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Single-particle hopping probability on a chain with interaction and disorder
by the modified Lanczos algorithm
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We consider numerically a chain of ten sites (half filled) described by the Anderson-Hubbard model.
The single-particle hopping probability is calculated as a function of disorder and correlation. A quali-
tative agreement for the logarithm of this hopping probability is found when compared with results of a
calculation of the low-frequency conductivity by the Monte Carlo method.

The Hubbard model is an old problem proposed to de-
scribe electrons in narrow bands. However, nowadays it
has become popular again due to its possible connection
with high- T, superconductivity.

The model reads

X ei nicr+ g tijcicrc&'

The hopping terms t; are taken all equal and only for
nearest neighbors. The energy parameters c, , are taken
from some random distribution. Here we use the box dis-
tribution, namely,
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W is the parameter that characterizes the disorder and is
the width of the distribution.

So, when disorder and interaction are taken into ac-
count we have to value the Anderson-Hubbard Hamil-
tonian, namely,

H~~= gE, n, +H~. (4)

with c; random. Any attempts done on this last model
are also relevant for the localization theory with interac-
tion.

Scaling theories of the disordered interaction problem
were proposed. McMillan assumed a scaling theory in

Htt= g t,,c, c +Urn, )n, )
—pgn,
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The parameters are the effective on-site interelectronic
Coulomb repulsion U and the probability of delocaliza-
tion t;, which is mainly taken between nearest neighbors
and isotropic p is the chemical potential and it adjusts
the number of electrons per site in the band.

Although most attempts in the context of high-T, su-

perconductivity are done on the Hubbard model itself,
some contributions have stressed the importance of disor-
der as well as correlation. ' Disorder is thought of in
terms of the Anderson model which reads

two parameters: the dimensionless conductance and the
dimensional interaction constant. Finkelstein treated
the long-range Coulomb problem assuming weak disorder
but retaining the interaction term to all orders. A scaling
theory for interaction put with strong spin-flip scattering
was considered by Castellani et al. A renormalization-
group study for weak disorder in the Hubbard Hamil-
tonian was performed by Bhat and Singh and by Ma.
Recent treatment of the large-U limit was given by
Zimanyi and Abrahams.

Not much is known numerically about the Anderson-
Hubbard model. Some preliminary results were obtained
by Muramatsu and Hanke' using Hirsch's program.

In a previous work" we presented some numerical
simulations on the one-dimensional Anderson-Hubbard
model. It concerned localized superconducting proper-
ties of the chain through the behavior of the local pair-
pair correlation function defined as
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The numerical procedure was based on the modified
Lanczos algorithm which gives the ground-state energy
eigenvalue and the corresponding eigenfunction. With
this last magnitude several correlation functions can be
obtained. The computational program is that used by
Dagotto and co-workers. ' '

In Ref. 11 the test of the program was presented by
comparison with calculations performed by Singh. ' The
magnetic structure factor both for q =0 and m was calcu-
lated:

1 iq(R. —R. )

Si i

———g e ' ' (n, i n, )}(n t nii}——
t j=l

as a function of disorder W. For q=O the magnetic
structure factor is just the q=O susceptibility.

Recently Lehr' and Dzierzawa and Schluter' have
calculated the conductivity of interacting fermions in a
disordered chain using a Monte Carlo simulation. They
use the Hartree-Fock approximation for the correlation
and calculate the low-frequency conductivity by linear
response theory.

In this paper we want to concentrate on results for the
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normal-state quasiconductivity calculated by the
modified Lanczos algorithm using the same program as
in Ref. 11.

We calculate the following correlation function:
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FIG. 1. Logarithm of the hopping probability t as function of
disorder 8' for different correlations U. The cutoff energy is
E, =6t.

We take the mean value in the ground state as given by
our program. This correlation function is the averaged
probability of hopping from one site to the neighboring
site of a single particle. We assume that the conductivity
will follow the same trends as this hopping probability.

In Fig. 1 we show the behavior of the logarithm of the
absolute value of t as a function of disorder for different
values of the correlation U. We observe "quasilinear" de-
crease with disorder for the purely disordered sample (10
sites) (U=O) and for negative correlation U.

For positive, rather large correlation, nonmonotonic
behavior is observed, namely, an initial increase in the
hopping probability with increasing disorder is observed.
Figure 1 agrees qualitatively very well with the results of
Refs. 15 and 16, where an initial increase with increasing
disorder is also observed for the conductivity. In Fig. 2
we show similar results for the different value of the
cutoff energy.

The explanation for the increase of conductivity with
disorder was given in Ref. 15. It is due to competition
between interaction and disorder. For large U and small
8' the system occupies an ordered Mott insulating state
(single-site occupation). Increasing disorder destroys the
correlated state as the random potential tends to build up
a pair, which leads to better conductivity. For large 8'
the decreasing localization length leads to a decreasing
conductivity again.

We estimate that the turning point for competition of
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FIG. 2. As in Fig. 1 with the cutoff energy E, =20t.

disorder and correlation is roughly U =28'. Initially, at
low disorder correlation splits the density of states in two
parts, each with width 8'. Therefore with increasing dis-
order, there are more states available for conduction. At
the turning point, the two bands merge and further disor-
der localizes the states and the hopping probability de-
creases. The turning point is, roughly speaking, the max-
imum of the curve.

In Refs. 15 and 16 conductivity was calculated from
linear-response theory. What we present in Fig. 1 is the
logarithm of the average hopping probability for one par-
ticle jumping from one site to another.

It appears from both calculations that this is a good
comparison to make. Therefore the conductivity is pro-
portional to the logarithm of the single-particle jumping
probability (at least for not too low values) of this last
magnitude. This is an interesting point and we think it is
the most important point of this paper. We do not have
any analytic derivation of this relation.

In relation to error treatment we have not made sam-
ple averages due to the time-consuming calculation. We
have used only one seed for the random-number genera-
tor, which means that we have followed only the same
sample. Another factor that sets the numerical value is
the precision in the determination of the ground-state en-
ergy. There also, one must compromise in order to have
reasonable bounds on computational times.

Also, since with disorder the number of states needed
to determine the eigenvalue grows enormously, we have
decided to keep states up to a certain energy (here E =6t
in Fig. 1, E =20t in Fig. 2).

In conclusion, we have performed the numerical calcu-
lation using the modified Lanczos algorithm of the
single-particle average hopping probability for a chain of
10 sites (half-filled) with interaction and disorder. Very
good qualitative agreement is obtained with the results of
the Monte Carlo simulation (Refs. 15 and 16) for the
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linear-response-derived conductivity if it is compared
with the logarithm of our hopping probability. Both
show decreasing behavior with the disordered 8' and an
initial increase for the rather large positive U. We think
that this numerical evidence for the conductivity being
related to the logarithm of the hopping probability is an
interesting point and it should be a subject of further

research. The half-filled case is the most interesting to
study as a function of disorder. As the author of Ref. 15
shows, the conductivity simply decreases with disorder
out of half filling.
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