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The principal dimensionless quantities used to characterize the geometry of porous media are the
porosity ¢ and the electrical formation factor F. However, many properties of interest (e.g., nuclear
magnetic relaxation, mercury porosimetry, and viscous fluid flow) depend on the absolute dimensions of
the pore space. Among the most important pore scale lengths are the pore volume to surface area ratio
V,/S, the A parameter, and the diffusion-limited surface trapping length w,. We have calculated these
lengths for two- and three-dimensional geometrical models of porous media and have used each of them
to estimate the permeability k to viscous fluid flow as determined by direct numerical solution of the
Stokes equations. Our analysis is based on three families of geometrical models: (1) three-dimensional
ordered sphere packs (including the consolidation regime), (2) two-dimensional tortuous-path models,
and (3) two-dimensional Koch-curve models. In all cases we find that the rigorous bound recently for-
mulated in terms of w, provides rather a weak constraint when compared to the actual value of k. In the
sphere-pack models, permeability estimates based on ¥, /S are reasonably accurate, but such estimates
are much less valuable in the more interesting two-dimensional geometries. Our most important finding
is that in all the cases examined the A-parameter estimate of permeability is quite reliable. Nevertheless,
in the Koch-curve models, as the effective channel cross-sectional area narrows, we are able to see evi-
dence for the breakdown of this estimate. This breakdown is associated with differences in the singulari-
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ties of the Stokes and Laplace solutions in the vicinity of jagged constrictions in the flow paths.

I. INTRODUCTION

Given a sample of porous material of length L across
which there is an applied pressure difference AP, the
macroscopic flow of a viscous fluid is described by
Darcy’s law!?

y=—<25 (1)

where 7 is the fluid’s viscosity and k is the permeability.
Equation (1) is analogous to Ohm’s law for the flow of
electrical current, and k is the counterpart of the effective
conductivity. We emphasize, however, that k depends on
both the tortuosity of the pore space and on the absolute
dimensions of the pores. (By contrast the electrical for-
mation factor F [see Eq. (3) below] is scale invariant.)
Indeed, k has the dimensions of area and may be thought
of as representing the cross section of an effective channel
for fluid flow through the pore space. There is in the
literature a number of empirical techniques for estimat-
ing k.38 Each of these is based on the inference of an
appropriate pore-size parameter from an independent
measurement. While such empirical methods can be of
practical value, they represent uncontrolled approxima-
tions and usually provide little insight as to the physical
basis for the observed correlation.

In the present paper our aim is to examine several
model pore geometries, and in each case to assemble a
number of relevant pore scale parameters. By so doing,
we hope to test the fundamental basis for alternate per-
meability estimation techniques and, more generally, to
illuminate the properties of different pore length scales.
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In particular, we will focus on three characteristic length
scales. First is the pore volume to surface area ratio
V,/S. Second is the A parameter, a length that arises
naturally in the description of interfacial electrical con-
duction’ and third, is the diffusion-limited trapping
length, w,. This last length is of particular interest be-
cause Torquato'® has recently shown that w, can be used
to construct a rigorous bound on the permeability.

In addition to these parameters, various authors have
proposed schemes for estimating k using an effective pore
size derived from mercury injection experiments.>*
Within a simplified theoretical framework, the existence
of a correlation between these two fluid flow measure-
ments can be justified based on percolation theory argu-
ments.*!! It can, it fact, be shown (under the same as-
sumptions) that the pore sizes obtained from the mercury
capillary pressure curve and the A parameter are directly
proportional.!!

In Sec. II we summarize the basic equations used to
calculate the various pore scale lengths under considera-
tion. We discuss also the direct calculation of the per-
meability. In Sec. III the exact values of k are compared
with different estimates formulated in terms of V, /S, A,
and w, for three model geometries with widely varying
physical properties. Our conclusion, based on this
analysis, is that A provides by far the most reliable esti-
mates of k. In a sense, this is not surprising because A is,
itself, directly based upon a transport problem, although
of a very different nature. Finally, we discuss the nature
of the singularities encountered in the solution of the
Stokes and Laplace equations'? and their implications for
the validity of permeability estimates based on the A pa-
rameter.
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II. THEORETICAL BACKGROUND

A. Electrical conductivity: The A parameter

Suppose we have an insulating porous medium saturat-
ed with a single fluid whose conductivity takes the uni-
form value o,. If an electrostatic potential difference,
AU, is applied across the system, the local electrostatic
potential, U(r), satisfies Laplace’s equation

ViU(r)=0, (2)

with the boundary condition E(r)-i=-—VU(r)-n=0,
where fi is a unit normal vector directed into the grain
space. The total current J is then obtained by integrating
the local contributions j(r)=o (E(r) and the effective
conductivity of the porous medium is J =0 zAU. A use-
ful dimensionless parameter characterizing the effective
resistance to current flow is the formation factor

9f
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F= (3)
F, unlike k, is a scale invariant quantity; if we uniformly
magnify or shrink the sizes of the pores and grains, leav-
ing the porosity unchanged, the value of F is unaffected.
Nevertheless, the electrical conduction problem does pro-
vide a framework for the introduction of useful pore-size
parameters. In the study of interfacial conduction a
quantity that arises naturally is the A parameter:’

A f|E(r)|2de %
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Here V, is the pore volume and S is the surface area of
the pore-grain interface. The quantity V,/S is a simple
geometrical length that can, in principle, be measured by
stereological techniques.!* By contrast, A is a dynamical
length determined by the solutions of Laplace’s equation
and cannot be measured by geometrical analysis. Note
that A is a length that is directly related to transport; re-
gions of the pore space in which the electric field vanishes
do not contribute to A; this length is, in some sense, a
measure of the dynamically connected part of the pore
space. (Note that in the special case in which the pores
are cylindrical tubes of radius R, the electric field is uni-
form, and A=R).

B. The diffusion-limited trapping length

Consider a problem in which particles are initially dis-
tributed with uniform density in the pore space and are
then allowed to diffuse randomly but are removed as soon
as they reach the pore-grain interface. In the Laplace
transform domain, the relevant equations are!%1*

DV*u(r)=—1 in V,; u(r)=0 on S, (5)

where D is the diffusion constant of the pore fluid. It can
then be shown that the average lifetime for particles sub-
ject to this decay process is given by!4

w}

D

Tszyipfu(r)dvﬁ%f|vu(r>|2dvpz (6)
w; has the dimensions of a length and is the characteris-
tic measure of pore size relevant to diffusion-limited in-
terface trapping; its value is independent of D. Like the
A parameter, w; is a length defined by a physical problem
and does not have a purely geometrical interpretation. In
the present context, w; is of interest because Torquato'”
has recently derived an inequality relating the fluid per-
meability k, the porosity, ¢, and the mean lifetime for the
surface diffusion problem:

k<kp,=¢Dr,=¢w? . (7)

For anisotropic media this inequality holds for each prin-
cipal component of the permeability tensor.

C. Hydrodynamical calculations

In the limit of slow incompressible flow, the Navier-
Stokes equations reduce to the linear Stokes equations’?

nVv(r)=Vp(r), V-v(r)=0, t9)

where v and p are, respectively, the local velocity and
pressure fields, and 7 is the fluid viscosity. The fluid ve-
locity must vanish at the pore-grain interface and a
prescribed pressure difference at the inlet and outlet faces
is assumed. In three dimensions, accurate solutions of
the Stokes equations are available only in the case of or-
dered systems in which the geometry of the pores and
grains is relatively simple. For example, Larson and Hig-
don'® have recently evaluated the permeability for simple
cubic (sc), face-centered cubic (fcc), and body-centered
cubic (bee) packings of spherical grains. They consider
the complete range of porosities, from the dilute sphere
limit to overlapping (i.e., consolidated) spheres at the oth-
er extreme. To take advantage of the grain shape, Larson
and Higdon'® expand the velocity and pressure fields in
terms of spherical harmonics. The expansion coefficients
are determined by imposing the nonslip boundary condi-
tion at the remaining surfaces of the unit cell. This ap-
proach is efficient and accurate, but is only feasible be-
cause the models considered in Ref. 15 exhibit so high a
degree of symmetry. For the two-dimensional models of
interest in the present paper these techniques are not
practical. Instead, we solve Egs. (8) by the finite-element
method.'®

ITII. RESULTS FOR MODEL SYSTEMS

In many nontrivial porous systems, the pore space con-
sists of large open regions (pores) connected by narrow
throats. While the pores account for most of the porosi-
ty, it is the throats that limit the transport. To under-
stand how well the different pore lengths scales intro-
duced above are interrelated, and to what extent they can
be used to estimate permeability, we will consider three
families of geometrical models. In each case exact nu-
merical calculations of k will be compared with three per-
meaPility estimates. First is the Kozeny-Carman rela-
tion
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(2V,/8)* (two di )
o 2F two dimensions) ,
Ke™ | (2v, /8P ©®)
TRF (three dimensions) .

In these equations 2V, /S is the effective channel diame-
ter and F takes account, approximately, of the pore space
tortuosity. [Equations (9) would yield the correct answer
if the two-dimensional pore space were comprised of
winding capillary tubes with wuniform radii.] In the
second estimate 2V, /S is replaced by the dynamic length
A [recall Eq. (4)]

2
12F (two dimensions) ,

ky= 2 (10)
g (three dimensions) .

(The motivation for these relations is discussed in Refs. 7,
9, and 11). Third, we consider the estimate provided by
the bound of Eq. (7)

kp=o¢w? . (11)

A. Three-dimensional grain consolidation (GC) model

Here we being with an ordered packing of solid spheres
and vary the porosity of the system by allowing the
spheres to expand uniformly.!” For an sc packing the
spheres touch at $=1—7/6=0.476. Below this porosity
the grains are consolidated but the pore space remains
interconnected until a threshold is reached at
$,~0.0349.'7 We have solved Laplace’s equation for
this model by imposing a uniform cubic grid (with 240
grid points per cube edge in the unit cell) on the system
and solving the resulting network equations by the conju-
gate gradient technique. The results are shown in Fig. 1
together with the calculations of Sheng and Zhou.!® The
formation factors calculated in Ref. 18 are generally
higher than our results and the differences grow as
¢— .. It is of interest to compare these numerical cal-
culations with an approximation based on “lubrication
theory.”!® Here, one pretends that the conducting path
has a slowly varying cross-sectional area and that the
resistance is simply the series integral of the individual
contributions:

_ a2 dz
F_afva/z A(z)’ 12

where the z axis is the direction of current flow, a is the
cube edge, and A (z) is the pore space area in each plane
of constant z. The dotted curve in Fig. 1 represents a
direct numerical integration of Eq. (12) and is seen to be
in good agreement with our finite-difference results. This
is encouraging because lubrication theory becomes in-
creasingly accurate as ¢—¢,., and the electrical resis-
tance is increasingly dominated by the narrow throats.
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FIG. 1. Electrical formation factor of the simple cubic GC
model is shown as a function of porosity ¢. Shown are: finite-
difference calculations (filled circles), finite-element calculations
of Ref. 18 (open circles), lubrication theory (dotted line), and
asymptotic formula (15) (dashed line). The vertical line indi-
cates the position of the percolation threshold.

Let us consider, then, the behavior of the transport prop-
erties near the connectivity threshold ¢.. We can derive
an analytic expression from Eq. (12) by recognizing that
the channel cross-sectional area tends, in this limit, to a
square (rotated 45° around the z axis) whose cube edge
varies quadratically with z:

limy 4 A(z)=[2lo+2/R]*. (13)

Here R =a/V'2 is the radius of the sphere in the limit
and 2/, is the minimum opening of the throat. We may
relate [, to the porosity by observing that if the sphere ra-
dius is increased by an amount [, the porosity will de-
crease exactly to ¢, :

o—¢.=1,S./a , (14)

where S, /a is the ratio of surface area to sample volume
at ¢.. It is a matter of geometry to show that
S, =m(3V2—4)=0.76. Finally, the limits of integration
in Eq. (12) may safely be extended to . The result is

lim F( )=£21/4S3/2( _ C)—s/z. (15)
Jm $== ¢

The exponent of  in this equation has been noted ear-
lier;'? for the well-defined geometry of the GC model we
can evaluate the prefactor exactly. Equation (15) is also
plotted in Fig. 1.

Consider next, the variation of A with porosity. Once
Laplace’s equation has been solved at each porosity, A
can 9be evaluated either from the definition (4) or the rela-
tion
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__d[lnF]

2 S _ S

A dling] ¥, =m(¢) v, . (16)
[Equation (16) can be used only when the porosity is
changed by uniform growth of the solid phase into the
pore space, as in the GC model.] To implement (16), we
fit a polynomial, g (z)=3¥_.a,z", through the InF vs In¢
data shown in Fig. 1 [viz. In F=g(lné)]. A simple
derivative of the smooth fit, together with a direct analyt-
ic evaluation of Vp /S, then gives A. Calculations based
on the application of these two methods to our numerical
data are summarized in Fig. 2. Regarding our finite-
difference calculations, we have found, in practice, that
the values of A calculated directly from the definition,
Eq. (4), converge slowly as the mesh size is decreased. By
contrast the formation factor F(¢) is very well con-
verged, even for fairly coarse grids. For this reason we
believe that calculations of A based on Eq. (16) (the solid
curve of Fig. 2) are the more reliable; as the mesh size is
decreased, the black circles in Fig. 2 slowly converge to-
ward the solid line. We note that a direct comparison of
our results with the values of A calculated in Ref. 18 is
not meaningful because Eq. (31) used to define A in Ref.
18 is not equivalent to our Eq. (4). (See note added in
proof.) In the asymptotic limit, the combination of Egs.
(15) and (16) yields

4a o+
Sc(¢ 6", 17

lim A=

¢—¢, 3
which is plotted as the dashed line in Fig. 2. The solid
curve deviates slightly from the asymptotic result because
the fitting curve g(z) used to get m (¢#) was not con-
strained to agree with Eq. (15).
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FIG. 2. Two numerical calculations of the A parameter are
compared with the asymptotic formula (17) (dashed line) for the
simple cubic GC model. Shown are an evaluation based on Eq.
(4) and finite-difference calculations (filled circles) and an evalu-
ation based on Eq. (16) and finite-difference calculations (solid
curve). The unit of length is taken equal to the cube edge in the
sc unit cell.

Let us now turn to a discussion of the fluid-flow per-
meability. In Fig. 3 we plot the numerical results of Lar-
son and Higdon'® and Sheng and Zhou'® together with
three premeability estimates. The Kozeny-Carman re-
sult, Eq. (9) [based on the finite-difference results for F(¢)
shown in Fig. 1], works reasonably well except that it
clearly has the wrong asymptotic properties in the limit
¢—¢,.. (See below.) Consider next the estimate given by
the A parameter, Egs. (10) and (16). Clearly, these equa-
tions provide an excellent estimate of permeability over
the entire range of porosities in the consolidated regime
and, especially, in the vicinity of the connectivity thresh-
old, ¢ =¢.. By contrast, in this regime the surface trap-
ping length, w,, yields rather a poor estimate of k. (w; is
easily calculated for the GC model by random walk simu-
lations.'*) In the high-porosity regime the diffusion
bound overestimates the permeability by roughly a factor
of 3. However, as ¢ —¢, transport (of any kind) is limit-
ed by the closing of the narrow channel cross-sectional
areas between the pores while w, measures an effective
pore size which is insensitive to this effect. In the limit
¢—¢., Larson and Higdon have already shown that lu-
brication theory is in excellent agreement with their nu-
merically calculated results. We can, however, derive a
simple analytic result analogous to Eq. (15). Using,
again, the fact that the channel cross-sectional area may
be viewed as a square duct of size 2w (z)=(2l,+z%/R),
the limiting form is

1 _a p+e dz
=Lt _&_ | (18)
kK B f—w [w(z)])*

where 3=0.5623, as defined in Ref. 15. The integral in
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FIG. 3. For the simple cubic GC model, exact calculations of
the permeability (solid cyan line, Ref. 15; open cyan circles, Ref.
18) are compared with the Kozeny-Carman and A-parameter
estimates, with the diffusion bound (Ref. 10), and with the
asymptotic formula (19) (dashed line). The values of A used

here are the ones shown in the solid curve of Fig. 2. Here the
length units are as in Fig. 2.
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Eq. (18) is readily evaluated with the result

_ 7/2
Loy (19

c

lim k (¢)= 18 -1/

o—¢ S

c

This formula is plotted as the dashed line in Fig. 3 where
it is seen that the numerical results as well as the A-
parameter estimate appear to converge to it.

Figure 3 involves nearly seven decades of variation in
k. A more revealing test of alternate permeability esti-
mates is achieved by examining (Fig. 4) the ratio
M=k /k.,. Although there is scatter in our M, data, it
is clear that values are tending to a constant at the con-
nectivity threshold. This behavior is shown more
smoothly by the lubrication theory results. That this is a
rigorously correct result can be seen from the asymptotic
expressions derived above, Egs. (15), (17), and (19):

Jim MA(9)=M(¢.)=3B~1.012. (20)

This limiting value, indicated in Fig. 4 is slightly different
from the value appropriate to a straight, square cylinder,
which is M =283. We have shown, therefore, that the A
parameter provides an extremely accurate estimate of the
permeability throughout the entire range of porosity
from the point where the spheres touch, ¢ =~47%, down
to the connectivity threshold ¢=¢,. Moreover, the
Kozeny-Carman estimate, kg, and the diffusion bound
(7) are seen to give relatively poor estimates of the per-
meability near the connectivity threshold. [Mg tends to
zero at ¢, because the exponents in Egs. (15) and (19) are
not equal.]

This result for the behavior of k near the percolation

M =k/k,,

0.0 T T T T |
00 02 04 06 08 1.0

FIG. 4. The Kozeny-Carman, A parameter, and diffusion es-
timates shown in Fig. 3 are replotted here to show the variation
of M=k /k.,. (Solid line: A, dotted curve: Kozeney-Carman,
and stars: diffusion bound.) The exact limiting value as ¢— ¢,
is indicated by the double triangle. The dashed lines show the
results of lubrication theory at low porosities and the asymptot-
ic formula (25) at high porosities.

threshold is not an artifact of the simple cubic lattice, ei-
ther. First, it is straightforward to repeat the derivation
of Eq. (20) for the fcc and bec lattices. Here, the throats
are triangular in shape, as described by Larson and Hig-
don, who have calculated the relevant values of 3. The
general expression, valid for all three lattices, is
M, (6. )=36B/(54,), where A, is defined such that the
area of the limiting throat is A,I? with [ defined in Ref.
15; A.=4, 3v'3, and 4V2 for sc, fcc, and bec lattices, re-
spectively. The numerical results are

sc: M,(¢.)=1.012, (21a)
fecc: M,(¢,.)=1.080, (21b)
bee: M\ (¢,.)=1.090 . (21¢c)

Second, let us consider, briefly, the situation in the
disordered GC model appropriate to systems such as
fused glass beads. Feng, Halperin, and Sen'® have argued
that the transport properties in these disordered systems
near the connectivity threshold are simply related to ¢,
the conductivity exponent for ordinary percolation
theory:

Foc(¢—¢ )*(1+l/2) ,
k°<(¢—¢ )(t+5/2) .

(22a)
(22b)

Because the decrease in porosity can again be viewed as
originating from the uniform growth of the insulating
phase into the pore space, Eq. (16) is again valid and we
have, for the disordered GC model

lim M, (¢)=const , (23)
b—d,

a result that is consistent with experimental data on fused
glass beads.” A major conclusion of this paper is that M ,
is a constant of order unity over the entire range of
porosity from the unconsolidated limit down to the con-
nectivity threshold, for ordered as well as disordered GC
models. Equation (23) was anticipated in another context
by Banavar, Cieplak, and Johnson.2°

In what systems might we expect k, to be a poor esti-
mator of permeability? From Fig. 4 we see that in the
high-porosity limit of the simple cubic GC model the
values of M, tend to zero. In this limit of a dilute con-
centration of spheres of radius R it is simple to solve for
the limiting behavior of all the relevant quantities:

dljimlF=1+%(1—¢) , (24a)
limk = 2R? s (24b)
61 9(1—¢)
4R
limA= (24¢)
e T 9(1—¢)
Therefore,

1imlMA=9(1~¢) . (25)
q}‘.

This asymptotic limit is plotted in Fig. 4. The reason
why k, provides a poor estimate in this limit is that there
are two widely differing relevant sizes, the sphere radius
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TABLE I. Summary of results for two-dimensional tortuosity models. kgg denotes the permeability

value obtamed by the solution of the finite-element equations.

The unit of length is one (grain) box

length (i.e., 24 of the system’s horizontal length).

¢ V,/S F A w; ke
A 0.677 0.826 2.121 1.249 0.524 0.0509
B 0.620 0.659 2.565 1.037 0.410 0.0291
C 0.575 0.594 2.971 0.977 0.361 0.0231
D 0.528 0.554 3.801 0.920 0.339 0.0168

191

and the cube edge, which enter k, F, and A in very
different ways. In a similar vein, Saeger, Scriven, and
Davis?! have shown that whenever transport is limited by
flow through an orifice, M, — o« because of the differing
nature of the singularities in Stokes flow and in potential
flow. In the next section we explicitly consider a similar
effect involving flow past corners.

B. Two-dimensional tortuous-path model

In the simple cubic GC model the flow paths are essen-
tially one-dimensional sinuous channels. To study the

effects of channels that bend and wind we have examined
the sequence of four models shown in Fig. 5. Models of
this kind were introduced by Rothman to demonstrate
the feasibility of calculating k by lattice gas automaton
(LGA) simulations.?>?* (Because such simulations are
carried out on a triangular lattice, the individual boxes
shown in Fig. 5 are rectangular, with a helght to width
ratio of V'3/2.) Finite-element techniques'® have been
used to compute the fluid flow patterns shown in Fig. 5
and the value of k for each of the four models. (The rela-
tion between the finite element and cellular automata cal-
culation is discussed in Ref. 22.) The electric fields,
effective conductivity, and A parameter were calculated

Tortuosﬂy Models

FIG. 5. The four two-dimensional tortuous-path models are pictured with the fluid-flow vectors shown in their pore spaces.
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Two-Dimensional Tortuosity Models
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Kozeny—Carman Finite Element
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FIG. 6. For the tortuous-path models, exact calculations of
the permeability are compared with the Kozeny-Carman and
A-parameter estimates, and with the diffusion bound of Eq. (7).
The unit of length is chosen as in Table 1.

Koch-Curve Models

by imposing a fine grained equivalent resistor network on
each pore space and solving the resulting systems of
linear equations by standard conjugate gradient tech-
niques. As expected the flow patterns for the electric
current are essentially identical to those of the fluid. Fi-
nally, the length w, was calculated by a random-walk
simulation similar to that employed for the GC models.

The results of our calculations are summarized in
Table I and Fig. 6. Here we see that k changes by rough-
ly a factor of 3 in response to a change of only about 25%
in ¢. Clearly the A parameter provides an excellent ap-
proximation to the exact permeability. Interestingly, the
Kozeny-Carman and diffusion estimates improve as the
porosity is decreased (exactly opposite to the situation en-
countered in the GC model). Here, at low porosities, the
pore channels become more nearly one dimensional and
their width is essentially constant. In the high-porosity
regime the contrast between pore and throat sizes is
much greater, and the physics of fluid transport is well
described only by the A estimate. Interestingly, the ratio
Mp =k /k}, equals roughly + and does not vary appreci-
ably with porosity. As the pore geometry evolves, it ap-
pears that the diffusion length w; is relatively insensitive
to the changing character of the flow channels.

4A

4C

FIG. 7. The four extreme cases of the two-dimensional Koch-curve models are shown. In the upper panel we have the models
with the smallest (left) and largest (right) channel cross-sectional sizes, both for the case of smooth pore-grain interfaces. The corre-
sponding situation for the maximum interface roughness is shown in the lower panel. As in Fig. 5, the fluid-flow field is represented

within each pore space.
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TABLE II. Summary of results for two-dimensional fractal models. kg denotes the permeability
value obtained by the solution of the finite-element equations. The unit of length is the horizontal row
separation, h =2€/3!/2, where € is the grid spacing. The three channel cross-sectional sizes  are 6=6h
(models 14, 34, and 4 A), =184 (models 1B, 3B, and 4B), and =230h (models 1C, 3C, and 4C).

Koch-curve
model ¢ V,/S F A w; ke
14 0.7194 52.886 2.794 25.03 37.41 6.488
1B 0.7806 57.352 2.153 45.96 39.46 47.80
1C 0.8418 61.858 1.829 64.83 41.53 129.41
34 0.5426 22.437 3.52 25.47 30.33 6.18
3B 0.6038 24.959 2.65 44.55 32.36 41.51
3C 0.6650 27.495 2.20 63.03 34.65 110.07
44 0.5184 12.852 3.71 26.18 30.36 5.77
4B 0.5796 17.975 2.74 49.17 32.51 39.34
4C 0.6408 19.874 2.25 61.71 34.72 106.11

C. Two-dimensional Koch-curve model

In dealing with real porous media, one is often interest-
ed in the rough or fractal character of the pore-grain in-
terface.2*~26 In this connection, a two-dimensional mod-
el based on the Koch-curve construction is useful in
studying the influence of interface roughness on trans-
port.?® In Fig. 7 we illustrate the fluid-flow paths for the
four extremes of the Koch-curve geometries we have con-
sidered. The results of our calculations are summarized
in Table II and Fig. 8. This model allows us to vary the
channel cross-sectional size and the degree of surface

Two-Dimensional Koch-Curve Models

® Koch ¥ e Koch
T Diffusion Bound A Parameter
Kozeny—Carman Finite Element
8
2"
—
< g4 ./,l/' ././‘
~
g
-~ 4 -
2
0 T T T T I
05 06 07 08 09
Porosity
FIG. 8. For the first-generation (Koch'’) and fourth-

generation (Koch'*’) two-dimensional Koch-curve models, exact
calculations of the permeability are compared with the
Kozeny-Carman and A parameter estimates, and with the
diffusion bound of Eq. (7). The unit of length is chosen as in
Table II.

roughness independently. In Fig. 8 the different permea-
bility estimates are compared for the first- and fourth-
order Koch-curve models. In both cases we consider
three values of the channel cross-sectional size. We see
that the diffusion bound (7) greatly overestimates the per-
meability in every case. Here, as in the GC model, this
estimate is based on an effective pore size but is relatively
insensitive to the channel cross-sectional sizes that con-
trol the transport properties. The Kozeny-Carman esti-
mate, which is controlled by variations in the surface area
rather than the throat size, overestimates k in the smooth
surface models but obviously can underestimate k as the
surface roughness is increased. Only the estimate based
on the A parameter, which responds directly to varia-
tions in the channel cross-sectional size, tracks quite
closely to the exact permeability.

The Koch-curve model provides a rather severe test of
permeability estimation. Indeed, we see that at a given

Particle Velocity — Koch 3C

FIG. 9. Vortex flow is illustrated for the third-generation
(Koch'®’) model. Here the cyan velocity vectors have had their
magnitudes enhanced by a factor of 75 relative to those in the
main flow path.
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level of roughness, as the throat size is decreased the
amount by which k, overestimates k increases. The
physics in this regime is controlled by the singularities as-
sociated with triangular tips that form the effective flow-
channels. Because the fluid velocity must vanish at the
interface, the influence of the electric-field singularities
extends farther into the pore space than does the
influence of those associated with the fluid-flow problem.
When the channel cross-sectional areas are small enough
that the singularities centered on the opposing tips over-
lap, we might reasonably expect to see significant
differences between the electrical and fluid-flow problems.
(Note that the situation here is quite different than that
encountered in the GC model where, even as the system
approaches its threshold, there are no singularities in the
interface structure.) A further difference is associated
with the fact that vortices can be set up in the fluid-flow
problem that will dissipate energy and lead to lower per-
meabilities than might be estimated from the irrotational
electric-field problem. This phenomena is illustrated in
Fig. 9, where it is clear that the vortex flow is limited to
regions of the pore space that are, in a sense, shielded
from the main transport path. While this effect is not
very significant in the Koch-curve model, in more com-
plex geometries, where tortuosity and surface roughness
are comingled, it may contribute significantly to the
differences between electrical and fluid transport.

IV. CONCLUSIONS

We have employed a number of two- and three-
dimensional models to study the relationship between
different size parameters in porous media. In particular,
we are interested in the length scale associated with the
transport of viscous fluids. The results presented here
show quite clearly that the A parameter, together with
the electrical formation factor F, provides the most reli-
able permeability estimate. In summary, our most im-
portant results are the following.

(i) For the GC model, k, yields an accurate estimate of
k over the entire consolidated porosity range. In addi-
tion, k, exhibits the proper analytic behavior as ¢—¢,,
the percolation threshold. In this limit, we have evalu-
ated M, exactly for sc, fcc, and bee packings. In disor-
dered versions of the GC model k, again exhibits the
proper analytic behavior as ¢—¢,.

(ii) In the two-dimensional tortuosity models, where
the pore space is characterized by a single length scale,
one might expect there to be little difference between al-
ternate permeability estimates. However, even here we
find that k, clearly provides the most accurate estimate.

(iii) In the Koch-curve models, where the pore
geometry has features over a broad range of lengths, k,
is the only estimate that can track the variation of per-
meability as the porosity, effective flow-channel cross-
sectional size, and surface roughness are varied.

(iv) Our results indicate those conditions under which
k, might be expected to depart significantly from the
true permeability. Examples are (1) if transport is not
dominated by pore—throat — pore sequences (as in the
high-porosity limit of the GC model) and (2) if the struc-
ture of the pore throats leads to singularities in the flow
and electric fields whose character controls the overall
transport.

Note added in proof. 1In a recent article, M. Avellaneda
and S. Torquato [Phys. Fluids A 9, 2529 (1991)] have
shown why our definition of A is not equivalent to the
one given by Sheng and Zhou.!® In Appendix D of their
paper a proper treatment of the Sheng and Zhou ap-
proach is shown to lead to our Eq. (4) rather than to Eq.
(30) of Ref. 18.
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FIG. 3. For the simple cubic GC model, exact calculations of
the permeability (solid cyan line, Ref. 15; open cyan circles, Ref.
18) are compared with the Kozeny-Carman and A-parameter
estimates, with the diffusion bound (Ref. 10), and with the
asymptotic formula (19) (dashed line). The values of A used
here are the ones shown in the solid curve of Fig. 2. Here the
length units are as in Fig. 2.
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FIG. 5. The four two-dimensional tortuous-path models are pictured with the fluid-flow vectors shown in their pore spaces.
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FIG. 6. For the tortuous-path models, exact calculations of
the permeability are compared with the Kozeny-Carman and
A-parameter estimates, and with the diffusion bound of Eq. (7).
The unit of length is chosen as in Table 1.
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FIG. 8. For the first-generation (Koch'') and fourth-
generation (Koch'*') two-dimensional Koch-curve models, exact
calculations of the permeability are compared with the
Kozeny-Carman and A parameter estimates, and with the
diffusion bound of Eq. (7). The unit of length is chosen as in
Table II.
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Particle Velocity — Koch 3C

FIG. 9. Vortex flow is illustrated for the third-generation
(Koch®’) model. Here the cyan velocity vectors have had their
magnitudes enhanced by a factor of 75 relative to those in the
main flow path.



