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Distance-dependent Hiickel-type model for the study of sodium clusters
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A distance-dependent extension of the Huckel model is proposed and applied to sodium clusters. It
consists primarily of a two-band monoelectronic formulation expressed in an s+p basis set. The s +p
Hamiltonian is reduced into an s-only Hamiltonian by means of quasidegenerate perturbation theory,
with the p band treated perturbatively. The parametrization is taken from accurate calculations of Na2
and Na&. This formulation allows a very quick determination of the potential-energy surfaces, and the
use of the Monte Carlo simulated-annealing technique for determining the stable isomers of clusters.
For the smallest clusters (Na3-Na8), the model provides stabilities and geometries in very good agree-
ment with previous studies involving more sophisticated calculations (ab initio configuration-interaction
or density-functional theory). Optimization results without constraint are also presented for clusters in

the range Na9-Na». Larger clusters in the range Na» —Na&6i are examined with restricted symmetry
constraints (icosahedra, cuboctahedra, and cubic clusters). Beyond n =147, the cuboctahedral structure
is preferred.

I. INTRODUCTION

As prototype candidates for studying transition from
the atom to the metal, alkali-metal clusters have in recent
years attracted increasing interest. Unfortunately, due to
their metallic nature, which is related to the delocalized
character of the wave function, their stability and geome-
trical properties cannot be studied using oversimplified
energy functions such as two- or three-body potentials or
even diatom-in-molecules schemes. ' Among various
treatments, one finds the jellium mode1 or shell mod-
el, ' ab initio calculations based on configuration in-
teraction (CI)," ' or on density-functional theory, '

with or without the use of effective core pseudopotentials,
and recently the topological Hiickel model, ' which
was shown to yield results in fair agreement with more
accurate calculations.

The spherical jellium model was successful in predict-
ing the stabilities of alkali-metal clusters, assuming al-
most complete screening of the nuclei and providing a
cluster orbital picture which corresponds to a kind of su-
peratom one, yielding spherical symmetries and rules for
shell closing which explains the magic numbers.
Spheroidal or ellipsoidal extensions ' of the jellium
model were derived in order to study deviations from
sphericity and were used to provide general shapes of
clusters as oblate or prolate ellipsoids, showing also that
within the jellium model, special stability at shell closing
is associated with vanishing distortion from sphericity.
However, the je11ium model may present artifacts such as
the metastable character of some clusters ' with respect
to dissociation. The agreement with experiment in values
for the dissociation energies or ionization potentials falls
short of being quantitative. Moreover, since the nuclei
do not appear explicitly, a description of the dynamics of
fragmentation or clustering is apparently inaccessible to
such a model, as is the study of crystallization properties.

On the other hand, ab initio calculations" ' were
fairly successfu1 in determining the geometries and stabil-

ities of neutral and ionized alkali-metal clusters, as well
as other properties such as ionization potentials and frag-
mentation energetics, in general good agreement with ex-
perimental results obtained in beams. The reliability of
such ab initio calculations was also recently confirmed by
the study of excited states. Reliable ab initio
quantum-chemistry-type calculations require a substan-
tial computationa1 effort. The geometry optimization is
particularly tedious since the potential-energy surfaces
are rather flat and numerous isomers are in competition
and often occur in near degeneracy. Gradient procedures
have generally been applied only under the self-consistent
field (SCF) approximation, and CI optimization is gen-
erally not exhaustive (optimization of a scaling factor for
the SCF best structures). " ' Thus only relatively small
clusters have been studied and optimization is only par-
tial or not fully reliable for n & 10. From another point
of view, it is uncertain that properties observed in super-
sonic beams are directly and exclusively related to the
description of geometrically static clusters. Besides, the
use of ab initio CI potential-energy surfaces (PES) in
molecular dynamics or Monte Carlo simulation carries a
prohibitive computational cost. A similar situation pre-
vails for dynamic studies concerning fragmentation or
clustering, except perhaps for three- or four-atom clus-
ters.

An alternative ab initio solution was provided by the
density-functional approach' ( DFT), which obtained
results in general agreexnent with CI calculations, espe-
cially in the case of sodium clusters, yielding smaller in-
teratomic distances, and probably overestimates of bind-
ing energies. Due to its e%ciency, the DFT energy may
be coupled to molecular-dynaxnics approaches such as
the Car-Parinello method which was extensively used on
metal and semiconductor clusters. However, few at-
tempts have been done to date to use this method for the
studying of fragmentation and clustering. Although
much quicker than GI, DFT requires the computation of
matrix elements in a given basis set, and the solution of a
SCF problem which is replaced by a coupled-equation
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problem in the Car-Parinello formulation.
Quite recently, some authors provided results using the

simplest possible quantum-mechanical model, i.e., the
Huckel topological model, ' the orbitals of which are
expanded on s atomic orbitals only. The search of the
best structures consists in sorting a finite number of
discrete topological structures. The results were found to
be in surprising agreement with more sophisticated calcu-
lations. Although dealing with discrete topological struc-
tures, the sorting may turn to be difficult beyond ten
atoms, since the exploration of discrete topological struc-
tures cannot be exhaustive, and the effort to calculate op-
timal graphs quickly becomes burdensome. The success
of this latter model may appear paradoxical, since the
only physics involved in it is delocalization (through the
transfer integral t) without any explicit account of corre-
lation, whereas ab initio calculations show that large basis
sets and extensive CI's are required in order to obtain re-
liable results; in other words, correlation effects are
strong and cannot be neglected. This paradox was
resolved in a recent work ' expressed in a valence-bond
formulation where it was shown that the role of large
basis sets in alkali-metal clusters was essentially to corre-
late and lower the ionic valence-bond forms, increasing
thus the r IU ratio of the Hubbard model, thus bringing
those systems closer to the weakly correlated case (hy-
pothesis of tight-binding models in solid-state physics).
Although providing a very quick quantum-mechanical
calculation of the energy, the topological Huckel model
has two drawbacks.

(i) It provides only topologies and cannot be used for
studying dynamical properties.

(ii) p orbitals are not considered in the model, while
they were shown to play some role even in small clus-
ters. "

The scope of the present paper is to propose a
distance-dependent formulation of a Huckel-type model
which allows for the obtention and optimization of real
geometries, thus providing an efficient and realistic way
to describe the potential-energy surfaces of alkali-metal
clusters. Such a model is combined with gradient or
Monte Carlo search for the optimal geometries of sodium
clusters which are investigated in the range n =2—14 and
compared with other results when available. The model,
which takes into account p orbitals in an effective way is
introduced in Sec. II. Section III provides the results for
n =2—9 and presents a systematic comparison with other
existing data. Results in the range n =10—14, for which
very few ab initio type calculations have been published,
are also given in Sec. III, as well as partial results con-
cerning small clusters with n ~ 15. Section IV examines
the stability and fragmentation properties that can be de-
duced from the present work. Finally, larger clusters of a
few hundred atoms are investigated in Sec. V, and extra-
polation to the bulk is considered.

II. MODEL AND GEOMETRY OPTIMIZATION
TECHNIQUES

The traditional extended Hiickel theory is expressed
in a nonorthogonal basis set of atomic functions, and the
geometry dependence is introduced through the overlap

integrals. In the present work, the supposed basis set will
be implicitly defined as composed of orthogonalized
atomic functions. Alternatively to the previously men-
tioned topological Huckel model, ' we begin by consider-
ing a one-electron Hamiltonian for sodium clusters which
is expressed in a space-fixed basis composed of one s,.

shell and one p; shell [including three p functions

((p/'J, p=x,y, z) per atom i] Thus in this formulation,
the dimension of the matrix to be diagonalized is 4n, n

being the size of the cluster. The matrix elements are
defined as follows.

(i) The diagonal elements h;; are sums of two-body or-
bital repulsions pa~

atoms

a'Y&Isp p p l

the two-body terms p;.~, which are functions of the in-
teratomic distances, also depend on the nature and the
orientations of the orbitals a and y on both sites (for p
orbitals). The scope of those diagonal terms is to intro-
duce an interatomic repulsion, which is generally lacking
or poorly represented in the ordinary and extended
Huckel model.

(ii) The off-diagonal elements are assumed to follow the
usual overlap scheme and the one-center h;;r (any) ele-
ments are supposed to be zero. The two-center integrals
h; r (i %j ), also considered hereafter as functions of the
distances, are taken as distance-dependent transfer in-
tegrals t; ~ as defined in the Huckel model.

We now introduce a simplification of the above 4n X4n
model, by projecting the problem into the basis set of s-
only orbitals treating the p orbitals by means of
quasidegenerate-perturbation theory (QDPT) and the
theory of effective Hamiltonians. In the s-only basis set,
the matrix elements h

' perturbed up to the second order,
can then be expressed as

atoms (h )
h;* =h; + g g, , aE [p„,p,p, ),

kA l a ~Ei
atoms Q sag as

hss hss+ y y '" J

k~i, a EEik
kWj

Moreover, in h, the s-p repulsion integrals p', ~ are
neglected, with only the isotropic p", repulsions retained
and AE,"k is approximated as the asymptotic transition
AE, -=0.0773 a.u. for sodium. This means that the s
basis set is assumed to account for the main physical
effects in alkali-metal clusters (in line with the relative
success of the topological Hiickel model) and is chosen as
the model space of the QDPT theory. Nevertheless, p
orbitals, though not treated variationally, are introduced
via perturbation terms. In particular, the direct interac-
tions between the two bands are explicitly considered in
the perturbation, with the interband separation hE, kept
constant. Thus, the repulsion in the s band is lowered
due to mixing with the p band, yielding an effective diag-
onal term h,.',.

' in the Hamiltonian. The intersite transfer
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h,-" integral is also modified due to interactions with p or-
bitals located on neighboring sites. An interesting prop-
erty of this perturbative formulation, especially for the
off-diagonal terms, is that it introduces explicitly three-
body interactions in the h,'J effective transfer integrals,
beyond the two-body terms defining the transfer in the s
band. Those three-body transfer terms are, in general,
smaller than two-body transfer terms. However, they
may happen to be the only nonvanishing terms when two
centers i and j are widely separated but connected via a
third center k lying close enough to both of them. Thus
those three-body terms are likely to introduce some
long-range interactions in the Hamiltonian.

From a practical point of view, there are two advan-
tages in the final formulation. First, it reduces the size of
the matrix to be diagonalized, which is now equal to the
number of atoms. Second, it reduces the number of in-

tegrals to be parametrized in the model, since only the s-s
integrals p', and t,'. and the s-p integrals t,'. are kept.

The total energy is computed as a sum of eigenvalues
corresponding to one-electron eigenfunctions.

k Eocc

The integrals p' and t ' are isotropic, while the integrals
t,'. depend on the nature of the u space-fixed p-type func-
tion and its orientation with respect to the internuclear
axis ij. In order to provide a simple trigonometric for-
mulation, u is decomposed into two terms, respectively,
parallel and perpendicular to the internuclear axis:

t J
= &s; fh fpj &

= &s; fh fp~ &+ &s; Ih fp~ &

If we again follow the usual overlap scheme for the can-
cellation of matrix elements, we are left only with the first
term which reads

where t,.'. is the transfer integral between the orbital s,.

and a p orbital along the local axis ij. 0," is the angle
between the local axis ij and the axis defining the space-
fixed initia1 orbital pJ .

In order to determine the three integrals p', t ', and

t,', a least-squares fit was achieved in order to reproduce
at any distance the potential-energy curve of the X'X+
ground state and the X„+ first excited state determined
by Jeung (R, =5.8ao, and D, =0.74 eV, in agreement
with experiment ), as well as the dissociation energy
(0.41 eV into Naz+Naz) of the optimized 'A rhombus,
which is the most stable structure of Na4 taken from the
recent work of Bonacic-Koutecky, Fantucci, and
Koutecky, imposing moreover a relation between t,'.

and t,.'. following the usual overlap scheme,

t $$ SSS
IJ /J

S'.
1J LJ

where S,"and S. are, respectively, the s-s and s-p over-
lap integrals. Na4 is the first cluster exhibiting some non-
vanishing s-p mixing allowing a significant influence of
the t,' integral. The p", t", and t' functions are listed

m
k k kl

k Eocc I m ~&@

the Bhi /Bq;„derivatives are readily obtained through
cubic spline coefficients interpolation of the integrals cor-

TABLE I. Values (in eV) of the t",p", and t' parameters as
functions of the internuclear distance.

4
5

5.5
6
6.5
7
7.5
8

9
12
15

t $$

—0.026 747
—0.340 642
—0.373 267
—0.367 417
—0.336 724
—0.292 317
—0.242 631
—0.193626
—0.111534
—0.013 659

0.0

p

0.183 205
0.048 189
0.024 679
0.012 217
0.005 768
0.002 558
0.000 299
0.000 101
0.000082
0.0
0.0

tso

0.005 932
0.164076
0.186 633
0.215 204
0.215 394
0.203 204
0.182 579
0.157 192
0.104 541
0.018 884
0.0

in Table I. Finally, the algorithm uses a point grid of in-
tegrals values interpolated through cubic spline functions
at any required distance, which is more efficient than
computing exponential-type analytical expressions.

The present method is in the spirit of the tight-binding
(TB) formulation by Chadi and co-workers in which a
semiempirical distance dependence was added to the
tight-binding term in order to parametrize the ion-ion in-
teraction energy. The parametrization of Chadi has been
widely used in the study of silicon solids or surfaces and
also in the case of silicon clusters, eventually including
a Hubbard-type term to penalize two-electron on-site
repulsion. Recently, more sophisticated extensions of the
TB model were proposed in order to introduce electro-
static terms. One may quote the tight-binding bond
(TBB) model of Sutton et al. ,

' and also the self-
consistent tight-binding (SCTB) method proposed by Ma-
jeski and Vogl and developed by Kohyama et al. The
primary contribution of the present method is the devel-
opment of a perturbative treatment for the 3p shell,
which accounts for the hybridization effects in cases
where p orbitals are not occupied in the atoms. This per-
turbative treatment still provides a rather efficient algo-
rithm and can be used in wide-range optimization and
simulation requiring numerous calculations of the energy
function. The parametrization of the matrix elements re-
lies on ab initio results for the smaller clusters and not on
semiempirical formulas.

In order to find the optimized geometry of clusters,
two procedures are used hereafter. The first one is gra-
dient optimization without symmetry constraints in the
framework of the Hellmann-Feynman theorem. We have
moreover neglected the derivatives of the t' integrals,
which are only involved in the perturbation. The energy
gradient with respect to the coordinates q,.„can be ex-
pressed

BE BE,k Bh

~&A k Eace ~&@ k Eocc B~;p
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responding to the matrix elements.
The second technique is the Monte Carlo simulated-

annealing procedure which, in principle, provides a
nonlocal (global) optimization algorithm when the initial
temperature is high, but which can also be used as a local
algorithm when the initial temperature is low. Both gra-
dient and low-energy simulated annealing can be used
simultaneously as mutual checks for real minima.

For Monte Carlo optimization, the Metropolis algo-
rithm is used and the conditions of the simulated anneal-
ing process are the following.

(i) Start the T=600 K with a given arbitrary initial
geometry (the melting temperature of solid sodium being
371 K).

(ii) Imposing a linear cooling rate of —33 K/step.
(iii) For each cooling step, the number of random

con5gurations is proportional to the number of atoms
with a factor of 250.

(iv) With regard to moves in configurations space
I q;„J, the coordinate q;„ is taken to be random while its
variation is kept constant at 5q;„=0.25 bohr for T~ 1.5
K, and at 5q;„=0.01 bohr for T + I.5 K. The sign of the
displacement is also random.

(v) The process is assumed to converge when at some
temperature step no further displacement is validated by
the Monte Carlo process. In the case of local optimiza-
tion, the initial temperature is chosen to be & 10 K.

C Q
Na Q ( p. 72)

Na C (-1.07)
5.95

Na C ( 1.06)

6.02

4 2h a4 C2v (-1.79)

5.95

Na C (-2.39) (-2.27)

Na6 0 (-3 3p)

Na D (-3.25)

Na p ( 3 13)6 2v

FIG. 1. Geometries and total energies (in eV) of Na2 —Nat;
clusters.

III. RESULTS AND DISCUSSIONS
FOR CLUSTERS n =2-14

The equilibrium constants for the dimer yielded by the
present model are R, =5.9ao and D, =0.72 eV, differing
only slightly from the initial inputs. This difference is
due to deviations in the least-squares fit. In dealing with
cluster energetics, it is important to give a fairly correct
description of the dimer. Indeed, it was shown theoreti-
cally ' for neutrals and ions and experimentally in the
case of ions that unimolecular dissociation of alkali-metal
clusters is governed by only two dominant dissociation
channels, respectively, the evaporation of a monomer and
the evaporation of a dimer. Thus, the determination of
the lowest dissociation channel requires some accuracy
and consistency for the dimer dissociation energy. This
is not always true in ab initio CI calculations for clusters
which are generally performed in rather small basis sets,
thus underestimating the dimer stability, in particular,
nor in DFT calculations that alternatively tend to overes-
timate this stability.

MCSA (Monte Carlo simulated annealing) was used in
order to determine the most stable structures of clusters
from Na3 to Na9, which are depicted in Fig. 1 (Naz —Na6)
and Fig. 2 (Na7 —Na9). Other isomers on the potential-
energy surfaces are also shown. Up to Na8, the most
stable structures are in agreement with the ab initio cal-
culations of Bonacic-Koutecky, Fantucci, and
Koutecky' (Na2 —Na9) and Spiegelmann and Pavolini'
(Na2 —Na6), including shape, spatial symmetry of the
states (excluding spin which is neglected here) and bonds.
It is interesting to note that contrary to results of the to-
pological Huckel model, the structure of the trimer is ob-

Na D5h { 3.92)
7 5b

Na C (-3.87)
7 3v

15 6.

Na T (-4.87) Nac(4
8 s

Na C (-5-47)
9 2v

Va C (-5.44)
9 s

FIG. 2. Geometries and total energies (in eV) of Na7 —Na9
clusters.

tained in the present model as an isosceles triangle with
an apex angle of 64', that is to say that the Jahn-Teller
distortion obtained, which is responsible for the deviation
from the equilateral triangle, is in the right direction, al-
though it is known that the energy differences between
the two isosceles shapes (8&60' and 8(60') are very
small in alkali-metal trirners. For the tetramer, the
sides of the rhombus are larger than the small diagonal,



1882 ROMUALD POTEAU AND FERNAND SPIEGELMANN 45

in agreement with the results of Bonacic-Koutecky, Fan-
tucci, and Koutecky' and of Martins, Car, and But-
tet' ' while all distances were found equal in the work of
Spiegelmann and Pavolini. ' Another structure with T
shape is found at higher energy. As concerns the penta-
mer ground state, which is planar, all bond distances are
found almost equal, in agreement with previous authors.
The triangular bipyramid is found as an isomer. For Na6,
the two isomers (C5„pyramid and D» bitriangle) are
found to be quasidegenerate, although the C5, structure
is the ground state. The distortion from planar shape is
however slightly accentuated with our model for the C„
pyramid. A third isomer (bicapped tetrahedron) is found
0.17 eV higher. As concerns the Na7 ground state (D5h
bipyramid}, its parameters are again consistent with the
work of Bonacic-Koutecky, Fantucci, and Koutecky'
and Martins, Car, and Buttet, ' ' with an axis length
larger than the pentagon sides. The two atoms on the
axis are nevertheless bonded, contrary to what was ob-
tained in the Huckel topological model. Two higher
structures are found for Na7, the first one being the tri-
capped tetrahedron, the second one being obtained by ro-
tating symmetrically two of the capped atoms around the
tetrahedron edges. The ground state of Nas is found to
be the Td fuliy capped tetrahedron, as in the work of
Bonacic-Koutecky, Fantucci, and Koutecky, whereas the
DFT calculations provided a structure with lower sym-
metry D, I, ."' Neither the D» structure nor the D4„
square antiprism are found to be minima on the potential
surface, and this is consistent with ab initio CI calcula-
tions. ' We obtain however a second minimum with C,
symmetry which lies 0.09 eV above the ground state. In
the case of Na9, two isomers are found very close in ener-

gy, namely, the singly capped octamer with C2, symme-

try (Nas plus one capping atom) and the doubly capped

pentagonal bipyramid (Na7 plus two capping atoms).
However, in the present work, the Cz, structure is slight-

ly lower, while Bonacic-Koutecky, Fantucci, and
Koutecky provide the C, geometry as the ground state.
One may remark that the same authors" ' find the C2,
structure to be the lowest for Li9.

The binding energies per atom (taking as zero energy
the energy of one atom)

e(n )=[nE(l) —E(n )]/n = E—(n )/n,
are reported in Table II for the ground-state structures
and compared to previous results. As concerns the small-
est clusters, accurate ab initio calculations in extensive
basis sets are available. Our binding energy for the tri-
mer (8.19 kcal} agree fairly well with values taken from
the recent ab initio calculation of Jeung, 7.94 kcal,
while an experimental value of 8.20 kcal can be deduced
from the work of Hilpert and the dissociation energy of
Na2 (0.74 eV). The binding energy of Na4 is, of course, in
close agreement with the ab initio result of Bonacic-
Koutecky, Fantucci, and Koutecky which was used as
input in the least-squares procedure. For larger clusters
with 5 n ~ 9, the only results available are CI calcula-
tions performed in smaller basis sets, ' the DFT calcula-
tions of Martins, Buttet, and Car, the very recent DFT
results of Rothlisberger and Andreoni using the Car-
Parinello method, and results provided by the topological
Hiickel model. ' It can be seen in Fig. 3 that up to
n =8, the binding energy per atom obtained in the
present model follows the trend obtained in ab initio cal-
culations and also in the topological Hiickel model. They
are very close to the results of the calculations of Spiegel-
mann and Pavolini' which only concern n ~ 6, and gen-
erally above the values of Bonacic-Koutecky, Fantucci,
and Koutecky' who used smaller basis sets and did not

TABLE II. Binding energies per atoms of Na„clusters (in kcal/mol). Density-functional theory,

Martin, Car, and Buttet (Refs. 18 and 19) [DFT(MCB)]; density-functional theory, Rothlisberger and

Andreom (Ref. 29) [DFT(RA)]; all electron CI, Bonacic-Koutecky, Fantucci, and Koutecky (Ref. 14)

(AE-CI); effective core potential CI, Bonacic-Koutecky, Fantucci, and Koutecky (Ref. 14) [ECP-C

(BFK)]; Spiegelmann and Pavolini (Ref. 16) [ECP-CI (SP)]; topological Huckel Model, Wang et al.

(Refs. 21 and 22) (HMO).

DFT(MCB) DFT(RA) AE-CI ECP-CI(BFK) ECP-CI(SP) HMO This work

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
19

10.34
9.88

14.02
14.71
16.78
18.85
19.77

19.77

9.65
9.27

12.36
13~ 10
15.32
16.29
17.61
16.98
17.65

6.25
5.90
8.82
9.53

10.87
11.00
12.00
10.75

6.25
5.80
7.96
8.3',

9.77
10.00
10.75

8.07
7.29

10.16
10.85
12.62

8.73
8.73

11.19
11.61
13.64
13.86
15.46
15.19
15.42
15.28
15.73
16.13
16.48

8.276
8.191

10.603
!0.988
12.636
12.873
14.000
13.977
14.453
14.437
14.816
15.023
15.323
15.456
15.758
16.043
16.439
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include the core-valence correlation effects. Both DFT
binding energies are systematically larger than other cal-
culated values, and also exhibit a quicker increase to-
wards the bulk value especially in the calculation of Mar-
tins, Buttet and Car. ' One may notice the odd-even al-
ternation in the stabilities for all calculations which was
however not present in the DFT result of Martins, But-
tet, and Car' for n & 6. If one assumes that magic num-
bers directly reQect the stability properties, according to
the prediction of the spherical jellium model, particular
stabilities are expected at shell closings 2 and 8, which
are actually obtained in the present model (as in some
other calculations), with drops for n =3 and 9. However,
in our results, the drop at n =9 is less pronounced than in
other calculations taking into account geometrical struc-
ture or in the spherical jellium model.

A further interesting property of the model is that not
only the best structures are obtained, but also higher iso-
mers are found at energies consistent with those obtained
in ab initio calculations. En particular in the trimer case,
the A, isosceles structure is very close to the B2 ground
state, in good agreement with most theoretical calcula-
tions which yield a very Sat surface along the pseudorota-
tion path. For Na4, the T-shape isomer is closer to the
ground state (0.058 eV} than in the work of Bonacic-
Koutecky, Fantucci, and Koutecky' (0.21 eV}.

In the pentamer case, the C2, bipyramid is 0.12 eV,

e(n) (kcal)
21.

20.

19.

above the trapezoidal ground state [0.22 eV in the AE
(where AE denotes all electron) work of Bonacic-
Koutecky, Fantucci, and Koutecky' ]. With regard to
the two lowest quasidegenerate hexamers, the difference
is found to be 0.046 eV, which can be compared to the
0.024-eV value of Spiegelmann and Pavolini' and the
0.040-eV value of Bonacic-Koutecky, Fantucci, and
Koutecky. ' One may thus infer that the present model
is not only able to reproduce the optimized ground-state
structures, but it also provides a rather fair representa-
tion of the potential-energy surfaces of small sodium clus-
ters.

It should be stressed that the small clusters geometries
determined in the present work are close to be homothet-
ic to those calculated by Spiegelmann and Pavolini, or
Bonacic-Koutecky, Fantucci, and Koutecky the bond
distances being generally smaller than those of the ab ini-
tio calculations.

In the range n = 10-19, the number of quasidegenerate
isomers increases, and although we have used the same
MCSA schedule, it cannot of course be ensured that all
the lowest minima have been found, especially for n ~ 15.
Apart from the results of the jellium model (in either ver-
sion, spherical, ' spheroidal, ' or ellipsoidal }, only very
few results are available in this range of sizes. Even in
the topological Huckel model, optimization for n 10
cannot be exhaustive because of the number of discrete
structures to be considered. One should quote in the
literature cases treated within the DFT formalism and
the symmetry-based crystal-field estimations of
Mingos ' for clusters corresponding to shell closings.

In the case of Na, o, three structures (Fig. 4} are very
close in energy. Two of them have C4„symmetry, name-

18.

17.

14.

13.
Na C (-6.29)

4v
Na 0 C& (-6.28) Na10 C2 ( 6 ' 25)

12.

10;

9-
Nail C2

C ( 6 8 7 )S

8

7.

6-.

5
2 10 12 14 16 18 20

number of atoms Na C (-7- 74)
S

Na C (-7.73)
2v

FIG. 3. Binding energies per atozn for small sodium clusters.
References and labeling are the same as in Table II.

FIG. 4. Geometries and total energies (in eV) of Na]p —Na&2
clusters.
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ly, a tetracapped square bipyramid (our actual ground
state} and a bicapped square antiprism which was also ob-
tained by Lindsay, Wang, and George. We obtain as
third structure the Cz„-bicapped octamer (it can be noted
that this geometry is found in the L1&0 case by Bonacic-
Koutecky, Fantucci, and Koutecky. "' The most stable
shape (Fig. 4) for Na&& is a fully capped trigonal prism as
in the work of Lindsay, Wang, and George. The
present structure is slightly distorted from D3& symmetry
due to the Jahn-Teller effect. An isomer is obtained at
higher energy and corresponds to a tetracapped pentago-
nal bipyramid. Its geometry can, however, be viewed as a
fully capped trigonal bipyramid, again distorted from
D 3h symmetry due to Jahn-Teller degeneracy. With re-
gard to Na, 2, two degenerate isomers (Fig. 4) are found;
both correspond to a double capping of the second iso-
mer of Na, o (i.e., the doubly capped square antiprism).
In one case, the capping takes place on two opposed
faces, while in the second case it takes place on two adja-
cent faces. Although this latter structure presents an ex-
tra bond, its energy is not significantly lowered.

The ground state of Na» has C& symmetry and is an
hexacapped pentagonal bipyramid (Fig. 5). Three higher
isomers were obtained for Na», none of them being an
icosahedron, which is Jahn-Teller forbidden. The lowest
isomer has C2, symmetry and can be understood as con-
sisting of three embedded pentagonal bipyramids. Two
other isomers are very close. One with C, symmetry
essentially consists of two embedded bipyramids with an
extra connecting atom, while the second one ( C2„) can be
obtained by capping with two atoms the second isomer of
Na». In the case of Na&4, the ground state has C, sym-

metry and is obtained by partially capping the faces of
the pentagonal bipyramid with seven atoms (three above,
four below). The second structure of Na, 4 has Cz„sym-
metry and is obtained by symmetrically capping the
second structure of Na, o with four atoms. A third struc-
ture higher by 0.15 eV is more symmetrical (Oz ) and cor-
responds to a piece of the bcc lattice. This isomer was
found by Fantucci and Koutecky in the case of Li,4.

'

Our investigation was less systematic beyond Na, 4.
Na» has C, symmetry and can be understood as an
icosahedron capped with two contiguous atoms. Na, 6
also has C, symmetry and consists of an icosahedron
capped by three contiguous atoms. Na&7 has C, symme-
try and consists of an icosahedron capped by a set of four
atoms. Na» has D5& symmetry and is found to be the
double icosahedron, also found in the case of Li» (see
Fig. 6}.' We note that Na&7 can be obtained from Na, 9
by removing two atoms. Moreover, it should be stressed
that the ground-state geometries found for Na9, Na, o,
and Na, 3 correspond to those found in the recent work of
Rothlisberger and Andreoni.

It is interesting to compare the shapes of the clusters
obtained in the present work taking into account the po-
sitions of the nuclei with those obtained in the recent
spheroidal ' or ellipsoidal versions of the jellium model.
Table III presents the ratios of the moments of inertia in
the range n =6—14 as compared with those of the ellip-
soidal jellium model (smaller clusters are planar). Of
course Na8, with Td symmetry although not really spher-
ical, has three equivalent axes. Clusters Na6 and Na7 are
oblate, while clusters Na9 —Na, z are prolate and Na» and
Na, 4 are again oblate. However, some discrepancies
occur, the ground state of Na, o is oblate in our calcula-
tion, whereas the first isomer is actually prolate. Also
sometimes, two axes are found equivalent in the jellium
model, while they di6'er in our work.

Na Cl (-8.50) C (-8.45)
13 '2v

Na C, (-8.42)
13 2v

C (-8.41')
13 1

Na C (-10.97}16 s

Na C (-9.33)
14 s

C, (-9.28
14 '2v 0 (-9.14)

14 h

Na C (-11.86)
S

FIG. 5. Geometries and total energies (in eV) of Na» and

Na, 4 clusters.
FIG. 6. Geometries and total energies (in eV) of Na», Na&6,

Na», and Na» clusters.
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TABLE III. Axial ratios of Na„clusters. The present results
are reported in the first row. The second one refers to the ellip-
soidal jellium results of Selby et al. (Ref. 7). 10 corresponds to
the second structure obtained for n =10, quasidegenerated with
the ground state.

fragmentation energy (eV)
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13
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0.89
0.809
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0.736
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1

1
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1.06
0.88
0.860
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0.917
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0.963
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FIG. 7. Fragmentation energies of small sodium clusters into
a monomer [h, (n )] and a dimer [hz(n ) ].

IV. STABILITY AND FRAGMENTATION PROPERTIES

For larger clusters in the range Na&0-Na» the binding
energy per atom is continuously increasing, with a less
accentuated slope than in the range Na2-Na9. The odd-
even alternation in the stabilities still exists but is
significantly smoothed with respect to the smaller clus-
ters.

We can use the present results in order to examine the
unimolecular fragmentation properties of sodium cluster
with respect to energy. It was shown for the smaller
alkali-metal clusters, that two channels are generally
predominant" ' ' in the unimolecular fragmentation
processes, namely the evaporation of a monomer

Na„~Na„&+ Na

and the evaporation of a dimer

Na„~Na„2+ Na2 .
The same predominant channels are relevant for the frag-
mentation of cationic clusters and have been observed ex-
perimentally. Figure 7 shows the fragmentation ener-
gies corresponding to the evaporation of a monomer and
a dimer, respectively, for n ~ 14,

b, ,(n ) = —E(n )+E(n —1)+E(1),
b2(n ) = E(n )+E(n——2)+E(2) .

These two quantities exhibit rather different behaviors.
While 6, shows a very clear odd-even alternation, which
reflects the odd-even alternation in the binding energies
per atom, 52 does not present any periodicity at all. This
results into a preference for even-numbered clusters to
evaporate a monomer, while fragmentation into a dimer
is the lowest fragmentation channel for odd-numbered

ones. The only exception is n =14. The dissociation en-
ergies (i.e., the fragmentation energies towards the lowest
channel) are given in Table IV and compared to the re-
sults of other authors. As expected for magic numbers,
Na2 and Nas show stronger dissociation energies than
their immediate neighbors. Those results are consistent
with other previous theoretical calculations performed
for the smallest clusters. "

V. LARGE CLUSTERS AND EXTRAPOLATION
TO THE BULK

We examine in this section calculations of larger clus-
ters involving up to a few hundredth of atoms, with
specific geometries, namely regular Mackay icosahedra
and regular cuboctahedra (pieces of fcc-like lattice) for
n =55, 147, 309, and 561 and also cubes (pieces of bcc-
like lattice for n =35, 91, 189, 341, and 559 correspond-
ing to clusters with 2X2X2, 3X3X3, 4X4X4, 5XSX5,
and 6X6X6 primitive cells. These shapes may not corre-
spond to the actual shapes of free clusters, however such
calculations are likely to provide some information with
regard to the convergency of cluster properties towards
those in the bulk situation. Moreover, in a recent publi-
cation, Martin, Buttet, and Car report observations
which might correspond to the completion of cuboc-
tahedral or icosahedral shells of atoms for large clusters
beyond n =1500 atoms, whereas stabilities of smaller
clusters are better characterized by the filling of electron-
ic shells. Thus, the examination of such structures may
be of interest, even although we do not consider in the
present work the range of interest (n ~ 1500) implied in
the work of Martin et al. For those structures, there is
only one independent geometrical parameter, that has
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TABLE IV. Dissociation energies of Na„clusters (De=Min [h,(n), 62(n)] in eV). density-
functional theory, Martin, Car, and Buttet (Refs. 18 and 19) [DFT(MCB)]; density-functional theory,
Rothlisberger and Andreoni (Ref. 29) [DFT (RA)]; all electron CI, Bonacic-Koutecky, Fantucci, and
Koutecky (Ref. 14) (AE-CI); effective core potential CI, Bonacic-Koutecky, Fantucci, and Koutecky
[ECP-CI (BFK)];Spiegelmann and Pavolini (Ref. 16) [ECP-CI (SP)]; topological Hiickel model, Wang
et al. (Refs. 21 and 22) (HMO). The asterisk denotes fragmentation into a dimer.

Other
n DFT (MCB) DFT(RA) AE-CI ECP-CI (BFK) ECP-CI (SP) HMO This work authors

2
3
4
5

6
7
8

9
10
11
12
13
14

0.90
0.39
0.64*
0.76

1.36
1.14

0.47*
0.70
1.00
0.97
1.17
0.52
0.73*

0.54
0.23
0.45*
0.54
0.76*
0.51
0.79*
0.03

0.54
0.21
0.30*
0.42
0.62*
0.49
0.65*

0.70
0.25
0.36*
0.59
0.83

0.76
0.00
0.43*
0.58
0.85
0.66
1.06*
0.57
0.57*
0.60
0.74*
0.91
0.91

0.720
0.349
0.405'
0.545
0.733*
0.622
0.853*
0.621
0.696*
0.621
0.727*
0.762
0.836

0.74'
0 330
0.408'

'Verma et al. (Ref. 37).
Deduced from the experimental work of Hilpert (Ref. 55).

'Bonacic-Koutecky, Fantucci, and Koutecky (Ref. 25).

been optimized (it corresponds to the expansion of the
cluster).

It can be seen in Fig. 8 that icosahedral and cuboc-
tahedral structures are more stable than cubic structures,
which can be understood as minimizing the number of
surface atoms with respect to the number of atoms in the
volume. For n =55, the icosahedron is more stable than
the cuboctahedron. However an inversion occurs, both
structures are almost degenerate at n =147 and cuboc-
tahedra happen to be more stable for n =309 and 561.
Results obtained with DFT formalism for cuboctahedra
n =55 and 147 are also illustrated in Fig. 8. In analogy
with what was obtained for the smaller clusters the DFT
binding energies are larger than ours.

At very low temperature, sodium bulk is characterized
by the fcc lattice, whereas at room temperature, the bcc
lattice is more stable with a binding energy of 1.13 eV. It
is seen that even for n =559 or 561, the bulk value is not
yet reached. This is not surprising since surface atoms
still represent a large proportion of the total number of
atoms. In order to get a reasonable estimation of the
bulk energy corresponding to the present calculations,
the total binding energy was separated into di6'erent con-
tributions, namely

ne =n, e„+n,e, .

e, and e, represent, respectively, the binding energies of
volume and surface atoms. e„may be considered as close
to the bulk energy, while e, is the energy required to re-
move a surface atom. For icosahedra and cuboctahedra,
the values e, and e, are determined from n =309 and 561,
whereas for cubic structures, they are determined from
n =341 and 559 (see Table V). The fcc structure, in line
with the extrapolation of cuboctahedral clusters, is found
to be the most stable with a binding energy per atom

(1.06 eV) very close to the experimental value whereas the
extrapolation of icosahedral clusters yields 1.04 eV and
the extrapolation of bcc-like cubic clusters is 1.05 eV.
The extrapolated energies for surface atoms are 0.77 and
0.69 eV, respectively, smaller than the 0.89-eV value gen-
erally admitted.

VI. CONCLUSION

%e have developed in the present paper a distance-
dependent extension of the Huckel model, on the basis of

e(n) (eV)
Qc

1.00

0.90

0.85

0.80

0.75

0.70
0 100 200

cuboctahedral structures (DFT)

300 400 500 600

number of atoms

FIG. 8. Cohesive energies {e,) of large sodium clusters. The
bulk value is 1.13 eV. Comparison is made with the DFT re-
sults of Martins (Ref. 20) for cuboctahedral clusters n =55 and
147. (Values are taken from the picture of Ref. 20.)
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TABLE V. Binding energy per atom (in eV) for large Na„
clusters.

Cube Icosahedra Cuboctahedra

35
55
91

147
189
309
341
559
561

0.735

0.812

0.857

0.886
0.909

0.818

0.871

0.900

0.920

0.810

0.872

0.907

0.929

an effective Hamiltonian including the effects ofp orbitals
in a perturbative way. This model allows for a quick
determination of the PES. The use of Monte-Carlo simu-
lated annealing together with this model potential-energy
function yields for n =3—9 geometrical shapes of sodium
clusters which are completely similar to CI ab initio cal-
culations following gradient SCF optimization. Binding
energies have been shown to present a correct depen-
dence as well for small clusters (n & 20) as for larger clus-
ters with a few hundredths of atoms, and extrapolation to
the bulk also seems to be consistent, at least from an en-

ergetic point of view. For small clusters in the range
n =10—19, some relevant structures are proposed also
obtained from Monte Carlo simulated annealing. Our re-
sults are fully consistent with the very recent work of
Rothlisberger and Andreoni obtained with the DFT
formalism and the Parinello-Car method. From the
present results, it does not seem that any unique con-
struction rule governs the genealogy and growth of
alkali-metal clusters in the range n=1-14. However,

some small clusters appear as cores, or pieces of larger
ones. A frequent constituent occurs to be the pentagonal
bipyramid (Na7). However, some other cores can also be
identified, such as the fully capped tetrahedron (Nas). As
a characteristic example, both substructures can be
identified in the Na9 ground state. As other substruc-
tures, one can mention the bicapped square antiprism
(the second structure of Na, o) which appears in Na, 2 and
one of the Na, 4 isomers. With regard to clusters beyond
Na&4, it is interesting to observe that Na, 5, Na&6, and
Na&7 are pieces of the Na&9 double icosahedron. The ex-
tensive and systematic research of all lowest isomers in
the range Na»-Na2& is in progress, and may allow a
better understanding of the rules concerning the growth
of clusters for n + 15. However, the number of possible
degenerate isomers with a rather low energy becomes
crucially increasing, and it is very likely that thermo-
dynamical or molecular-dynamics simulations should be
more adequate for determining observed properties than
the obtention of a few unique structures, depending of the
experimental conditions obtained in experiments. Such
treatments are feasible, at least for small clusters with the
present model. In principle, the study of association and
fragmentation processes from a dynamical point of view
can also be undertaken, provided that a modification of
the orbital filling rule and electrostatic corrections should
be made in order to ensure correct dissociation for atoms
with unpaired electrons. Such work is in progress.
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