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Charge transport parallel to the layers of a modulation-doped GaAs/Al, Ga~ —,As heterostructure is

studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer
of electrons from the GaAs into the adjacent Al, Gal-„As layer. For suSciently large dc bias, spon-

taneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions be-

tween oscillatory and stationary states are predicted. We present a detailed investigation of complex
bifurcation scenarios as a function of the bias voltage Uo and the load resistance RI. . For large RL

subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.
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FIG. I. (a) Schematic sample and circuit configuration of a
modulation-doped GaAs/Al, Ga~ —,As heterostructure with

heterolayer width LI and L~, respectively, and lateral dirnen-
sions h, d. (b) Energy-band diagram (top) and carrier density
(bottom) vs the perpendicular coordinate x of the heterolayer
(schematic).

In this paper we consider parallel transport in a
modulation-doped GaAs/AI, Gai —„As heterostructure as
schematically shown in Fig. I (a). The AI„Ga~ —„As layer
is heavily n-type doped with donor density ND, while the
GaAs layer is undoped. At low bias Uo the electrons re-
side in the GaAs channel, where they are separated from
their parent donors in the AI,.Gai-, As layer Thus . the
mobility pi of the electrons in the GaAs layer is high be-
cause of the reduced impurity scattering. An electric field
parallel to the layer interface induces carrier heating. If
the electrons gain enough kinetic energy, thermionic emis-
sion across the barrier [Fig. 1(b)] into the AI, Gai-„As
layer is possible, where the mobility p2 is much lower due
to impurity scattering. This real-space transfer of elec-
trons from the high-mobility to the low-mobility layer
causes an N-shaped current-voltage characteristic with a
regime of negative differential conductivity' (NNDC)
in analogy with intervalley transfer in the Gunn effect.

In the NNDC regime, ac-driven current oscillations of

2-25 MHz have been reported. " Oscillations in hetero-
layers were also observed under dc conditions. ' A phys-
ical mechanism of a real-space transfer oscillator, which

gives periodic" and chaotic ' self-generated oscillations
at much higher frequencies (20-80 GHz) under dc condi
tions, has recently been proposed and numerically investi-
gated. ' It is based on the coupled nonlinear dynamics of
the real-space electron transfer and of the space charge in

the Al, Ga[ —,As layer, which controls the interface po-
tential barrier tIitt [Fig. I (b)j. Real-space transfer of the
electrons in the GaAs layer leads to an increase of the car-
rier density in the Al, Gal —,As, which diminishes the pos-
itive space charge controlling the band bending. Subse-
quently, the potential barrier Np decreases with some de-
lay due to the finite dielectric relaxation time. This leads
to an increased backward thermionic emission current
which decreases the carrier density in the AI„Gai —„As.
Hence the space charge and @q are increased. This, in

turn, decreases the backward thermionic emission current,
which completes the cycle.

I n the present paper we show that real-space transfer
can also lead to S-shaped static current-bias voltage
characteristics (SNDC) if the external circuit conditions
are chosen appropriately, and that bistability between sta-
tionary and oscillatory states is then possible. We investi-
gate in detail the resulting bifurcation scenarios as a func-
tion of bias voltage Uo and load resistance RI. Similar
methods of nonlinear dynamics have recently been applied
to a different oscillation mechanism in bulk semiconduc-
tors. '

In the following we derive a reduced set of nonlinear
differential equations for the carrier densities n l, n2 in the
two layers, the dielectric relaxation of the applied field 4[[,
and the potential barrier Ng.

The spatially averaged carrier density in the GaAs layer
n~

=f t,n(x, t)dx/l ~, —as a—function of time, is governed
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by the equation of continuity
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where e is the permittivity, crt =[h(L~+L2)Rr/d] is

are the thermionic-emission-current densities (m; are the
effective masses) given by Bethe's theory, ' and E;
= —,

'
krtT; (i = l, 2) are the mean carrier energies given by

the carrier temperatures T;. The thermionic emission
theory corresponds to the following physical picture.
Electrons in the GaAs with energy less than hE, . cannot
propagate into the adjacent Al, Ga~ —,As layer; all elec-
trons with higher energy are emitted across the barrier
without collisions. This is correct only within a certain re-
gion that is of the order of the mean free path of electrons.
If the GaAs/AI„Ga~ —„As layers are wider, the thermionic
emission current represents the current only close to the
interface, and diffusive currents play a major role. Inter-
valley transfer has been shown' to be negligible com-
pared to real-space transfer at electric fie1ds C~~ «4
kV/cm, as used here. Quantum effects like the quantum-
transrnission coefficient or tunneling through the barrier
are also disregarded, cf. discussion in Ref. 16. Size-
quantization effects, which arise if the layer widths are
smaller than l00 A, are also neglected, since the current-
voltage characteristic is not essentially affected by the
quasi-two-dimensional subbands below the barrier, except
that the critical field for the onset of real-space transfer is
shifted to higher values.

Conservation of the total number of carriers requires
12n)L)+n2L2=/VDL2, with tl2= Jo lt(x r)dx/L2.

The energy transfer between the heterolayers is de-
scribed by the energy-balance equations containing
Joule's heat, convective, diffusive, and electron-pressure-
induced heat How, and energy loss due to polar-optical-
phonon scattering. It can be shown by a linear mode
analysis' that for reasonable numerical parameters the
energy relaxation occurs on a fast time scale, such that EI
and Ez, respectively, can be eliminated adiabatically from
the energy-balance equations. The mean energy as a
function of the applied electric field 8~~ is then roughly es-
timated by

E) = EI +el;ep)D[), Ep= EI,2

with the lattice energy EI =
& k&TI and the energy relax-

ation time rI... This simplified approach is sufficient to
gain physical insight into the mechanism of real-space
transfer-induced oscillations.

The dielectric relaxation of the parallel electric field is
given by

connected to the load resistance Rl, and Uo=od is the
applied bias voltage.

The interface potential barrier Ntt —— ego'@~(x,~)»
is governed by the space charge dynamics in the
Al,-Ga~ —,As layer and the resulting internal electric field
6&. As shown in Ref. 11, the dynamics of @~ is given by

Ng =— —p~Ng)&g+ p~ L) n )
—eL )Lpn [
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where we have neglected the diffusive contributions,
which is appropriate if Lq is less or comparable to the
mean free path of the electrons.

The autonomous nonlinear dynamic system [Eqs.
(l)-(3)), which is a reduction of the five-variable system
treated in Ref. 11, constitutes the basis of our analysis.

The static current-density-field characteristic resulting
from Eqs. (I)-(3) is shown in Fig. 2(a). Real-space
transfer of hot electrons leads to NNDC. The intersection
of the load line with the device characteristic defines the
steady-state operating points. As the applied voltage Uo is

varied, the load line is shifted parallel and the intersection
points move along the current-density-field characteristic.
When the load line becomes tangential to the characteris-
tic (Uo =U&h or Ui, ), two intersection points merge at A',*.„,
and 6',*.„„respectively, and disappear upon further varia-
tion of Uo. In Fig. 2(b) the current is plotted versus the
control parameter Uo, exhibiting inverted SNDC.

The stability of the steady state (denoted by an aster-
isk) q*=(n~, @~~,@tt) against infinitesimal fiuctuations
bq(t) =by(0)e ' is determined by linearizing the dynami-
cal system (l)-(3) around its steady state and computing
the eigenvalues X of the Jacobian matrix J(q*);;
=(t)q;/|Iq;)*, i,j = l, 2, 3. Figure 3 shows the eigenvalues
as a function of the static electric field 6~[, which is relat-
ed to the control parameter Uo by (2), taken in the steady
state. The third eigenvalue is always negative (F3&0,
~k3~ && I) and is not shown; it is associated with Ct, which
is therefore a fast dynamic variable and can be eliminated
adiabatically. The resulting two-variable system (marked
with a tilde) has eigenvalues X, which are topologically
equivalent to those in Fig. 3, but more amenable to
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FIG. 2. (a) Static current-density-field characteristic as a

function of the static electric field Dll. The load line is shown

for three diRerent bias voltages Uo. (b) Normalized current vs

Uo. [The numerical parameters are WIJ = l0' cm -', L I =100
A, L2=200 A, p~ =8000 cm'-/Vs, p2=50 cm /Vs, TI =300 K,

hE, =250 meV (x =0 3), m I =0 067mo (mo is the free-

electron mass), m~ =(0.067+0.083x)mo, ri: =5.0X l0 " s,
h =l mm, d =50 pm, e=l2eo (t.o is the vacuum permittivity),
RI = l . I 44 k tt.]
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FIG. 3. Eigenvalue spectrum X, as a function of Cl~. Bold and
thin lines represent the real and imaginary parts of A, , respective-
ly. 8H„t I*I, mark Hopf bifurcations and 8.,*,„C.,*,, mark
saddle-node bifurcations. (Parameters as in Fig. 2.)

analytical treatment.
Let us now discuss the occurring bifurcations of the

steady state q* in the phase space (n~, Ct, Att) . Upon in-
creasing Cf, a stable node (three real negative eigenval-
ues) turns into a stable focus, which becomes unstable via
a Hopf bifurcation at 8H, (i.e., a pair of complex conju-
gate eigenvalues obtains positive real parts). The unstable
saddle focus is transformed into a saddle point with two
positive and one negative eigenvalues, and merges at 8,*„,
with a saddlepoint with one positive and two negative ei-
genvalues, corresponding to the turning point U&h of the
l(Uo) characteristic (Fig. 2). A reverse bifurcation
scenario (8,„„8H,) takes place upon further increase of
8~~, corresponding to the lower branch of Fig. 2(b).

The numerical simulation of the time-dependent non-
linear equations (I )-(3) reveals a more complex bifurca-
tion scenario as a result of global bifurcations of limit cy-
cles by condensation of paths or from a separatrix. '"'
These supplement the local bifurcations shown in Fig. 3.
Figure 4 summarizes schematically the global and local
bifurcations (l —10). The bold lines denote stable fixed
points (steady states) or limit cycles (periodic oscilla-
tions). On passing through the bifurcation value 8,.

, (2),

a stable and an unstable limit cycle are created from con-
densation of paths. The unstable limit cycle (dotted line)
shrinks and collides at Ch„(3) with the saddlepoint (SA)
(dashed line). A saddle-to-saddle separatrix loop (homo-
clinic orbit) is formed surrounding the fixed points on the
upper and lower branch. Upon increase of C0, the separa-
trix disappears. At Ch„(4), a homoclinic orbit around
the fixed point on the lower branch is formed, from which
a limit cycle y(t) bifurcates. The stability of this periodic
orbit q(t) in the reduced two-variable system is given in a
linear approximation by the Floquet exponent yl, . '0

t T/2

y, =(l/T), Tr1[q(t')]dt',

where Tr denotes the trace, and T is the oscillation period.
yI, . is a generalization of the eigenvalues of the Jacobian
matrix controlling the stability offtxed points ln th. e lim-
it C Ch,„the limit cycle collides with the saddle q of
the middle branch. This yields yt, =Trj(q*) )0, which
means that the homoclinic orbit and the bifurcating limit
cycle are unstable. The unstable cycle appears immedi-
ately with a nonzero amplitude, but with zero frequency.

Upon further increase of ho, the unstable limit cycle
shrinks and disappears via a subcritical Hopf bifurcation
at CH, (5). When 8o passes CH, (6), an unstable limit cy-
cle is created from a focus. As 8o increases, this unstable
cycle expands and collides at Ch, , (7) with the saddle
point (SA), and a saddle-to-saddle loop is formed around
the fixed point on the upper branch. At the bifurcation
value 8h„, (8), another homoclinic orbit surrounding both
fixed points on the upper and lower branches is created,
from which an unstable limit cycle bifurcates. After that,
the unstable cycle expands and coalesces at 8,., (9) with
the stable limit cycle. In this way, a stable limit cycle is
annihilated by a collision with an unstable cycle, forming
a semistable limit cycle with multiplicity ' 2 at 6,.,

We shall now discuss the physical implications. As the
bias 8o is increased, the steady state (SF) becomes unsta-
ble at 8H, (5), and finite-amplitude current and voltage
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FIG. 4. Bifurcation diagram of the static electric field C~~ vs

the control parameter 60=UO/d. The local and global bifurca-
tions are denoted by 1-10;see text. (Parameters as in Fig. 2.)
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FIG. 5. Hysteresis of oscillatory (shaded) and stationary
states. The time-dependent current density is plotted vs the ap-
plied field 60 for slowly increasing (top) and slowly decreasing
(bottom) @&. The oscillation frequency is f=1O3 GHz. (Pa-
rameters as in Fig. 2.)
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oscillations set on, corresponding to the stable limit cycle
(SLC) in the space of the dynamic variables (n|,@II,+tt ) .
The drifting carriers cycle periodically between the GaAs
and the Al„Gai —,As layer, with a concomitant variation
of the drift field 8)) and the potential barrier @q. Note
that this occurs in the positive differential conductivity re-
gime. Upon further increase of @0, the oscillations cease
at 8,., (9), and the steady state (SF) on the other branch
takes over (Fig. 5, top). When 8p is decreased, this steady
state persists until 8H, (6) & 8,.„where finite-amplitude
oscillations set on, ceasing at 8,. , (2) & CH„and thus ex-
hibiting dynamic hysteresis (Fig. 5, bottom).

Figure 6 shows the coexistence of two attractors (a
stable limit cycle and a stable focus SF) in the hysteretic
regimes Ch 2& Cp & CH, and 8H, & Cp & I h„. The two
corresponding basins of attraction are separated by an un-
stable limit cycle (dashed line). The motion along the
stable limit cycle (bold line) is clockwise.

For smaller load resistance RL, the path condensation
of limit cycles [(2) and (9) in Fig. 4] can occur beyond the
multistationary regime. The generated semistable limit
cycle decomposes into a stable and an unstable limit cycle;
the latter shrinks upon variation of the control parameter
and vanishes via a subcritical Hopf bifurcation. Thus
there are no homoclinic bifurcations in this scenario.

If Rt is so small that oL+crd;Ir) 0 throughout, where
crd;Ir=dj/d@II is the differential conductance, multista-
tionarity (SNDC) does not occur, but bistability between
limit cycles and the stationary state is still possible.

In conclusion, we have predicted complex bifurcation
scenarios of self-oscillatory and stationary states for
parallel transport in a modulation-doped heterostructure.
The oscillation mechanism is based upon the delayed feed-
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FIG. 6. Coexistence of two stable attractors. Phase portraits
of n~ vs @tt for (a) hh„, & t'p & 6tt, and (b) Ctt, & 80 & @h„,.
[Parameters as in Fig. 2 with (a) 60=7.497 kV/cm and (b)
60=7.7006 kV/cm].
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back between the thermionic emission current across the
layer interface and the resulting space-charge dynamics of
the potential barrier. A previous five-variable model'"
has been reduced to a nonlinear dynamic system with the
averaged carrier density in the GaAs layer and the space-
charge potential barrier in the Al„Gai —„As layer as the
essential variables. We have investigated the inAuence of
the circuit conditions on the onset of the oscillations, and
have demonstrated the possibility of oscillatory instabili-
ties for su%ciently large load resistance in regimes of posi-
tive differential conductivity via a global bifurcation of a
limit cycle. Further, subcritical Hopf bifurcations, the bi-
furcation of an unstable limit cycle from a homoclinic or-
bit, and, in particular, bistability and hysteretic switching
between oscillatory and stationary states are found.
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