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Eff'ect of electron-electron interactions on the magnetization of quantum dots
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The lo~-temperature magnetization of parabolic quantum dots is calculated and is sho~n to be a

sensitive probe of interaction eA'ects. The interaction causes the ground state to occur at certain magic

values of the total angular momentum, the strength of the magnetic field determining which of them is

selected. Increasing the magnetic field causes the ground-state angular momentum to jump from one

magic value to another and this causes the discontinuities in the magnetization. The eA'ects of spin

lead to extra discontinuities at low magnetic field. The magic angular momenta for the spin-polarized

case are derived by a simple physical argument.

The electron-electron interaction in quantum dots sub-
jected to a magnetic field leads to interesting eff'ects which
are highly elusive. For example, Maksym and Chakrabor-
ty' (MC) have shown that the ground state of electrons in
a magnetic field occurs only at certain magic values of the
total angular momentum, and that transitions from one
magic value to another should occur as the magnetic field
is increased. This cannot be probed by infrared spectro-
scopic techniques because far-infrared radiation couples
to the center-of-mass motion and hence is insensitive to
the interaction when the confinement is parabolic. '

Nevertheless, there are probes that are sensitive to the in-
teraction and MC showed that the heat capacity is one of
them. In the present work the magnetization is found to
be another, which can in principle be measured. (Stormer
and co-workers have measured the magnetization of a
two-dimensional electron gas. ) It is shown that the field
dependence of the magnetization is oscillatory with
discontinuities that occur when the ground-state angular
momentum changes. In addition, the effect of spin is con-
sidered, and it is shown that this leads to rich behavior in
the low-field regime, where both the spin and angular
momentum of the ground state vary discontinuously with
magnetic field. Finally, the key physics is explained in
terms of a simple model that includes only the states in
the zeroth Landau level, and the rule for determining the
magic values of angular momentum in the spin-polarized
case is given.

The starting point for calculating the magnetization is
the calculation of the energy eigenvalues of the electrons
interacting in a parabolic dot. This is done by numerically
diagonalizing the Hamiltonian
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where C„I are single-electron energies and A is the

Coulomb matrix element
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The single-electron energies are obtained from '

(2n+I+ (l))hO ——,
' lhta„where 0 ( ,' ta +too-)'

ta„e8/m, and htao is the confinement energy. The
single-electron wave function (ignorin the normalization
constant) is written as p„t r ~' exp( —il8)LJ ~(r /
2a )exp( —r /4a ), where the ef'ective magnetic length a
is given by a I'i/(2m 0). The quantum number —i is
the angular momentum and the quantum number n is re-
lated to the Landau quantum number 1V n+((I( l)/2—
(referred to as Fock-Darwin-level index in Ref. 3). In the
absence of confinement this becomes the usual Landau-
level index and the single-electron energies become
(N+ 2 )hco„but in the presence of confinement, C„t is a
function of both N and / The releva. nce of these quantum
numbers is that they are used to select the basis states for
the numerical diagonalization. The basis includes all con-
tributions of single-electron states that are compatible
with the desired total angular momentum, subject to the
constraint that the sum of the single-electron N values
does not exceed the specified maximum. The exact eigen-
states have the prop:rty that they can be factorized into a
product of a function of the center of mass and a function
of relative motion, ' and this method of truncating the
basis ensures that the same holds for the numerically gen-
erated eigenstates.

Once the many-body eigenvalues and eigenstates are
available, the magnetization can be ealeulated in one of
two ways. The first is to evaluate matrix elements of
the magnetization operator A ( —e/2m )g,"'~r;x(p;
+eA;), where n, is the number of electrons. The second
is to differentiate the eigenvalues with respect to the mag-
netic field 8. %'hile these two procedures would give the
same result if the basis was infinite, the results obtained
from a truncated basis differ and the results given by the
differentiation procedure are superior. The reason is that
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where yp is a state formed from the truncated basis and E
is its energy. The derivatives of yp can be estimated by
first-order perturbation theory:

diIrp yp(8+ bB) —imp(8)
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where the iver, come from the diagonalization within the
truncated basis and the p~ are the remaining basis states.
Substituting (2) into (1) shows that differentiation of the
energies automatically generates a first-order contribution
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the magnetization operator couples states whose n quan-
tum numbers differ by + 1, as well as states with the same
n. Therefore accurate evaluation of magnetization re-
quires a larger basis than accurate calculation of the ener-

gy eigenvalues. The differentiation procedure is superior
because calculating the magnetization by differentiation
of the eigenvalues obtained in the truncated basis is
equivalent to including the omitted states by first-order
perturbation theory and then calculating matrix elements
of the magnetization operator. This can be proved by con-
sidering dE/dB explicitly:
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l&lw )+0(w ldoPldBlw &+0(vol%I d~ ),
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from the omitted basis states; hence differentiation is the
superior calculational method. In practice the calcula-
tions are done at finite temperature; that is, the numeri-
cally generated eigenvalues are used to compute the free
energy, which is then differentiated to get the magnetiza-
tion. All the Zeeman terms for each spin are included in

the calculation of the free energy.
The results are shown in Figs. 1 and 2. The top panel of

each figure gives the magnetization as a function of B, cal-
culated both with and without interaction for three elec-
trons (Fig. 1) and four electrons (Fig. 2). The remaining
panels show the ground-state total-angular-momentum
quantum number J and the ground-state spin S. All re-
sults are for GaAs quantum dots with Arun =4 meV. The
calculations were done with the maximum value of N tak-
en to be 1; that is, one electron was allowed to have N )0
and the other electrons had N=0. This truncation is

surprisingly accurate, even at low magnetic fields. The
absolute value of the magnetization is insensitive to the
upper value of the N sum, and the only effect of increasing
it is that the position of the discontinuities changes. This
is illustrated in the inset in Fig. 1, where the results of al-
lowing the upper limit of the N sum to rise to 2 are shown.
The curves coincide on either side of the discontinuity but
the position of the discontinuity is shifted by about 0.15 T.
This level of accuracy is typical for fields greater than
about 2.5 T; at lower fields the positions of the discon-
tinuities are estimated to be accurate to + 0.4 T. Physi-
cally, the discontinuities correspond to changes of the
ground state J, or both J and S, as can be seen by compar-
ing the three panels of the figure. When the system is spin

polarized, the sequence of magic J values is the same as
found in Ref. 1. Qualitatively the discontinuities resemble
the structure discussed by Sivan and Imry but their ori-
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FIG. l. Magnetization At (meV/Tesla) at T =0.l K of a par-
abolic quantum dot containing three electrons (N=1), the
ground-state angular momentum J, and the ground-state spin S.
The dash-dotted line corresponds to the noninteracting case. A

comparison of the results for the % 2 case (dotted line) is

given in the inset.
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FIG. 2. The same as Fig. 1, but for the four-electron system.
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gin is quite different; the latter are an edge-state effect
that occurs when several Landau levels are occupied. In
contrast, the discontinuities found here occur even when a
Landau level is partly full, and are clearly a consequence
of the interaction. The magnetization for noninteracting
electrons has no discontinuities because the lowest-two
single-electron levels are unaffected by level crossings as
the field is increased [curves of C„t(B) for the parameters
used here are given in Ref. 8]. Hence systems of up to
four noninteracting electrons in the lowest spin state stay
in the same angular-momentum state throughout the field
range, so the magnetization curve is smooth. All the
discontinuities in this case are a consequence of the in-
teraction. For five or more noninteracting electrons the
magnetization would be afl'ected by negative / levels cross-
ing positive / levels; however, the position of these cross-
ings would be drastically affected by the interaction. In
addition, there are relatively few of them when the elec-
tron number is small (for five electrons in the lowest spin
state there is only one) and they tend to occur at low field.
In contrast, the discontinuities due to the interaction
occur at a regular sequence of J values throughout the
field range. Because of the small magnetization per dot,
experimental observation of the discontinuities would re-
quire measurements on an array of dots, and so would be
afl'ected by statistical fluctuations in electron number.
Nevertheless, the discontinuities should be observable
when the fluctuations are small because the discontinuities
for different numbers of electrons occur at different mag-
netic fields.

There are two aspects to the physics underlying the re-
sults shown in Figs. 1 and 2. The first is the question of
how the interaction affects the magnetization, and the
second is the reason why the ground-state angular
momentum changes with magnetic field. Both aspects can
easily be understood by considering the simplified case of
a spin-polarized system with electrons restricted to occu-
pying N 0 states. In this case the expression for the to-
tal energy simplifies considerably because the interaction
energy can be diagonalized independently of the con-
finement energy. In addition, the confinement energy in
this case is only a function of J, so the total energy of each
state takes the form

2

E -(n, +J)h 0 ——,
' J/' it+n), (J)+g'/ittBS, ,
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where the first two terms are the confinement energy, the
third is the interaction energy, the fourth is the Zeeman
energy, A, (J) is a dimensionless eigenvalue that depends
only on J, and g is the effective g factor. For GaAs, g*
is small, so the Zeeman term only affects the magnetiza-
tion at the 1% level, and the physics is determined by the
first three terms. Differentiating them yields two contri-
butions to magnetization:
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These two terms behave very differently in the low- and
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FIG. 3. The I' dependence of A5r (units: e /4~» eeo)a. The
points give values of A and the dashed line is to guide the eye.

high-field limits. When B 0, the confinement term is
/'ieJ/2m, and as B increases, it smoothly decreases and
approaches —hen, /2m as B ~. In contrast, the in-
teraction term approaches 0 both when B 0 and when
B . For the parameters used here this term contrib-
utes at the 1% level when B &2.5 T, and —15% when
B 10 T; it is most significant when 2.5 &B~10T. The
field dependence of the magnetization at fixed J is essen-
tially determined by the first term, and if J was indepen-
dent of 8, the magnetization of the interacting system
would be qualitatively similar to that of the noninteract-
ing system. The major eA'ect of the interaction is that the
ground state J changes with inagnetic field. Every time
this happens the magnetization curve shifts to a diferent
track, and this causes the discontinuities shown in Figs. 1

and 2.
The jumps in the ground state J occur because at the

magic Jvalues there are basis states in which electrons are
kept very efl'ectively. The ground state always occurs at
one of these J values and the competition between interac-
tion and confinement determines' the optimum J. Physi-
cally, the preference for certain J values can be under-
stood in a number of equivalent ways; the simplest is to
consider the diagonal elements of the Hamiltonian. These
have the form JAtt ntnt, where nt is the number operator
and Att Aototat at

—Aototiitnt. The quantity Att is the
difl'erence between the Hartree energy and the exchange
energy of a pair of electrons with angular momenta I and
/'. It is plotted in Fig. 3 as a function of /' for the case
when l 5, and this illustrates its behavior for typical
values of I and /'. When I I', Att 0 then increases as
~l

—I'( is increased, and then it decreases again. Thus it is
energetically favorable to have III —I'~ either large or
small for all pairs of electrons; however, large values can
only occur when the total angular momentum is large.
The optimal way of making (I —I'( small is to put all the
electrons on adjacent orbitals, but this can only be done
when J satisfies J n, (n, —I)/2+kn„where k 0, 1,
2, . . . . For three electrons this leads to the magic angular
momenta 3, 6, 9, 12, . . . , while for four electrons it gives
6, 10, 14, 18, . .. . These are exactly the values found in
numerical calculations for the spin-polarized case. These
calculations also confirm that basis states in which all
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electrons occupy adjacent orbitals occur with high proba-
bility; for example, 53.5% for three electrons at J=9 and
48.8% for four electrons at J 14. In this physical picture
the magic angular momenta are favored because the ex-
change term efficiently reduces the energy of basis states
in which all electrons sit on adjacent orbitals. An alterna-
tive way of looking at the situation is to consider the
motion of a pair of electrons about its center of mass. In
this picture small relative angular momenta occur with
very small probability if the electrons occupy adjacent or-
bitals. This leads to a reduction in energy because the
large-angular-momentum matrix elements of the Cou-
lomb interaction are the smallest.

The remaining item to consider is spin. From Figs. 1

and 2 it is clear that spin effects are important at fields
B &10 T, and that the system is spin polarized at higher
fields. It is perhaps surprising that the occurrence of full
spin polarization in the range 10~ B~ 15 T is a conse
quence of the interaction. The reason is that the con-
finement energy is not negligible in this field range. An
increase of spin polarization must be accompanied by an
increase of J because of the exclusion principle. Since the
confinement energy increases with J, flipping a spin costs
energy, and full spin polarization does not occur until the
Zeeman term is large enough to overcome this energy
penalty. (The three-electron noninteracting system is spin
polarized up to 20 T, but for four electrons a transition
from S 0 to S I occurs at about 19 T.) The other
effect of spin is that it causes extra discontinuities in the
magnetization. Each spin state has its own sequence of
magic J values, and each magic J value corresponds to a
possible ground state at that spin. Only some of these J

values lead to discontinuities because the lowest-energy
state at a given spin is not always the absolute ground
state. In the case of three electrons at S= 2, the magic J
values for states formed from the zeroth Landau level are
2, 5, 8, 11, . . . , but only 2 and 5 lead to discontinuities
because S 2 states have lower energies than the
remaining S 2 states. In addition, J=1 occurs at low

magnetic fields, where the contribution of N = I states is
important. The four-electron case is more complicated.
Although magic J sequences exist, not every member of
them occurs at all strengths of the confining potential.
For example, the magic J values for states formed from
the zeroth Landau level at S 1 are 5, 9, 13, 17, . . . , and
some of these occur in Fig. 2. However, J 9 does not
occur if the confinement is very weak and for moderate
values of con6nement J 13 shifts to J 12. Because of
this sensitivity to the confinement, it is difficult to give a
rule that determines the magic J values for an arbitrary
number of electrons at an arbitrary spin. In contrast to
the spin-polarized case, it seems that the magic J values
have to be determined numerically.

In summary, the low-temperature magnetization of
quantum dots provides a sensitive probe of the effect of
the electron-electron interaction on the ground state. The
key physics can be understood in terms of a simple model
in which only the zeroth-Landau-level states are taken
into account.
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