regarded as artificial atoms with disklike shapes.
Electron numbers as low as one or two per dot have al-

ready been realized. '

So far, quantum dots have been investigated experimen-
tally by capacitance-voltage spectroscopy and transport
measurements, as well as by far-infrared spectrosco-

py. Capacitance-voltage and transport measurements
are not favorable for the study of isolated dots since they
require coupling to external contacts. Particularly for
small dots their interpretation is additionally hampered by
Coulomb blockade. Despite these difficulties, much infor-
mation on the single electron ene-rgy spectra could be de-
duced from transport data. In many cases the value of
far-infrared spectroscopy is limited as a consequence
of the approximately harmonic shapes of the confining po-
tentials and the associated validity of the generalized
Kohn theorem. ' " This theorem states that, for strictly
harmonic potentials, dipole radiation can only probe the
center-of-mass motion of all electrons but is inadequate to
see any effect due to the electron electron interaction.

Here, we predict spin oscillations of the ground state of
two electrons in a harmonic quantum dot as a function of
the magnetic field strength, which are a peculiar conse-
quence of the electron-electron interaction and the Pauli
exclusion principle. Hence, they are a direct manifesta-
tion of the t~o-electron states in the quantum dot. The
oscillations should be accessible to a different type of ex-
periment, namely spin susceptibility ' and magnetization
measurements ' that previously have been successfully
applied to study electronic properties of two-dimensional
electron gases in GaAs/Ga~-, AI„As and related hetero-

structures.
In experimentally realized dots, the motion in the z

direction is always frozen out into the lowest electric sub-

band F;-0. Since the corresponding extent of the wave

function is much less than the one in the x-y plane, we

can treat the dots in the two-dimensional limit of thin

disks. For most dots, a harmonic oscillator is a very good
approximation to describe the lateral confinement of the
electrons. ' Hence we consider two electrons of
effective masses m in the z =0 plane in the harmonic po-
tential —,

' m tati(x +y 2) of characteristic frequency tati or
oscillator length lti (i'1/m tati) 'I . The perpendicular
magnetic field (Bllz) is in the symmetric gauge described

by the vector potential A —,
' ( —y, x,0)B. A dielectric

constant e accounts for the host semiconductor. Ignoring
the Zeeman spin splitting for the present, the Hamiltonian
can be separated into center-of-mass and relative-motion
terms as

[P+QA(R)j + ~ ~ 2&2+ [p+qA(r)]

2

+ 2 pCOpI + e l

4SFCD l'

by introducing the center-of-mass coordinates R (r~

+rq)/2, P pl+p2, the total mass M 2m, and charge

Q 2e )0, as well as the relative coordinates r ri —r2,

p (pi —p2)/2, the reduced mass p m /2, and charge

q -e/2.
This separability and the cylindrical symmetry of the

problem allow us to write the two-particle wave func-
tion in plane polar coordinates r (r, p) in the form
%'(R)((r)exp(imp). The spatial part of the total wave
function is symmetric or antisymmetric with respect to
particle permutation (tlat &+tr) for even, respectively
odd, azimuthal quantum numbers m. Since the Pauli ex-
clusion principle requires the total wave function to be an-
tisymmetric, we therefore have spin singlet (S 0) and
triplet (S= I ) states for even and odd m. ' The energy ei-
genvalues of the Hamiltonian in Eq. (I) are the sum of
the center-of-mass energy and the energy of the relative
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motion. The former is given by'

h(2N+ )M)+ I ) rap2+
2

+6 M
2

with cyclotron frequency ra, =e8/m*, radial (N =0, 1,
2, . . .), and azimuthal (M =0, + I, + 2, . . . ) quantum
numbers. The energy of the relative motion has corre-
sponding quantum numbers n and m and includes the
electron-electron interaction. The spin of the two elec-
trons leads to an additional Zeeman energy

mp 2
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FIG. 1. Eigenenergies in units of the effective Rydberg con-
stant R vs the ratio ro, /cop for a dot size lp/a* 3 and Lande
factor g* 0. The family of states N 0, M=O, n=O, m ~Ois
shown (a) without and (b) including Coulomb interaction be-
tween the two electrons. As the ratio co„/cop increases, the
Coulomb interaction leads to a sequence of different ground
states m 0, —1, —2, . . . , and concomitant changes of the total
spin S 0, 1,0, . . . .

described by an effective Lande factor g . Thus triplet
states split into three distinct levels, while singlet states
remain unchanged. The exact eigenvalues E„ofthe rel-
ative motion including the Zeeman energy are calculated
numerically. '

We now investigate the ground state of the two-electron
system as a function of dot size and magnetic field
strength. Since the center-of-mass quantum numbers
N, M and the quantum number m are conserved by the
Coulomb interaction, the ground state has the quantum
numbers N 0, M 0, n 0, m ~ 0, and only rn is to be

determined. The important feature of the ground state to
be discussed here is that its angular momentum Am does
depend on the Coulomb interaction. In Fig. 1 we have
plotted the energy of the states W =0, M =0, n =0, m ~ 0
for vanishing Lande factor g* =0 and dot size lp/a* =3
as a function of the ratio co,/rap of cyclotron and oscillator
frequency. In Fig. 1(a) we neglect the Coulomb interac-
tion and the m =0 state is always the ground state. If,
however, we include the Coulomb interaction in Fig. 1(b),
the state m =0 remains as a ground state only for low

magnetic fields. As the magnetic field increases, this state
rises in energy while the states m = —1, —2, —3, . . .
drop, thus leading to a sequence of different ground states
m =0, —1, —2, —3, . . . as the magnetic field is swept.
Since the total spin of the two electrons is S = [I
—( —1) j/2, this entails an alternating sequence of sing-
let and triplet states.

The reason for these changes of symmetry of the
ground state is found in the competition of the various en-

ergies contributing to the energy of the relative motion.
On the one hand, a higher angular momentum Am means

higher rotational energy, but on the other hand, the aver-

age distance between the two electrons is then increased
and hence the Coulomb energy gets smaller. With the rel-
ative strength of the Coulomb interaction varying as
f. i+(ro„/2rop) ] '/ lp/a*, the optimum number m thus

depends on the dot size and on the magnetic field.

By properly designing the dot size lp/a and adjusting
the relative strength of the magnetic field pp, /cop, it should

therefore be possible to investigate different ground states.
A suitable tool to visualize this is a phase diagram in the
Ip/a* —rp, /cop plane. The transition m I—

1 between

a singlet and a triplet ground state is given by the condi-
tion Ep =Ep

~ (m ~0). These are the only possible
transitions as long as the Zeeman spin splitting is ignored.
For a negative Lande factor g* & 0, the spin-splitting en-

ergy in magnetic fields will lower the energy of the spin

S, =+1 component of the triplet states while leaving the
singlet states unchanged. Thus the phases of the triplet
states will increase at the cost of the singlet phases, and

eventually, for high magnetic fields, the singlet ground
states are totally suppressed. Singlet-triplet transitions

only exist for Ep &Ep~+] (m even), and for Ep~ —
~

& Ep —2 (ni odd). In particular, the relation

Ep, =Ep, ~ =Ep, q(m odd) de-fines triple points
where singlet phases cease to exist. Beyond this point we

are left with phase transitions between triplet states de-
scribed by the condition Ep =Ep —z (m odd).

In Fig. 2 we show phase diagrams based on an exact nu-

merical diagonalization of the Coulomb interaction. In

Fig. 2(a) the Lande factor is set to zero. Then we have

only singlet-triplet phase transitions m m —l, m
—2, . . . starting with the m =0 singlet phase at zero mag-
netic field. In Fig. 2(b) we assume the Lande factor
g*= —0.44 and effective mass m* =0.067m, of bulk

GaAs conduction-band electrons. For higher magnetic
fields the singlet ground states now completely vanish and

only triplet-triplet phase transitions In (odd) m —2, ni
—4, . . . are left. For a typical experimental dot size of
lp/a = 3 the last singlet phases present are at

Jrpp & 0.69 and 2.2 & rp„/cop & 2.9.
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Essential features of these phase diagrams can already
be understood, if we calculate the Coulomb energy
Ec«~,~i, in first-order perturbation theory, which is valid
for (I+(ro,/2rop) j ' lp/a «1. In this case we find
(n -0)

~Coulomb
lp o)c

hrop 1+a* 2Np

2- l/4 l/2
(21ml —»!!

(21m 1 )!! 2

(4)
For dot sizes lp/a &'1, strong magnetic fields (ro, »rop),
and lg 1m*/m, « 1 we then obtain for singlet-triplet
phase transitions m m —

1

lp 1 (21m 1
+2)!!

~2~ (21m 1

—I)!!
3/2 '

I I/2
Nc+2 ' ( —1) g*

toe 2COp me

and for triplet-triplet phase transitions m~ m —2 (m
odd)

(5)

' 3/2
1 2'(2 I m I +4)"
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By using Eqs. (5) and (6), the exact triple point at
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FIG. 2. Phase diagram for singlet and triplet ground states
calculated (a) in the absence and (b) in the presence of Zeeman
spin splitting with a Lande factor g* = —0.44 appropriate for
GaAs. In the absence of spin splitting the singlet phase m 0
(S 0) in zero and low magnetic fields is foIlowed by m = —

1

(S I), m —2 (S 0), . . . phases as the magnetic field
strength is increased. In the presence of spin splitting the singlet
phases are strongly suppressed, and only the hatched
m 0, —2, —4 singlet phases are left.

FIG. 3. Magnetic moment p, ~ in units of the Bohr magne-
ton pz of a single quantum dot with two electrons vs magnetic
field strength for GaAs parameters. The curves for various tem-
peratures have been successively displaced for clarity. Oscilla-
tions caused by changes of the azimuthal angular momentum
and the total spin become visible for temperatures less than
about 1 K.

ro, /rop 4.48, lp/a 1.27 in Fig. 2(b) is approximated to
be ro, /cop 4.76, lp/a 1.16. Hence, the perturbational
results can be used advantageously to estimate phase dia-
grams for other effective masses m or Lande factors g .

Based on the exact eigenenergies, the magnetic moment

p,.s(B) of a single dot with two electrons is plotted in
Fig. 3 in units of the Bohr magneton po eh/2m, for
various temperatures. At T 4.2 K we find a significant
but smooth diamagnetic behavior while for temperatures
less than I K strong oscillations become visible. These
contributions with amplitudes of more than !Opal exceed
the paramagnetic spin contribution —g pg of two in-
dependent electrons by more than an order of magnitude
and show most obviously the two-particle nature of the
ground state at intermediate magnetic field strengths.
The fact that these oscillations are Coulomb induced is
easily understood for zero temperature where we have
p,.s(B,T =0) = 8Es„„„d/8B. By comp—aring Figs. 1(a)
and 1(b) we see that discontinuities in this derivative
occur at the phase boundaries and are therefore a clear-
cut consequence of the Coulomb interaction. For in-
stance, the sharp drop of the magnetic moment at
8=0.51 T is caused by the first singlet-triplet transition
m =0 m = —1. In high magnetic fields (ro, »cop) the
oscillations vanish and we are left with the saturation mo-
ment p /po = —2m, /m* —g* —29.4, valid for two in-
dependent electrons in GaAs.

To conclude, we predict spin singlet-triplet and triplet-
triplet transitions of the ground state of two interacting
electrons in quantum dots in a perpendicular magnetic
field. In principle, our prediction can be verified by spin



1954 M. WAGNER, U. MERKT, AND A. V. CHAPLIK

susceptibility or magnetization measurements at low tem-
peratures (T( I K). We are aware of the intensity prob-
lems resulting from the low number of electrons, even if
arrays of 10 dots/cm are used. Perhaps it is particularly
challenging that the analogous singlet-triplet transition
from para- (S 0) to ortho- (S= I ) helium, predicted at

about B=4 x 10 T in the vicinity of white dwarfs and pul-
sars, ' also remains to be observed.
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