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Density-of-states efFects in lateral-surface superlattices

15 JANUARY 1992-II

J. Smoliner, V. Rosskopf, G. Berthold, E. Gornik, G. Bohm, and G. Weimann
Walter Schottky Institut, Technische Universitat Munchen, Am Coulombmall, D-8046 Garching, Germany

(Received 28 June 1991;revised manuscript received 9 September 1991)

We have investigated the transport properties of lateral-surface superlattices fabricated by laser holog-
raphy on modulation-doped GaAs-Al„Ga& „As field-effect transistors. Peaks in the differential drain-
source resistance are observed in a range where the Fermi level has the same order of magnitude as the
potential modulation. If a magnetic field is applied perpendicular to the sample, these peaks are shifted
while the peak spacing is increased. Using a two-dimensional numerical model, we show that these
effects are caused by a modulation density of states in the superlattice potential.

Lateral-surface superlattices (LSSL's) fabricated on
high-mobility two-dimensional electron-gas systems are a
topic of increased interest in the last few years. On field-
effect transistors with grid-gate structure, transconduc-
tance oscillations are attributed to electron-
backscattering effects' in the lateral-surface superlattice.
A large negative differential resistance in the drain-source
current was explained by the onset of Bloch oscillations
or sequential resonant tunneling processes between low-
dimensional states beneath the gate contact. On
grating-gate field-effect transistors, which consist of many
parallel quantum wires, even a modulation of the electron
mobility was observed. If an additional magnetic field is
applied to such LSSL's, a number of magnetotransport
effects can be studied. Both in weakly modulated grat-
ing and square superlattice geometries low field magne-
toresistance oscillations are observed, which are equally
spaced along the 1/8 coordinate axis. Similar effects also
occur in a hexagonal geometry superlattice generated by
latex sphere etching masks. In linearly modulated po-
tentials, two sets of low field magnetoresistance oscilla-
tions were observed in a range where the Fermi energy is
in the same order of magnitude than the potential rnodu-
lation. Due to a locally modulated density of states,
electrons are transferred between regions of high and low
mobility. This leads to resistance maxima, each time the
electron concentration is high in low mobility areas and
resistance minima, if electrons are transferred into areas
of high mobility. In strongly modulated antidot-like su-
perlattices, a large magnetoresistance peak was observed
below 0.5 T and explained by reduced electron diffusion
due to crystallization effects. ' Further, this structure
reflects the commensurability between the cyclotron di-
ameter and the lattice period. " Most recently, even evi-
dence of commensurate orbits impaled upon small groups
of antidots was found. '

In this paper, we investigate the transport and magne-
totransport properties of gated lateral-surface superlat-
tices fabricated on modulation-doped GaAs-Al Ga& „As
heterostructures. A series of peaks in the differential
sample resistance is observed in a regime where the Fer-
mi energy is in the same order of magnitude as the poten-
tial modulation. Using a two-dimensional numerical

model, we demonstrate that this behavior is a conse-
quence of an oscillatory density of states.

The samples consist of an unintentionally p-type doped
GaAs layer grown on a semiinsulating substrate
(N„& 10' cm ), followed by an undoped spacer
(d =120 A) with an aluminum concentration of 32%,
and doped Al„Ga, „As (d =400 A, ND =2X10' cm )

The additional GaAs cap layer is highly n-type doped
(d =150 A, ND =3X 10' cm }. At 4.2 K, we measured
an electron concentration of 4. 1 X 10"cm and a mobil-
ity of p=7X 10 cm /Vs. Bar-shaped mesas were etched
into the samples and Ohmic contacts were aligned using a
Au-Ge alloy. A photoresist dot array having a period of
a =400 nm was fabricated on the mesas by laser hologra-
phy. To induce a modulated electron density in the two-
dimensional electron gas, the photoresist pattern was
etched into the GaAs. After removing the photoresist, a
Au gate was evaporated. A schematic view of a struc-
tured sample is shown in Fig. 1(a}. Due to the surface
tension of the wet chemical etchant, the etch grooves in
the middle of the uncovered areas (cut 2) are deeper than
directly between two neighbored photoresist dots (cut 1).
Thus, the resulting potential is higher along cut 2 than
along cut 1. A schematic view of the potential is given in
Fig. 1(b). Cut 1 corresponds to a situation where x =200
or 600 nm, cut 2 corresponds to x =0 or 400 nm.

In Fig. 2 the measured sample resistance RDz and its
derivative dRDs/de are plotted versus gate voltage Vg.
The measurements were carried out at a constant drain-
source current of I~z=2X10 A and a temperature of
T =1.8 K. The derivatives were recorded by convention-
al modulation techniques using a modulation voltage of
0.1 mV and a modulation frequency of 131 Hz. In the
considered gate voltage range, the RDz curve shows a
roughly exponential behavior. However, a set of oscilla-
tions is observed in the dRD&/dV characteristics be-
tween Vg =0 and 300 mV. At B =0 T, the spacing be-
tween these peaks increases from 6V =24 to 36 mV with
more negative bias voltage. At B =0.5 T, the distances
between these peaks are larger and we observe eight with
spacings between EVg=28 and 50 mV. Note that the
somewhat irregular shape of the measured peaks reflects
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the onset of Shubnikov —de Haas oscillations.
Below V~

= —380 mV, the area beneath the gate con-
tact is completely depleted, which is indicated by a con-
stant drain-source resistance in the order of several MQ
independent of the applied gate voltage. Thus, the Fermi
level is decreased from E+=14.3 meV at V =0 V to
Ez =0 meV at V = —380 mV, which means that the Fer-
rni energy scales with gate voltage at a rate of
bE~/b Vs=37 meV/V. Therefore, the voltage spacings
between the resistance maxima correspond to energy
differences between 0.74 and 1.1 meV at B =0 T. At
B =0.5 T, the energy spacings vary from 1.03 to 1.85
rneV.

To explain the observed differential resistance oscilla-
tions, we start from the relation RDs= VDs/(jw) with

j =eUn. j is the current density, w is the channel width, e
is the electron charge, U is the electron drift velocity, and
n the 2D electron concentration. The drift velocity is
equal to v =p VDs/las, where in+ is the channel length.
As the electron mobility does not change significantly in
the considered gate voltage range, with f(E) as Fermi
distribution function, we express j as
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FIG. 2. R» vs V~ and dR»/dV~ vs V~ characteristics for
B =0 and 0.5 T measured at 1.8 K. The arrows indicate the

dR»/d V~ peak positions. The B =0.5 T curve is shifted to fit

on the same plot.

j=eu f D(E)f (E)dE .

—
—,
' cos(2vrx/a ) cos(2~y/a )+2.5]/4 . (2)

A potential modulation of V0=15 meV was deduced
from the etch depth dependent electron densities mea-
sured on unstructured test samples. Deep in the potential
(E (6 meV), the electrons are bound in quantized states.
Above E =6 rneV, an electron has enough energy to
move through the valleys of the potential. This means

that the potential shows antidotlike characteristics in this
range. At even higher energies (E ) Vo) an electron can
move freely through the sample. If the Fermi level is

swept through the potential, the electrons in the LSSL
are tuned continuously from two-dimensional to zero-
dimensional behavior. Thus, all structures in the density
of states at E=Ez are directly reflected in the RDz versus

V and dRDs/dV characteristics. D(E) is calculated as

Thus, the current density is directly related to the density
of states D (E) in the two-dimensional periodic potential
V(x,y).

Taking into account that the potential modulation
along cut 2 is stronger than along cut l (see Fig. l), we

chose the following model potential:

V(x,y)= Vo[cos(2nx/a)+ cos(2ny/a)

D(E)=
(2~) ~

grad [E(k„,ky)]~
(3)

FICx. 1. (a) Schematic view of the sample. Cuts (1) and (2) il-

lustrate the local variation of the etch profile. (b) Correspond-

ing modulated potential in the two-dimensional electron gas.

In the two-dimensional case, the integration is carried
out along lines of constant energy. To obtain the disper-
sion relations E(k, k ), the Schrodinger equation is

solved numerically by finite-difference methods using the
potential given in Eq. (2). The infiuence of small magnet-
ic fields is also included into the model. More details of
this method are published elsewhere. '

Using the assumption that the potential is not changed

by the applied voltage, the results of this calculation are
shown in Fig. 3. We first discuss the case of zero mag-
netic fields. At low energies (E (6 meV), the density of
states shows a series of sharp peaks, which directly
reflects the zero-dimensional states deep in the potential.
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FIG. 3. Calculated density of states at B =0 and 0.5 T. The
B =0.5 T curve is shifted to fit on the same plot. FIG. 4. Comparison between calculated and measured

dRDzldV~ peak spacings at B =0 and 0.5 T.

The spacing between these OD subbands is in the order of
1 meV. For increasing energies, the subband spacing be-
comes smaller because the potential becomes broader.
Above E=6 meV, D(E) starts to increase continuously,
which means that now the electrons have enough energy
to overcome the barriers in the modulated potential (e.g.,
along cut 1 in Fig. 1). Although the electrons are no
longer bound in this energy range, the corresponding
density of states still oscillates. In this regime, the sub-
band spacing is much smaller than the distance between
the density-of-states maxima. The large D(E) oscilla-
tions are due to the varying degeneracy of LSSL sub-
bands. The superimposed fine structure is explained by
the occurrence of local E(k„,k» ) extrema in single energy
bands. Near E=15 meV, both the amplitude and the
period of the oscillations become smaller. In addition,
the curve saturates, which indicates the transition to the
usual D (E)=const behavior for unstructured two-
dimensional electron-gas systems. Figure 3 also shows
the result of a calculation carried out at B =0.5 T. Com-
pared to the B =0 T curve, the spacings between the
large structures in D (E) are systematically increased. In
addition, the amplitude of the D(E) oscillation is larger
and the superimposed fine structure is less pronounced,
which reflects a more Landau-level-like behavior of the
energy bands in the LSSL potential.

Since at 1.8 K, the energy differences between the fine-
structure peaks are much smaller than kT, the fine struc-
ture in the density of states is not resolved in the present
experiment. Thus, we only consider the distances be-
tween the large oscillations, which are plotted versus gate
voltage in Fig. 4. If we further assume that the potential
is not changed by the applied gate voltage, the calculated
oscillatory behavior of D (E) is well related to the proper-
ties of the measured dRDsld Vg characteristics. At B =0
T, the calculated peak distance decreases from
AVg""=33 to 21 mV in the considered voltage range,
which is in good agreement with the experimental data of
AV'"~'=36 and 24 rnV, respectively. The systematic de-
viations between the measured and calculated results are
mainly due to the difference between the model potential
and the real potential distribution in the LSSL. The Auc-
tuations of the measured data might be explained by the
fine structure in D(E). To prove this quantitatively,

however, the exact shape of the potential has to be
known.

The agreement between theory and experiment is even
better if a magnetic field is applied perpendicular to the
plane of the modulated two-dimensional electron gas. In
this case, the contribution of the magnetic field becomes
comparable to V, so that the calculated results depend
less on the exact choice of the electrostatic potential. At
B =0.5 T, we obtain spacings of 6V'"'=27 mV at V =0
V and hV""=42 mV at V = —300 mV, which agree
well with the measured results of 6 V'" '=30 mV ( Vg =0
V) and 5V'""'=38 mV (V = —300 mV).

The steep increase of the dRD&/dVg curve around
Vg= —275 mV is also understood within this model.
Below Vg =250 mV, the Fermi level is tuned into a range
(E (6 meV) where the electron energy is smaller than the
potential modulation. In this range, all carriers are
bound in OD subbands and the transport properties are
dominated by hopping or tunneling processes. Thus, the
sample resistance is expected to increase.

It must be emphasized that such D(E) oscillations
occur in any type of periodic potential. Our simulations
have shown that they are pronounced best in a sinusodial
antidot-type superlattice. Here, a modulated density of
states typically exists in an energy range between E =0
and 2Vo. A large potential modulation at small grating
period leads to a strongly modulated density of states,
which in the ideal case results in several zones of negative
differential resistance in the ID& versus Vg characteris-
tics. Since in our sample we have a mixture between a
dot-type and antidot-type LSSL and the grating periods
is relatively large, the measured differential resistance
peaks are rather weak.

If the magnetic field is varied and Vg is held constant,
minima and maxima in the density of states will pass the
Fermi energy. As the spacings between the density-of-
states oscillations depend almost linearly on the magnetic
field and further, the density of states peaks are roughly
equidistant, magnetoresistance oscillations equally spaced
along the (I/B) coordinate axis will occur. In fact, such
a behavior was reported for weakly modulated square
and hexagonal superlattice geometries. ' For similar
reasons, magnetoresistance oscillations equally spaced in
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1/B are also observed in linearly modulated superlat-
tices. In strongly modulated potentials, however, these
structures are washed out by other effects, causing single
large peaks at low magnetic fields. ""

In summary, the transport properties of lateral-surface
superlattices were investigated in a regime where the Fer-
mi energy is of the same order of magnitude as the poten-
tial modulation. Through a two-dimensional numerical
model it was show that the observed peaks in the
differential sample resistance are due to an oscillatory

density of states. In weakly modulated potentials, these
dRDz/dvg structures are equivalent to magnetoresis-
tance oscillations, which are equally spaced in 1/B.

ACKNOWLEDGMENTS

The authors are grateful to P. Vogl for helpful discus-
sions. This work was sponsored by Deutsche
Forschungsgemeinschaft, project no. Go469/4-1.

K. Ismail, W. Chu, D. A. Antoniadis, and H. I. Smith, Appl.
Phys. Lett. 52, 1071 (1988).

~K. Ismail, W. Chu, D. A. Antoniadis, and H. I. Smith, J. Vac.
Sci. Technol. B 6, 1824 (1988).

G. Bernstein and K. Ferry, J. Vac. Sci. Technol. B 5, 964
(1987).

4K. Ismail, W. Chu, A. Yen, D. A. Antoniadis, and H. I. Smith,
Appl. Phys. Lett. 54, 460 {1989}.

5K. Ismail, D. A. Antoniadis, and H. I. Smith, Appl. Phys. Lett.
54, 1130(1989)~

D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Euro-
phys. Lett. 8, 179 (1989).

7E. S. Alves, P. H. Beton, M. Henini, L. Eaves, P. Main, O. H.
Huges, G. A. Toombs, S. P. Beaumont, and C. C. W. Wilkin-

son, J. Phys. C 1, 8257 {1989}.

H. Fang and P. J. Stiles, Phys. Rev. B 41, 10 171 (1990).
G. Berthold, J. Smoliner, W. Demmerle, F. Hirler, E. Gornik,

G. Bohm, and G. Weimann, Semicond. Sci. Technol. 6, 709
(1991).

oA. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 44, 3447
(1991).

' K. Ensslin and P. M. Petroff, Phys. Rev. B 41, 12 307 (1990).
' D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. v.

Klitzing, and G. Weimann, Phys. Rev. Lett. 66, 2790 (1991).
' J. Smoliner, G. Berthold, and N. Reihnacher, Semicond. Sci.

Technol. 6, 642 (1991).
P.H. Beton, E. S. Alves, P. C. Main, L. Eaves, M. W. Dellow,
M. Henini, O. H. Huges, S. P. Beaumont, and C. D. W.
Wilkinson, Phys. Rev. B 42, 9229 (1990).


