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The chemisorption of oxygen on the Ru(001) surface shows ordered p(2X2) and p(1X2) phases at
coverages of 4 and

2 monolayer, respectively, that are observed to undergo apparently continuous tran-

sitions to a disordered state upon heating. We present here details of the experimental determination of
the 0/Ru phase diagram, lattice-gas models that describe it, and some (but not all) of the observed criti-
cal behavior. Monte Carlo simulations based on a phenomenological Hamiltonian describing pairwise

interactions between adatoms are used to calculate the phase boundaries and (effectiv) eritieal ex-

ponents. Restricting adsorption of oxygen atoms to the triangular lattice of the hcp-type hollow sites as
seen experimentally, repulsive first- and second-nearest-neighbor interactions are sufficient to describe
the observed phase diagram at coverages 8&0.4 and the four-state Pott's-class critical exponents at
8=—,but fail to describe the higher coverage region. This model is then generalized to allow oxygen

adsorption on both hcp- and fcc-type hollow sites, with a difference in binding energy of 0.52 eV between

the two types of sites. At higher coverages, repulsive interactions within the adsorbate lead to a spillover
of up to 12% of adatoms onto the sites of higher energy, markedly reducing the transition temperature
at 8= —,, in agreement with the experimental results on 0/Ru(001). However, effective critical ex-

ponents computed for this model are near four-state Pott's values at 8= —,', in contrast to the experimen-

tal data and suggestive of crossover behavior involving (2 X 2)-honeycomb and p (2 X 1) ground states.

I. INTRODUCTION

Structural phase transitions at surfaces have received
considerable study over the past decade. ' Order-disorder
phenomena in chemisorbed, submonolayer systems have
provided unique realizations of two-dimensional (2D)
critical behavior, and are amenable to interpretation in
terms of lattice-gas models. In such models, effective in-
teratomic interactions, both within the adsorbate and be-
tween the adsorbate and underlying substrate, provide an
at least phenomenological explanation for the observed
phase diagrams. (Microscopic calculations, based on the
embedded-atom method, have also been used to derive
these parameters, particularly for hydrogen adsorption. )

Using low-energy-electron-diffraction (LEED) methods,
scaling behavior at continuous, structural transitions at
surfaces has also been observed for a variety of systems.
In this paper, order-disorder transitions in the submono-
layer adsorption of oxygen on the ruthenium(001) surface
are studied. The phase diagram and critical exponents,
as measured by LEED (Refs. 5—7), are discussed using
the lattice-gas models ' presented here, which also un-
derline the differences between the ordering of atomic ox-
ygen on the Ru(001) and Ni(111) surfaces. "

The structure of the 0/Ru(001) system has been previ-

ously investigated using a variety of surface tech-
niques. ' ' The adsorption of oxygen is dissociative on
this surface at and above room temperature, ' with the
binding energy of the adsorbed oxygen atom determined
from thermal desorption measurements to be about 6.3
eV at a coverage of —,', decreasing by about 1 eV at a satu-
ration coverage of —,'. ' (The coverage is defined as the
number of adatoms per surface ruthenium atom. ) The
only LEED superstructure seen is (2 X 2), with maximum
intensity observed at coverages of —,

' and —,'. ' The
identification of the saturation coverage with —, is sup-
ported by high-resolution electron-energy-loss measure-
ments' and LEED observations on a stepped Ru(001)
surface, ' which suggest three domains of a p (2 X 1)
structure at this coverage. This coverage assignment is
also consistent with a room-temperature comparison of
x-ray photoemission spectroscopy (XPS) 0 ls intensities
for a saturated oxygen layer with that of a
(&3X&3)830' ordered CO structure on the same sur-
face. Furthermore, recent LEED I-V analyses' ' of the
ordered structures confirm p(2 X 1) ordering at satura-
tion coverage of —,', and a p(2X2) structure at coverage
8=4. At the lower coverage, oxygen adsorption is
determined to occur at hcp-type threefold hollow sites on
the Ru(001) surface, which is slightly reconstructed. ' At
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saturation coverage, oxygen adsorbs close to the hcp-type
hollow sites, and the surface is again reconstructed, in-
volving a buckling of the first two substrate layers and a
pairing of ruthenium atoms parallel to the rows.

The measurement of the phase diagram of the
0/Ru(001) system, as described in Sec. II, shows peak
order-disorder transition temperatures of 754 and 555 K,
occurring at coverages 6=

4 and —,', respectively. Critical
exponents have also been measured for the apparently
continuous transitions occurring at these two coverages,
from LEED spot profile and intensity measurements
made as a function of temperature, as previously de-
scribed. ' The p(2X2) structure at 8=—,

' disorders with
observed critical exponents of the four-state Pott's
universality class. This is in agreement with Landau
theory, ' although ignoring the second Landau rule. At
6=—,', an apparently continuous order-disorder transition
and effective critical exponents were also observed, al-
though Landau theory predicts a first-order transition
from the p(2X1) structure.

A structural study of the high-temperature, disordered
phase has been completed recently by Pfniir, Lindroos,
and Menzel, analyzing very-low-energy electron-
diffraction (VLEED) data using full dynamical LEED
calculations. They find oxygen adsorption restricted to
the hcp-type hollow site at coverages 6=

4 and —,
' in the

disordered phase as well. (The possibility of up to 20%
of oxygen atoms residing on the fcc hollow site cannot be
ruled out, however. ) This result suggests that the adsorp-
tion phenomena observed in the 0/Ru(001) system may
be realistically modeled using lattice-gas models. In See.
III we attempt to explain both the observed phase dia-
gram and critical phenomena in this way.

II. EXPERIMENTAL

The LEED measurements were carried out in an UHV
chamber at a base pressure of 2X10 " mbar, as de-
scribed recently. LEED spot intensities and profiles
were measured using a four-grid LEED system equipped
with a Faraday cup whose movement was computer con-
trolled. Measurements of the integrated spot intensities
were made with a Faraday cup aperature subtending 3.4'
in polar angle, while diffraction spot profiles and peak in-
tensities were measured using a smaller cup aperature
subtending 0.5', and the incident beam current was less
than 100 nA. The ruthenium crystal of 99.99% purity
was cut and polished within 0.2' of the (001) plane. By
liquid-nitrogen cooling and resistive heating through
mounting wires spot welded to the back of the sample,
temperature regulation to within 0.1K and programmed
temperature ramping was possible. The relative relation-
ship between coverage and dose was determined from 0
KLL Auger intensities measured by Maier, and an abso-
lute calibration made by taking the coverage to be exactly
—,
' at the dose which gave the lower-coverage maximum in

the order-disorder transition temperature.
To determine the order-disorder phase boundary, the

integrated LEED intensity of a —,'-order spot was mea-

sured as temperature was scanned, for fixed coverages.
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FIG. 1. Order-disorder phase boundary as determined by
LEED for the 0/Ru(001) system.

The phase-transition temperature was determined from
the inflection point in these scans, a procedure that is
physically justified by its correspondence with the heat-
capacity maximum. The phase boundary shown in Fig.
1 displays a sharp peak at 6=

4 and a lower peak at —,
'

coverage. Comparing measurements made ramping both
up and down at maximum speeds of 4 K/s, no hysteresis
or irreversibility could be detected, at temperatures above
about 300 K. At lower temperatures, slow, electron-
beam-induced degradation of the LEED spot intensity
prevented accurate measurements, although the apparent
damage disappeared on reheating. Measurements of the
peak spot intensity, made with the small-aperature Fara-
day cup, ' give transition temperatures in agreement
with those determined from the integrated intensities, to
within experimental error. Measurements of the
diffraction spot width showed that no observable
broadening occurred at accessible temperatures (i.e.,
above 300 K) and coverages within the ordered regions of
the phase diagram, indicating an apparent absence of is-
land formation (two-phase coexistence). The diffraction
spots only broaden as the order-disorder transition
boundary is crossed. We thus observe a single-phase

p (2 X 2) structure near 8=—,
' which must undergo a tran-

sition to a single-phase p (2 X 1) structure at higher cover-
ages. Equivalent data was obtained measuring different
superstructure diffraction beams.

Note that the possible existence of a low-temperature
island phase below about 300 K cannot be ruled out by
our data. In fact, small clusters of oxygen atoms in the
p(2X2} structure were observed recently at room tem-
perature by a scanning tunnel microscope (STM} at cov-
erages around 0.1 by Giinther and Behm.

The phase diagram described above for the 0/Ru(001)
system shows important differences in comparison with
the 0/Ni(111) phase diagram measured by Park et al. "
While both systems show p(2X2) phases at coverages
near —,', and 0/Ni system develops a p(2X2} antiphase
domain phase and then a (&3X &3}R30' phase as cover-
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age is increased. The absence of these two structures in
the 0/Ru case is reAected in the effective Hamiltonian
used in Sec. III to describe the adatom ordering observed
here.

III. THEORETICAL

A. Models

We attempt to understand the interactions driving the
ordering of oxygen on the ruthenium(001) surface in
terms of lattice-gas models. Submonolayer ordering of
chemisorbed atoms has been frequently interpreted by us-
ing such models, with a phenomenological interaction
Hamiltonian describing interactions within the adsor-
bate. The oxygen-ruthenium system studied here should
be well described in a lattice-gas picture, because the
strong oxygen-ruthenium bonding localizes adsorption, at
least predominantly at sites of (nearly) hcp-hollow type.
This has been determined by LEED (I Vand VL-EED)
structural studies. ' ' ' Cluster calculations predict
that the adsorption bond will be weaker by 0.8 and 1.2 eV
on bridge and on-top sites respectively, suggesting an en-
ergy barrier to diffusion between hollow sites of approxi-
mately this size. The transition states in the thermal
diffusion process are thus insignificantly occupied, and
are therefore not observed experimentally.

In the first model considered, oxygen atoms are re-
stricted to a triangle lattice of hcp-type hollow sites, since
LEED structural studies do not detect a significant popu-
lation of another site type. Nevertheless, in a second
model, we allow atoms to occupy both the hcp and fcc
types of hollow sites, anticipating that a small spillover of
atoms onto fcc-type hollow sites could alter the phase di-
agram significantly. This gives a honeycomb lattice of
adsorption sites, with different binding energies for the
two types of sites. Since the many-body energy surface
describing the motion of oxgyen atoms at a Ru(001) sur-
face is not known, we will approximate it in terms of
effective, pairwise interactions within the adsorbate.

Restricting the atoms to the triangle lattice of hcp-type
hollow sites, the Hamiltonian is

H =E, g n, n +E2 g n;n~+E3 g n;nj,
&ij &1 &ij&2 &ij&3

including pairwise interaction energies E between the
mth neighbors (ij ),where m =1,2, 3 for first-, second-,
and third-nearest neighbors, as shown in Fig. 2.

In the second theoretical model considered, we allow
oxygen adsorption at both hcp- and fcc-type hollow sites
(0/Ni) by explicitly including a small difference in bind-
ing energy I' between these two sites. The phenomeno-
logical Hamiltonian

H=EO g n, n +E, g n-, n+E', g n;n.

+E2 g n, n+E2 g n;n +F. g'n;
&j& &j&,

(2)

includes pairwise interactions up to fifth neighbors on the
honeycomb lattice of hollow sites, as depicted in Fig. 2.

(a)

FIG. 2. Lattice-gas models. (a) The interaction energies be-
tween the first six nearest neighbors are shown. Numerical
values for the energies are given in the text. Filled and open cir-
cles represent the two types of hollow sites. (b) —(d) Ordered
ground states: p(2X2) at 0= —', p(2X1) and (2X2) honey-
comb at 0= 2, respectively.

Simultaneous occupation of nearest-neighbor hollow sites
on the honeycomb lattice, which are separated by only
1.6 A, is suppressed, effectively setting Eo= 00. The in-
teraction energies with second and fifth neighbors are la-
beled E, and E2, respectively, because they correspond to
first and second neighbors on a single triangle lattice; E,
and E2 have identical meaning in Eqs. (1) and (2). The
third and fourth neighbors on the honeycomb lattice in-
volve pairs of atoms on different site types, and have in-
teraction energies E& and E2, respectively. In the final
term in Eq. (2), the primed sum runs over all sites on the
triangular (sub)lattice of the less-favored adsorption site.
This type of Hamiltonian has been studied previously by
Roelofs et al. , applied to the 0/Ni(111) system.

The thermodynamics of these lattice-gas systems is cal-
culated numerically by standard (Metropolis) Monte Car-
lo methods. Simulations using Eq. (1) on the triangular
lattice were performed at constant coverage employing
single-particle hopping, i.e., Kawasaki-type kinetics,
while the hexagonal lattice simulations based on Eq. (2)
used Glauber-type kinetics in which the chemical poten-
tial is fixed, for computational reasons. (The chemical
potential is chosen to obtain the desired mean coverage. )
We use an order parameter g which is nonzero for either
p(2X2) or p(2X1) order, as employed previously by
Glosli and Plischke. The triangular lattice may be
decomposed into four triangular 2 X 2 sublattices.
Defining the population on the pth 2 X 2 sublattice by N
(p = 1,2, 3,4), the order parameter is

( y2 + y2 +y2 )
1 /21

&3N

where
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g, =N, +N2 N—
3

N—4,
$2=N, N—2+Ni N—~,

f3 Ni N2—N3—+N4

and N=N&+N2+N3+N4 is the total number of ad-
sorbed atoms present. Notice that itj is in fact propor-
tional to the intensity of a —,-order diffraction spot in the
Born approximation, provided one assumes in the 2 X 1

case that domains orient in the three symmetry directions
with equal probability. The diffraction intensities ob-
served experimentally at normal incidence are in fact
equal in all symmetry-related directions, supporting this
assumption.

A susceptibility g, derived from the fluctuations in the
order parameter as

(4)

peaks at the order-disorder transitions studied. To distin-
guish between 2X2 and 2X1 ordering, we calculate a
function I(' of the order parameter f, which is nonzero
only for 2 X 2 order, as

( q2y2P )
1/61

Finally, we also compute the internal energy E =(I)
and the heat capacity.

In the honeycomb lattice case, we use the same order
parameter f defined in Eq. (3), now calculated separately
for the triangular lattice of each site type. To check for

p (2X2)-honeycomb ordering on the honeycomb lattice,
an additional order parameter gH is defined as

4(N, N3+N3N', +N2N4+N4N2)' —I, (6)

g (N;+N )

where N~ is the population of the pth 2 X 2 sublattice on
the second (higher energy) threefold site type. It is noted
that the order parameters defined here do not go precise-
ly to zero as the order to disorder transition is crossed,
due to the finite size of the system. In all cases, we define
the transition temperature at a given coverage by the
inflection point in the calculated graph of order parame-
ter g versus temperature, as discussed further in Sec.
III B.

Simulations based on Eq. {1)used a triangle lattice of
size 96X96 sites, with cyclic boundary conditions, and
5000 to 200000 Monte Carlo steps (MCS} were run per
(T,e) point. The honeycomb lattice simulations em-
ployed a lattice of 77 X 77 sites with free boundary condi-
tions to determine the phase diagram and a maximum
lattice size of 153X153 in the simulations at 6=—,

' to
determine the critical exponents. The latter simulations
employed 100000 to 700000 MCS per data point. (The
finite-size scaling results were derived from simulations
on smaller lattices as well. }

B. Results and discussion
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FIG. 3. Phase diagrams for lattice-gas models. (i) Open cir-

cles, triangular lattice model including first- and second-

neighbor interactions E2=0.3E, ; (ii) crosses, as above but in-

cluding third-neighbor interaction E3= —0. 1E„.(iii) filled cir-

cles, honeycomb lattice-gas model, using interaction parameters
listed in the text.

Triangular lattice model

With oxygen adsorption restricted to the triangular lat-
tice of hcp hollow sites, ordering is governed by the
Hamiltonian in Eq. (I). Repulsive interactions between
first- and second-nearest neighbors (i.e., Ei,Ez )0) have
been shown previously to lead to p(2X2) and p(2X1)
phases near coverages of —,

' and —,', respectively. Further-
more, to suppress the formation of a (V3X v'3)R30 or-
dered phase at coverages near —,', the second-neighbor in-

teraction must be sufficiently strong. Ground-state argu-
ments require that E2/E, )0.2 to ensure this. In prac-
tice, we take Ej )0 and express all other energies in units
of E, . The magnitude of E, is later chosen to match the
overall temperature scale of the theory to that of the ex-
periment.

Setting E2 =0.3E, and E3 =0 in Eq. (I) and computing
the order parameter as a function of temperature and
coverage leads to the theoretical phase diagram shown in

Fig. 3. The ratio E2/E, was chosen so that the ratio of
the order-disorder transition temperatures at coverages
6=0.25 and 0.4 agrees roughly with that of the experi-
ment. Choosing E& =0.23 eV then fits the absolute tran-
sition temperatures to that of the experiment. While the
actual energies of interaction are not known for the
0/Ru system, energies of the magnitude proposed above
are indeed plausible, in view of the oxygen-ruthenium
binding energy of =6 eV. ' Notice that first- and
second-neighbor repulsive interactions are sufficient to
describe the experimental phase diagram in the coverage
region 0.2&6&0.4, but that discrepancies occur for
higher coverages. For values of E2/E, between 0.1 and

1, the ratio of transition temperatures for coverages 6=—,
'
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where t =(T—T, )/T, is the reduced temperature. The
transition temperature T, may be estimated by either the
peak in y(T), or the infiection point in either f(T) or
E ( T), all estimates agreeing to within an accuracy of
0.2%. We have also plotted histograms of the probability
distribution P(g) for g, and find a double-peaked distri-
bution in the finite-size rounded region near T, . (This
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FIG. 4. Order parameter (g) and susceptibility (y) calculat-
ed for the triangular lattice-gas model with first- and second-
nearest-neighbor repulsive interactions. Data at coverages of 4

and z' are shown by circles and squares, respectively. [By
definition, It saturates at I/&3 for perfect p(2X I) ordering at
e=-,'.j

and —,
' is found to be in the range

0.95 & TI&2/T, &4 & 1.06. ' This is in contrast to the
experimental ratio of 0.74. On the other hand, apparent-
ly continuous transitions are seen at all coverages, in
agreement with the experiment. In contrast, Landau
theory predicts a first-order transition at e=

—,
' for 2 X 1

ordering. ' The first-order transition may not be resolved
in the simulations due to the finite size of the lattices
used.

The effect of an attractive interaction between third
neighbors on the phase diagram is also shown in Fig. 3,
for the case E3=—0. 1E&. The 2X2 and 2X1 ordered
phases extend to higher temperatures, and a low-
temperature phase of 2X2 islands grows in at low cover-
ages 8& —,'. Although small p(2X2) islands have been
seen recently by STM work at room temperature, a
mixed phase was not seen in our LEED measurements
which were restricted to temperatures T & 300 K. The
surface kinetics becomes too slow to ensure full thermal
equilibriation at lower temperatures. We may estimate
an upper limit on the magnitude of a third-neighbor at-
tractive interaction, ~E3~ &0.2EI, so that the island
phase would be predicted to occur at temperatures lower
than those of the LEED experiments.

Further contact between model and experiment is
achieved by studying the critical behavior of the order-
disorder transitions at coverages 8=

4 and —,', although
restricting ourselves to model parameters E2 =0.3E& and
E3=0. The temperature dependences of the order pa-
rameter P, internal energy E, and susceptibility y (see
Figs. 4 and 5) are compared with the power-law scaling
forms

E -E(0)+2 ~ ~ t~
' for t ~&0,

and
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0.1

FIG. 5. Internal energy vs reduced temperature at coverages
of 4 and ~, shown by circles and squares, respectively (using T,
estimated by finite size scaling. ) Open (closed) symbols are for
T & T, (T(T, ) cases. Solid lines give exponent fits. Statistical
error bars are smaller than the symbol size for reduced tempera-
tures t ~ 0.01, but the relative error in E ( T)—E(0) increases to
25/o at t =0.002.

finite-size effect is present in spite of the continuous na-
ture of the transition, and also occurs at 8=—,'.) The tem-

perature at which the peaks in the P(P) distribution cor-
responding to ordered and disordered phases have equal
height coincides with the estimate of T, defined above, to
within the uncertainty imposed by the rounding of the
transition.

In Fig. 5 log-log plots of the internal energy versus re-
duced temperature show the extent to which scaling be-
havior is observed; the straight lines represent the ex-
ponent determinations. In Table I the temperature re-
gions over which scaling was observed are noted and the
effective exponents a, P, and y are listed. The exponents
a and y are determined from data at T & T, ; for T (T„
larger deviations from power-law behavior are observed
in Fig. 5, presumably due to corrections to scaling. The
exponents from these simulations agree with both the ex-
perimental results and with the known values for the
four-state Potts model universality class ' to within nu-
merical accuracy. The specific-heat exponent is some-
what less than the four-state Potts value of —'„as was the
case in previous simulations on similar models. While
we have thus far mimicked the experimental analysis for
reasons of comparison, the exponent determination for
the lattice-gas model is improved by using finite-size scal-
ing relations to extract an improved estimate for the
transition temperature T, of a (macroscopic) system.
'Effective" transition temperatures T, (L) obtained in

simulations at different system sizes (L =24, 48, and 96)
were fitted to T, (L) T, -L '~, giving T,—shifted by—0.35% from T, (L =96), with v=0.62+0.05; other ex-
ponents determined using this estimate of T, are listed in
Table I. These values for a and P are closer to the exact
values for the four-state Pott's model.

At a coverage 8=—,', the simulations of the p(2X 1)
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TABLE I. Effective critical exponents calculated for the triangular lattice model at coverage 6= 4.
The temperature range over which power-law behavior was observed depended somewhat on the ex-
ponent. The lower limit on reduced temperatures

~
t~ fitted was about 0.003-0.01, and the upper limit

on
~ ti was about 0.1 —0.2. Calculated a and y are for T) T, . ( T, is given in units of E, /k. ) Experimen-

tal data for the 0/Ru(001) system is also included (Ref. 6).

T,(L)

T,(96)=0.2763
T, =0.2754

Expt. 0/Ru(001)

0.50+0.08
0.59+0.03
0.60+0.04

0.094+0.02
0.082+0.02
0.085+0.01

1.14+0.06
1.19+0.1

1.08+0.07

order-to-disorder transition show approximate power-law
behavior leading to critical exponents that all differ
significantly from the experimentally observed values, as
seen in Table II. On the other hand, Fisher and Berker
have deduced the effective exponents a=1, P=O, y=1,
and v= —,

' for scaling behavior at a first-order transition in
two dimensions. Using the finite-system transition tem-
perature defined as discussed above, our simulation result
for y is close to unity, but the other exponents differ
significantly from the values given above. (Applying
finite-size scaling to improve the estimate of T, used in
the exponent determination reduces P slightly. ) These
discrepancies may be attributed to the numerical
difficulty in analyzing a weakly first transition using a
model system of finite size.

Although a detailed understanding of the critical be-
havior of this mode1 at coverage 8=—,

' is at present lack-

ing, it is nevertheless clear that the triangular lattice
model is inadequate to describe the 0/Ru(001) system at
coverages 6&0.4. In comparison with experiment, the
simulated transition based on Eq. (1) is too sharp, and
occurs at too high temperatures, at 8=—,'. We note in

passing that Glosli and Plischke found a distinctly first-
order transition for the 2X 1 structure at 6=—,', perform-
ing simulations on the same model Hamiltonian [Eq. (1)]
but with E2/E, =0.1. The dependence of this
nonuniversal behavior on the interaction parameter
E2/E, is not considered further here.

2. Honeycomb lattice model

In fitting the triangular lattice model to the 0/Ru
phase diagram, a nearest-neighbor repulsive interaction
E I

=0.23 eV was required. The binding-energy
difference F of an oxygen atom between hcp and fcc hol-
low sites could also be of this order of magnitude. The
honeycomb lattice model defined in Sec. III A explicitly

includes the occupation of both site types, as may be ex-
pected to occur in this situation to some degree. This
model reduces to the triangular lattice model in the limit
of sufficiently large difference F in binding energy, forcing
all the atoms back onto the lower energy sites. The or-
dered structure at coverage 8=—,

' is then p(2X1). On
the other hand, at low enough values of F, the 2X2-
honeycomb structure may form at 8=—,', instead of the
p(2X1); see Fig. 2(d). Two sets of interaction parame-
ters were considered, both giving p(2X2) ordering at
6=—,'. Taking E& =E& and E2=E2=0.3E& favors 2X1
ordering instead of the honeycomb structure at 8=—,', for
all values of F. The 2X1 structure forms on the favored
triangular sublattice. However, the phase diagram for
this model predicts order-disorder transition tempera-
tures of similar magnitudes at coverages —,

' and —,', in

disagreement with the experiment. This parameter set is
not considered further, as it does not appear to help in
understanding the oxygen-ruthenium system considered
here.

As a second parameter choice, we set E2=E', =0.3E,
and E2=0. The important difference here is the reduc-
tion of E', relative to E&, allowing the existence of a
2X2-honeycomb structure at sufficiently low values of F.
The ground-state energies of the 2X1 and honeycomb
structures are in this case degenerate at F = 1.7E, .
(Compared to the lattice gas models of Roelofs et al.
and Bartelt, Einstein, and Roelofs ' for the 0/Ni(111)
system, the lack of a (v 3XV3)R30' structure in the
0/Ru(001) data requires the much larger value of the
repulsive interaction Ez here. )

Occupation of the unfavored site type generally in-
creases as F decreases, although this effect is in fact
strongly coverage dependent. Simulations show that for
the parameters listed above, less than 0.5% of the ad-
sorbed atoms reside on the higher-energy site type, at
coverage 8=

—,', and the p (2 X 2) order-to-disorder transi-

TABLE II. Effective critical exponents at coverage 0= z, calculated for the triangular and honey-

comb lattice models. Values of T, are in units of E, /k. Experimental data also included from Ref. 7.

T,(L)

Triangular lattice
T, (96)=0.2733

T, =0.2724
0.54+0.05
0.64+0.03

0.079+0.02
0.063+0.006

0.97+0.04
1.06+0.06

Honeycomb lattice
T, =0.1729

Expt. 0/Ru(001) 0.30+0.06
0.066+0.015
0.13+0.02

1.15+0.14
1.35+0.15
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FIG. 6. Percentage of adatoms occupying the higher-energy

adsorption-site type, as a function of total coverage. The energy
difference between the two types of hollow sites is F=2.2E&,
and the spillover is calculated at the order-disorder transition
temperature.

tion temperature at this coverage is only slightly de-
creased, in comparison to the triangular lattice model, as
shown in Fig. 3. In contrast, the p (2 X 1) phase at 8=—,

'

disorders at a significantly reduced temperature T&&2.
For F=2.2E„T,&2 /T»4 =0.74, very close to that
found experimentally. This decrease in T, &2 is accom-
panied by an increase in the relative occupation of the
higher-energy adsorption site type, as shown in Fig. 6 as
a function of coverage. At a coverage of 6=—,', the per-
centage of adatoms that spill over onto the second site
type is 3% at temperatures slightly below T&&2 and 12%
just above T&&2, compared to the value of 10% at T, /2,
which is that plotted in Fig. 6. As Edecreases, the transi-
tion at 6=—,

' broadens, becoming almost obscured in the
vicinity of F =1.7E, due to competition between (2X1)
and honeycomb-ordered structures. For lower values of
F, the (2X2) honeycomb structure forms as the low-
temperature ordered phase.

In Fig. 3 the order-disorder phase boundary calculated
on the honeycomb lattice model with F =2.2E, is found
to be very similar to that of the 0/Ru experiment (see
Fig. 1.), at all experimentally attainable coverages —i.e.,
8 —,'. The strong p(2X2) phase occurring near 8=—,

'

gives way to a p (2 X 1) phase near 8=
—,
' that is weakened

by the spill over of atoms onto the second hollow site
type. The minimum in the order-disorder transition tem-
perature at 6=0.4 accompanies the transition between
2 X2 and 2 X 1 ordered phases. Note that the slight shift
in the peak transition temperature from 6=0.25 to 0.26
in the honeycomb lattice simulations is due mainly to the
use of free boundary conditions, and is a finite-size ar-
tifact that is of no concern here. These simulations used
a lattice of 77X77 sites. [A very minor contribution to
this shift in optimal coverage may arise from the ex-
tremely small spillover of adatoms onto the second site
type. This latter effect is NOT a theoretical artifact. If
this spillover were significantly larger at 6= 4, our exper-
imental fine tuning of the calibration of the coverage
would be in error, because it is based on the point at

which p(2X2) ordering is optimal. ] In the simulations
described below, it was found that the observed transition
behavior, at coverages shifted slightly from those quoted,
is only slightly altered.

Critical exponents are calculated at 6=—,
' for this

honeycomb lattice model, and listed in Table II. When at
first the finite-system transition temperature
T, =0.1755E& is used in determining the effective ex-

ponents, fitted values for y+ and y differ considerably
from one another, with y+ =0.83 unphysically low and

y =2.88 unphysically high. By adjusting T„ it is found
that for T, =0.17290E,, the exponent fits give y =y+.
If the finite-size scaling of T, (L) is fitted using T, given
above, we obtain an estimate of v=0. 65+0.01. The
values of P, y (see Table II), and v determined in this way
are very close to the four-state Pott's model values, as
will be discussed shortly, and are shifted somewhat away
from those obtained in the triangular lattice-gas simula-
tions described previously.

Landau rules predict that the p(2X1) disordering
transition is first order on triangular and honeycomb lat-
tices. It appears that our simulations are not describing
this asymptotic region, which is presumably masked by
finite-size effects. On the other hand, the set of interac-
tion parameters chosen here is near the crossover be-
tween the honeycomb and (2X 1) ground states at 8=—,'.
Noting that a (2X2)-honeycomb order-disorder transi-
tion is in the four-state Pott's class, ' it is plausible that
the simulation data is outside the critical region for the

p (2X 1)-to-disorder transition and that the effective ex-
ponents of the simulations are influenced by a crossover
to four-state Pott's-model behavior. Our ability to probe
further into the asymptotic region is limited by finite-size
effects in the simulations.

The effective exponents of the honeycomb lattice-gas
model do not agree well with those measured experimen-
tally for the 0/Ru system, although the exponent y is
shifted in the direction of the experimental value, when
compared to the result for the triangular lattice-gas mod-
el, as seen in Table II. Besides the crossover phenomena
suggested above, the critical behavior could be masked
experimentally by other effects. Deliberately introduced
steps on the Ru(001) surface have been shown to dramati-
cally alter the observable critical behavior of oxygen or-
dering at the lower coverage of —,'. At coverage 6=—,',
2X 1 domains with rows of oxygen atoms oriented paral-
lel to the steps were suppressed in measurements on a
Ru[17(001)X(100)] crystal. ' It should also be noted that
the effect of the observed reconstruction at 6=

—,
' may not

be adequately described in the lattice-gas models used
here, and could thus alter the magnitude of corrections to
scaling behavior. We note finally that, although the ex-
perimental determination of T, from the inflection point
of the order parameter (or alternatively from the integrat-
ed LEED spot intensity) is made on a finite system, the
power-law fits to the experiment were not improved
overall by adjusting T, further.

We note in passing that the degree of rounding of the
transition at 6=—,

' due to finite-system size in the honey-
comb lattice-gas model is similar to that observed experi-
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mentally, while the simulations of the triangle lattice
model show less rounding, for a similar size of system.
Of course, the (different) boundary conditions used in the
two models are not meant to simulate those of the 0/Ru
system in even a qualitative way.

IV. SUMMARY

The comprehensive set of LEED studies ' ' ' ' on
the structural properties of the 0/Ru(001) system led us
to investigate lattice-gas models as candidates for describ-
ing the observed phase diagram and critical behavior.
The single-phase p (2 X 2) ordered phase observed at cov-
erages near 6=—,

' can be well understood in terms of a
triangle lattice model that simulates adsorption on a sin-

gle type of threefold hollow site only. Relatively strong
first- and second-nearest-neighbor repulsive interactions
(E, =0.23 eV, E2=0.3E& ) between adsorbed atoms are
sufficiently to describe the sharp peak in the (T —8)
phase boundary, and the lack of a (&3X &3)R 30' phase.
The appearance of cluster formation only at low cover-
ages and at temperatures below about 300 K places an
approximate upper limit on an effective third-nearest-
neighbor attractive interaction of ~E3 ~

~0.046 eV.
However, the triangular lattice model predicts an

order-disorder transition temperature at 6=—,
' that is

much larger than that of the 0/Ru system, in relation to
the transition at —,

' coverage. In a honeycomb lattice mod-

el, adsorption on both hcp- and fcc-type hollow sites is
permitted. Choosing binding energies for these two site
types differing by F =0.52 eV, the transition temperature
at coverages above 6=0.4 are reduced markedly, in
much better agreement with the 0/Ru phase diagram.
This behavior is accompanied by a small spillover of
3—10% of the adatoms onto the higher-energy site type,

at coverages from 0.4 to 0.5, at the corresponding transi-
tion temperatures. Since the spillover becomes negligible
at lower coverages, the effect on the p (2X2}phase near
6=

4 is minimal. Effective exponents at the 6=—,
' transi-

tion are found to differ somewhat, comparing the
triangle-lattice gas (F = ao ) and honeycomb lattice
(F =2.2E& ) simulations. In the latter case, the calculat-
ed effective exponents agree well with those of the four-
state Pott's model, suggestive of crossover behavior be-
tween the p(2X1) and p(2X2)-honeycomb ordered
states. The poor agreement of the exponents of either
model with those measured for the 0/Ru system at e=

—,
'

may be due to nonuniversal corrections to scaling or
boundary effects, for which the two models may lack
sufficiently accurate Hamiltonians. The measured ex-
ponents are in fact close to those of a three-state Pott's
model. However, we have been unable to find any
reasonable explanation for a reduction in symmetry of
the lattice-gas model of the oxygen on ruthenium system
that would account for this behavior.

Nevertheless, it has been demonstrated, using lattice-
gas models, that a relatively small population of adatoms
on a higher-energy adsorption site may affect adsorbate-
ordering properties markedly, as seen most clearly in this
case in the phase diagram. Order-disorder transition be-
havior in the 0/Ru(001) system have been presented and
interpreted as a candidate for which such a spillover
effect may be important.
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