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Mutual drag of two- and three-dimensional electron gases: A collective-collisions approach
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In the recent paper by Laikhtman and Solomon [Phys. Rev. B 41, 9921 (19901]a theoretical descrip-
tion of the mutual-drag effect of two- and three-dimensional electron gases in heterostructures was given.
In this paper a different approach based upon the concept of collective collisions between electrons is

suggested. The mutual drag of two two-dimensional gases is considered briefly.

In a recent experiment, ' the phenomenon of mutual
drag of two-dimensional (2D) and three-dimensional (3D)
electron gases (EG) has been discovered. The efFect man-
ifests itself via the occurrence of induced electric current
in one of the gases when a driving voltage is applied to
the other. The phenomenon of mutual drag was predict-
ed by Price in 1983 for the case of two layers of nonde-
generate 2DEG. In Price's consideration, the effect is a
consequence of momentum transfer caused by the
scattering of an electron in one layer on the electrons of
the other layer. The scattering of nondegenerate 2D elec-
trons on 3D ones was considered by Boiko and Sirenko.
However, the experiment' showed that the momentum
transfer dominated only at suSciently high temperatures
while at lower temperatures the energy transfer played a
crucial role. Recently, Laikhtman and Solomon (LS)
suggested an explanation for the mutual drag under con-
ditions similar to those in experiment. '

In the present Brief Report, we suggest another ap-
proach to the mutual-drag effect. We assume that the en-

ergy and momentum transfer is caused by the interaction
of a given electron with the fluctuating electric field
formed by all electrons in the system (collective col-
lisions) rather than binary collisions as assumed by LS.
Although it can be shown (and it will be at the end of this
paper) that these approaches are identical under the as-
sumptions about the Thomas-Fermi character of the
screening, our result differs from that of LS. Since the
calculations in the collective-collisions approach are
much easier than in the binary-collisions approach (be-
cause of the kinematics of only one type of electron —2D
or 3D—should be considered), we may attribute this
difference to the additional approximations adopted by
LS to obtain results in analytical form. For the sake of
clarity we shall confine ourselves to consideration of
momentum transfer only, which is a much simpler pro-
cess than that of energy transfer.

As in Ref. 4, we consider a 2D channel separated from
the half-space filled with 3D electrons by an insulating
layer of thickness a. Let the driving voltage be applied to
the 2D channel. We first calculate the momentum relax-
ation time of 2D electrons determined by the scattering
of the 3D electrons. Let P(r, t) be the random electrostat-
ic potential formed by all the electrons in the system. We

can describe the effect of this potential on the 2D elec-
trons by including the corresponding term into the Ham-
iltonian

X(1—f,. )(1—f, ) ', (2)

where E is the Fourier transform of the correlation func-
tion

E(ro, q, z&, z2) =f d p fdt e

X(p(O, z&, 0)p(p, zz, t)) . (3)

p and q are directed parallel to the channel, the z axis is
directed perpendicular to the channel, g„ is the size
quantization wave function, f the Fermi distribution
function, and S the normalization area. The zero of the z
axis is chosen at the 3DEG/insulator interface. Due to
the conservation of momentum and energy, q =p —p' and
co=(s~—s )lA'. With the probability defined by Eq. (2)
the momentum relaxation time is

—=g W' (1—cos8),1

7
(4)

where 6 is the angle between p and p'. According to the
Auctuation-dissipation theorem, the correlation function
is connected with the imaginary part of the electrostatic
retarded Green's function

K (co, q, z „z2 ) = —2A'[N (co)+ 1]1m')(co,q, z „zz), (5)

where N(to) is the Bose factor, and 2) is the Fourier
transform of the electrostatic potential at point z, in-
duced by a point charge at point z2. We shall consider
the case of an infinitely thin 2D channel and shall replace

H,„,=ey,
where e is the electron charge. As shown in Ref. 5 (cf.
also Ref. 6), the probability of transition from state p to
state p' caused by the interaction with a random potential
can be expressed in terms of the correlation function of
this potential. Applying the method described in Ref. 5
we have

2

Wp p
= dz( f dz2$„(zt)f„(z2)X(to, q, z),zz)
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q S= 5(z —z ), (6)

g„ in Eq. (2) by 5(z —a). Thus, to calculate W ~ we
have to calculate ImS and insert z, =z2 =a.

Outside the 3DEG the function 2) satisfies the ordinary
Poisson equation

the 2DEG, and vice versa. Hence the total Im2) corre-
sponds to the interaction of 2D electrons with 3D elec-
trons as well as with 2D ones. Since we are interested in
the calculation of the drag between 2D and 3D electrons
we should omit the second term in Im2), i.e., put Imp=0.
Taking into account all the assumptions mentioned above
for Im2), at z, =z2 =a, we obtain

where e is the dielectric constant of the insulator. Equa-
tion (6) must have boundary conditions. The first condi-
tion is imposed at the channel and takes into account the
presence of 2D free electrons:

Bzi z& =a+ Bzi z& =a—

=—
q

Bzi zi =P

where

7

z =0
1

(8)

where y(q, co) is the polarizability of 2DEG (Ref. 7) [in
deriving Eq. (7) it was taken into account that the poten-
tial is continuous through the channel]. Another bound-
ary condition is imposed at z& =0,

ln(2q, /q)exp( —2qa)—ImS =
q, (q,'"}u~e [1—exp( —2qa )]' (12)

where q,
'" and q, are the screening parameters of the

channel and of the gate, respectively, and vz is the Fermi
velocity in the gate.

Now we substitute Eq. (12}into Eq. (5}and calculate r
according to Eq. (4). For temperatures higher than the
typical value for energy transfer, the Bose factor in Eq.
(5) reduces to the classical Nyquist factor kz T/Aced and
the factor in Eq. (2) including the Fermi distribution
function reduces to unity. Thus, the dependence ~ ' ~ T,
which was obtained by LS (Ref. 4), follows immediately.
The integration over d p' is easily carried out. Once ~ is
calculated, it is easy to derive the expression for the in-
duced current in the 3DEG via simple considerations of
momentum conservation. If the number of 2D electrons
in the channel is N, h and their drift velocity caused by
the applied electric field F is u, then the total momentum
transferred to 3D electrons per unit time is

1 q t~ z

776 co 6~,N
dp N hnig

7
(13)

1+q 2y(q, a) )2)p
(10)

and k =k, +q . e„(k,cu) is the permittivity of the
infinite 3DEG. This condition was derived for the case of
specular reflection of the electrons from the boundary
(see Refs. 6, 8, and 9 and also Boiko and Sirenko. ) It can
be shown that the condition (8) is identical with the con-
dition used by LS under the assumption concerning the
Thomas-Fermi character of screening in the 3D electron
gas. With all the foregoing boundary conditions im-
posed, we have for the Green's function at z, =z2 =a

If ~g is the elastic relaxation time in the 3DEG deter-
mined by some scattering mechanism which is much
stronger than the mutual drag, then the total momentum
gained by the 3DEG is rgdP/dt The influ. ence of a mu-
tual drag force on the 3DEG leads to the establishment
of a drift velocity field u(z). Thus, the total induced
current in the 3DEG is J=L enz fp*dz u(z), where L„ is
a sample size in the direction perpendicular to the
current, L, is the size in the z direction, and n is the
concentration of the 3DEG. Using the obvious relation
between rzdP/dt and Jwe have

where 2)p is the Green's function for the system without
the 2DEG

g ch
2

J=n,hn LyF,
7 m

(14)

2'tt
1

e e —2''
q —.+.'

Interpreting Eq. (10) in terms of an effective dielectric
permittivity coincides with that used by Boiko and Siren-
ko.

To' calculate the imaginary part of Eq. (10) we shall
make the same assumptions as in the work by LS: the
screening is assumed to be static and of the Thomas-
Fermi type. In the case of static screening the imaginary
part of S is expressed as a sum of two terms: one is pro-
portional to Im2)p and contains only Rey, and the reverse
is true for the second. The first term corresponds to fluc-
tuations caused by dissipation in 3DEG and screened by

k&T ln(4q, a) e FL»J=
1T Z c Jupe f1 (qch)2q2a6

7 Vc 7 (15)

where g(x) is the Riemann function. Denoting by J„s the
result for the induced current obtained by LS for the ra-
tio J/JLs, we find

where n,h =N,h/S, and ~,h has the same meaning for the
channel as ~g for the 3DEG. The derivation demonstrat-
ed above is equivalent to the solution of the Boltzmann
equation only if all relaxation times do not depend on the
electron energy. For the reasons discussed in Ref. 4 this
is the case in question. Finally, substituting into Eq. (10)
the expression for ~, we have
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1 eJ/Jts= 1 (4q, a)(q, /kF)
7T VF E'

(16)

J/rs cc ln(ns )/n (17)

while JLs/r does not depend on n . Note that if we sub-
stitute ks T=R kF /2m in the expression for r derived by
Boiko and Sirenko in the nondegenerate case, then their
result agrees with ours.

Now we are in a position to prove the identity of the
collective-and binary-collisions approaches. The idea of
the proof is straightforward. The transition probability

For the given set of the experimental parameters
chosen for comparison by LS, J/Jzs =0.09. Our results
agree better with the observed magnitudes of the induced
current than those of LS, which are about an order of
magnitude larger than the observed current. The
difference between J and Jzs can be found experimentally
by varying n, if the dependence of 7g on ng may be
discriminated by a special experiment. Then, according
to Eq. (15)

in the collective-collisions approach is expressed through
the imaginary part of the Green's function or, neglecting
its dimensionality, of the electrostatic potential. The
transition probability in the binary-collisions approach is
expressed through the matrix element of the potential.
Requiring that this probability should be equal we obtain
some identity for the potential. In the case of simple
geometry (3D or 2D electron gases) it can be shown that
this identity is satisfied if the permittivity of the electron
gas obeys the expression derived in the random-phase ap-
proximation (RPA). (The well-known example of the
violation of the identity of the collective- and binary-
collisions approach beyond the RPA is the electron-
electron interaction in impure metals. '0) In our case,
with a complicated geometry, we are able to prove this
identity only under stronger assumptions regarding the
screening which were considered above.

Let the w
p p

be the probability of the transition of a
2D electron from the state p into the state p' caused by
the collision with a 3D electron. Then, following the Fer-
mi "golden rule"

(k —k')
W

&
= + 5(E&+e&—e&.—eU )5,„, „ f dzz V(co, q, a, zz)e ' ' ' (1 f ~ )(1 —f ) 'fh(1 ——f&.),R(LS)

(18)

where k=(k„kl) is the momentum of the 3D electron, l. is the normalization length in z direction, and V(u, q, a, zz) is
the Fourier transform of the potential at z =a induced by the 3D electron located at zz inside the gate. Note that
V =e X). Due to the reciprocity principle 2)(co, q, a,zz) =XI(co,q, zz, a ). Comparing Eq. (18) with Eq. (2) we obtain the
following identity for 2):

2—ImS(co, q, a, a)= f d k~~ fdk, fdk, 5(e& „+e e„&,——e )
2(2m )'

0 iz~(k —k,
X dzz2)(co, q, zz, a)e ' * ' (1 fh+ z, )f&—

I, /[N(co)+1] .
00 kii+q, k ii~ z

(19)

The integration over z is accomplished by using the fact
that in the Thomas-Fermi approximation 2) satisfies the
Poisson equation inside the gate: ~=q, S. Then, in-
tegrating by parts, we obtain for this integral

8 +(k, —k, ) (2)~, 0)
Bz~ z =p

2
(20)

(k, —k,') +q,
Integrating further over k~~, k„and k,', and making use of
the boundary conditions (7) and (8), we obtain that the
left part of Eq. (19) coincides with Eq. (12). Thus, the
identity of the two approaches is proven.

Finally, we shall discuss briefly the mutual drag of two
2D electron gases. This situation was considered previ-
ously in the pioneer work by Price for the case of nonde-
generate gases. The binary-collision approach was ap-
plied, and screening was completely neglected. Here we
consider the case of degenerate gases, take into account
the screening in both gases, and apply the collective-

I

collision approach in a way similar to that discussed
above. The gases are assumed to be identical. The final
result for the induced current is

~3 e (hach) k&T 1 ezJ= I'I.
60 AUFe ft (qch)2a5

(21)

I would like to thank Y. Levinson and P. Price for
helpful discussions.

where now a stands for the distance between 2D gases.
Equation (21) exhibits a slower decrease of current with
distance a (cca ) as compared to the 3D/2D case
(cclna/a ). This is quite natural because of the weak
character of screening in the two-dimensional systems. If
7 h is determined by the acoustic phonon scattering, as
was assumed in Ref. 4, then the total dependence of the
induced current is T ', contrary to the 2D/3D case
where induced current does not depend on temperature.
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