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Coupled-Langevin-equation analysis of hot-carrier transport in semiconductors
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Using the results of a Monte Carlo simulation, a set of coupled Langevin equations for the relevant
variables: the fraction of free carriers, the velocity, and energy, is constructed and applied to the case of
p-type Si at 77 K under the influence of an electric field of arbitrary strength. The properties of the
Langevin equations, by separating the terms associated with dissipation from those associated with fluc-
tuations, is found to help the physical understanding of the results. The relaxation and generalized-
diffusion matrices describing dissipation and fluctuations, respectively, are evaluated for different free-
carrier concentrations. Their physical interpretation is shown to describe the cross correlation among
different variables, which is present at equilibrium or is induced by the field.

I. INTRODUCTION

The concept of a Langevin equation has been originally
introduced to study the Brownian motion of a particle
coupled to a heat bath with large number of degrees of
freedom. Since then it has been successfully applied to
many fields where stochastic processes are important.'-?
The main reason of its importance lies in the decoupling
of the damping forces from those leading to fluctuations
which, although both are caused by the same microscopic
processes, helps the intuitive understanding of the phys-
ics involved. If one is interested in first-order transport
quantities (i.e., mean values), only the dissipative part of
the equation is involved. On the other hand, in the study
of second-order transport quantities, such as noise in
physical systems, the concept of different “noise sources”
is usually introduced, thus tracing back to the fluctuating
forces in the Langevin equation.

The formal derivation of Langevin equations from the
very microscopic dynamics of a system has been inten-
sively studied using projection-operator techniques.’™>
These give a good insight in the origin of the different
terms of the equations and in the approximations in-
volved in their derivation. They also show the way to
generalize these equations including, e.g., memory effects
or a coupling of the fluctuating forces.®~® The derivation
of these Langevin equations needs no further approxima-
tions than those already performed in deriving irreversi-
ble kinetic equations. The Boltzmann equation for the
distribution function of charge carriers can thus be gen-
eralized to a Boltzmann-Langevin equation also describ-
ing the fluctuations around the stationary state of the dis-
tribution function and containing the Boltzmann equa-
tion as the equation for the mean values.'®!! The fluc-
tuating forces are uniquely determined by the same
scattering rates entering in the Boltzmann equation. This
fact is the reason why the Monte Carlo (MC) technique,
originally introduced to solve the Boltzmann equation,'?
can be directly used to study fluctuations without any
further assumptions than the knowledge of the scattering
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rates.'

The Boltzmann-Langevin equation is an equation for
an infinite set of variables, the occupation number for any
state k. In general, however, one is interested only in a
very limited set of quantities, for example the lowest mo-
ments: density, velocity, and energy of the carriers. The
question addressed in this paper therefore is the follow-
ing: can we find a subspace of “relevant” variables such
that the stochastic process in this subspace is still Marko-
vian, or in other words, that the fluctuations in this sub-
space satisfy a closed set of coupled Langevin equations?
For any real semiconductor under far-from-equilibrium
conditions, this question cannot be answered from an
analytical point of view due to the difficulty in obtaining
a solution of the Boltzmann equation, which includes the
various scattering processes with their different energy
and wave-vector dependencies. On the other hand, the
above question can obtain a numerical answer through
the MC method which has been shown to be well suited
to study the transport in real semiconductors without
simplifying assumptions in treating the scattering pro-
cesses or the strength of the applied fields.

To this purpose we use a MC simulation to calculate
first-order and second-order quantities in a nondegen-
erate semiconductor in which charge transport occurs
through a two-level system: the conducting band (here
the valence band) and the impurity centers which supply
the carriers. From the results, in particular those regard-
ing correlation functions, it emerges that the five vari-
ables u (fraction of free carriers), v (the three components
of the velocity), and € (energy per carrier) to a good ap-
proximation indeed form a complete set of relevant vari-
ables. We then construct a set of coupled Langevin equa-
tions for these variables. Their conceptual simplicity al-
lows us to get a better physical insight into the high-field
transport processes, and in particular in the coupling be-
tween different variables as well as their corresponding
fluctuating forces. This paper complements a previous
one,'* hereafter cited as I, where we have investigated the
time dependence of the correlation functions, which is
described by the dissipative part of the Langevin equa-
tions.
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II. THEORY AND RESULTS

In the following we will restrict ourselves to the case of
stationary processes. Let us denote the instantaneous
values of the five variables as P;(¢), i=1,...,5. We as-
sume that the fluctuations of these variables
8P;(t)=P;(t)—(P;) satisfy the coupled set of linear
Langevin equations

(d7dt)dP;(1)=— ¥ a;;8P;(1)+T (1) (1)
J

with the relaxation matrix a;;, the mean values (P;), and
the fluctuating forces I';(¢). The fluctuating forces,
which are taken as §-correlated in time, have a zero mean
value and are characterized by their generalized-diffusion
matrix Yijs that is

(Ty(1))=0, (2a)

Assuming Gaussian fluctuating forces, the Langevin
equation (1) is equivalent to the Fokker-Planck equation
for the probability distribution W(8P;,t) (Ref. 1),

)

S W(sP,,1)= 2# ;P +1 W(8P,,1) .
ij i

3 =¥ 35p,

(3)

This explains that indeed y;; can be interpreted as a
generalized-diffusion matrix in the space of the relevant
variables.

Given the initial values and initial time derivatives of
the set of correlation functions <I>,»j(t)=(8Pi(0)8Pj(t)),
the parameters entering in Egs. (1) and (2) can be calcu-
lated according to the following formulas:

@y =Dy /D @
Yi= Z(szaik+a,«k8ﬂ )P,,(0) . (5)
k1

where d =det[®,,(0)] and D;; is the determinant ob-
tained from D, if in column j the values ®,;(0), are re-
placed by —(d /dt)®,;(0).">'® At thermal equilibrium
the initial values of the correlation functions ®;;(0) can
be expressed in terms of the temperature and the chemi-
cal potential, thus Eq. (5) represents the generalized Ein-
stein relation.

The MC simulations have been performed for the case
of uncompensated p-type Si with an acceptor concentra-
tion N ,=3X10" cm~? at 77 K, where the generation-
recombination processes from the shallow impurity levels
have been taken into account. Details of the calculations
as well as the material parameters used are given in I
The electric field has been varied by more than four or-
ders of magnitude.

Figure 1(a) shows the mean values of the fraction of the
free carrier, the longitudinal velocity v;, and the carrier
energy as a function of the electric field. Since we have a
cubic semiconductor with an electric field in the (100)
direction, the mean value of the transverse velocity v,
remains always zero. The fraction of free carriers in-
creases with increasing field due to the suppression of
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recombination processes which occur practically only
from the bottom of the band. At high fields it reaches
unity. The longitudinal average velocity, after an initial
Ohmic increase, tends to saturate at fields above some 10*
V/cm. The mean energy shows, at intermediate fields,
only a slight increase and at high fields, when the cooling
due to optical phonons becomes less efficient, increases
strongly.

From these mean values the phenomenological lifetime
r,, momentum relaxation time 7,;, and energy relaxation
time 7, can be obtained by using the results obtained
from the balance equations'’

Tu=(u)rg ’ (6a)
Tv:m<vl)/€E, (6b)
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FIG. 1. (a) Mean values of the relevant variables, (b) phe-
nomenological relaxation rates, and (c) phenomenological gen-
eralized diffusivities as a function of the electric field applied
parallel to the {100) crystallographic direction. Values are ob-
tained from a Monte Carlo simulation for the case of p-type Si

at 77 K with an acceptor concentration of N, =3X 10" cm™>.
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TE=((£>_%kBT)/e<UI>E . (6¢)

Here 7, is the mean generation time, m is the carrier
effective mass, and T the lattice temperature. The inverse
of these relaxation times is plotted in Fig. 1(b). We note
the nonmonotonic behavior of the energy relaxation rate
which exhibits a maximum at about 5X 10* V/cm.

In order to describe the variance of the distribution of
the relevant variables, we can define the effective

diffusivities for the respective variables as

v.=2(8u?) /7, , (Ta)
v =2(8v}) /7, , (7b)
y.=2(8e2) /1, . (7o)

These are shown in Fig. 1(c). In the definitions given
above, it is assumed that the fluctuations and relaxations
of the variables are independent. Their field dependence
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FIG. 2. Relaxation matrix coefficients as a function of the
electric field. (a) Diagonal components, (b) off-diagonal com-
ponents, and (c) eigenvalues.

will serve as a reference when discussing the full relaxa-
tion and diffusion matrices in the following.

Figure 2 shows the field dependence of the relaxation
matrix, as calculated from the correlation functions. The
diagonal components are plotted in Fig 2(a). In the ab-
sence of coupling they would represent the respective re-
laxation rates for the fraction of free carriers, their veloc-
ities and energy. Indeed, their field dependence is quali-
tatively in agreement with the phenomenological rates in
Fig. 1(b). Their field dependence reflects the presence of
hot-electron conditions. At increasing fields a,, tends to
decrease because of the field-assisted ionization mecha-
nism. The velocity relaxation rates tend to increase be-
cause of the increased efficiency of the scattering mecha-
nisms. The energy relaxation rate exhibits a maximum
and then decreases at the highest field because of the
smaller efficiency of scattering to dissipate the excess en-
ergy gained by the field.
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FIG. 3. Generalized-diffusion matrix coefficients as a func-
tion of the electric field. (a) Diagonal components, (b) off-
diagonal components, and (c) eigenvalues.
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The off-diagonal components, plotted in Fig. 2(b), de-
scribe the coupling between the relaxation of these vari-
ables. At vanishing fields only the coupling between the
carrier number and their energy remains, while for sym-
metry reasons all couplings with a velocity component
vanish. The coupling between energy and longitudinal
velocity turns out to be the most important since it in-
creases systematically with field. The coupling between u
and v, is not reported because its magnitude is so small
that it cannot be detected with sufficient accuracy.

In order to interpret the coupling in the relaxation pro-
cesses, we have calculated the eigenvalues of the matrix a
as a function of the electric field. They determine the
relevant time scales for the dynamics. Since this matrix
is not symmetric, the eigenvalues need not be real, but
there can be also a pair of conjugate complex values.
Indeed, it turns out that this occurs at intermediate field
strengths. These complex values can be attributed to a
streaming character of the transport and has been dis-
cussed in detail in I. In any case, we remark that at the
lowest and highest fields the eigenvalues well agree with
both the phenomenological rates as well as with the diag-
onal components of the relaxation matrix.

Figure 3 show the field dependence of the diffusion ma-
trix as calculated from the correlation functions. The di-
agonal components are plotted in Fig. 3(a). Here y,, is
decreasing with increasing field and approaches zero
when the fraction of free carriers approaches unity, since
in this limit the corresponding fluctuations vanish. The
other diagonal components are increasing with increasing
field showing the increasing efficiency of the correspond-
ing fluctuating forces with increasing carrier energy.
Again, in the absence of coupling, they would agree with
the phenomenological diffusivities shown in Fig. 1(c).

Figure 3(b) shows the off-diagonal components; since
the diffusion matrix is always symmetric there are only
three independent components. As in the case of the re-
laxation matrix, at vanishing fields only the correlation in
fluctuations between energy and carrier number remains
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finite, the other components tending to zero linearly with
the field. At increasing fields, the correlation between ve-
locity and energy fluctuating forces is strongly increasing
while the other two components remain practically con-
stant with field. Thus, the former one plays the most im-
portant role.

In Fig. 3(c) we report the eigenvalues of the diffusion
matrix. They determine the strength of the independent
fluctuating forces in the space of the relevant variables,
and are always real due to the symmetric character of ij+
The corresponding eigenvectors give the linear combina-
tion of the variables on which these uncorrelated forces
act.

III. CONCLUSIONS

This paper has presented a detailed analysis of hot-
carrier transport and fluctuations in a doped semiconduc-
tor in terms of a Langevin equation approach. Using a
Monte Carlo simulation, first and second-order transport
quantities have been calculated. From these results a set
of coupled linear Langevin equations has been construct-
ed. This method has enabled us to obtain the relaxation
matrix associated with dissipation properties as well as
the generalized-diffusion matrix associated with fluctuat-
ing forces. Calculations have been applied to the case of
p-type Si at 77 K in the presence of generation-
recombination processes from shallow traps. A detailed
comparison between phenomenological values and those
obtained from the present rigorous approach has been
carried out.
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