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The electronic structure for a metallic superlattice system, Mo/V, has been calculated using the linear
mu5n-tin orbital method in the atomic-sphere approximation (ASA}. Total energies have been calculat-
ed in the local-density approximation (LDA}. Emphasis has been given to the electronic-density varia-

tion in these materials in order to understand hydrogen storage in metallic superlattices. It is found,
within effective-medium theory, that the balance between charge transfer at the interfaces and volume

changes of the constituents determines preferred hydrogen sites in Mo/V. Total-energy considerations
favor a tetragonal distortion of the Mo/V superlattice over a cubic structure. Results for the LDA
bands, charge transfer, and density of states are compared to other electronic-structure calculations of
metallic superlattices, which gives rise to a consistent picture of electronic effects in these systems. The
dependence of the results on the ASA is discussed.

I. INTRODUCTION

The field of experimental and theoretical studies of
artificial structures, in particular multilayered metal
films, has expanded rapidly during the last ten years. The
magnetic and superconducting properties of such materi-
als were the first effects to be considered since there are
striking differences between the layered structures and
the constituent metals. ' There is a significantly enhanced
magnetism at the interfaces of certain metallic superlat-
tices (e.g., Fe/V, Cu/Ni, Cr/Au) and the superconduct-
ing temperature, T„was found to increase for certain
artificially layered metal structures. The discovery of
high-temperature ceramic superconductors changed the
focus in the field of metallic superlattices from trying to
fabricate high-temperature metallic multilayered super-
conductors to trying to understand the role of layering on
the superconductivity. Another very peculiar and con-
troversial property of metallic superlattices is the so-
called supermodulus effect. It was claimed that the biaxi-
al elastic modulus in certain metallic superlattices is
greatly enhanced —up to 400%. There have been many
attempts to verify and explain the phenomenon. An ex-
cellent review of the activities up to 1986 is given by
Terakura in Ref. 1. The controversy still exists, and
there is ongoing experimental and theoretical work on
the subject.

An unexplored area in this field is the chemical proper-
ties of multilayered structures (e.g., catalytic properties,
chemisorption and absorption of species in such materi-
als). Some studies on hydrogen loading and absorption in
metallic superlattices have been made "where different
aspects have been addressed. In Nb/Ta, the hydrogen
solubility was found to increase compared to the bare

metals. ' In addition, the effects of a modulated hydro-
gen composition on the hydrogen-metal phase transitions
were explored. It was found that the critical fluctuations
of the hydrogen density are suppressed if the fluctuation
wavelengths are shorter than the superlattice periodicity,
which results in a suppression of the gas-liquid phase
transition of hydrogen in the Nb layers. Hydrogen load-
ing in Mo/V systems has recently been studied. " Here,
the hydrogen composition modulation is expected to be
very pronounced since hydrogen dissolves in the vanadi-
um metal but not in the molybdenum metal. The hydro-
gen solubility in the vanadium layers was found to de-
crease compared to the bulk vanadium and the question
was raised about the electron-density-distribution effects
on the hydrogen solubility, especially at the interfaces.

We address this question in the following by calculat-
ing the electronic structure of Mo/V. A more general
aim is to understand the valence-electron-character and
geometric-structure effects on the electron structure in
metallic superlattices since this is a first step towards an
understanding of the physical properties of such materi-
als. An interesting viewpoint is to unify the knowledge
from different systematic studies into a consistent physi-
cal picture of what happens in artificially layered struc-
tures.

The Mo/V growth seems to be particularly easy to
control which makes it possible to fabricate very-well-
characterized structures with sharp interfaces, to such an
extent that even well-defined quasiperiodic superlattices
have been grown and studied. ' ' The good quality of
these superlattices is promising also from a theoretical
point of view since we, with some justification, may disre-
gard interdiffusion at the interfaces —the main deviation
from perfectly layered structures. We study, in the fol-
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lowing, the electron structure of perfect-interface
(Mo)„(V)„superlattices, with n=1, 3, and 5, and focus
on the charge-transfer and lattice-structure effects on the
electron-density distribution. The hydrogen solubility is
coupled to the electron-density distribution according to
effective-medium theory (EMT), ' ' where the binding
energy of an impurity is to the largest extent determined
by the surrounding electron density. We also compare
results for band structure, charge transfer, and density of
states with earlier calculations for the Nb/Zr system'
and find that a consistent picture for basic mechanisms in
metallic superlattices arises. The present calculations are
made in the linear muffin-tin orbital (LMTO) scheme'
within the atomic-sphere approximation (ASA). Total
energies have been calculated in the local-density approx-
imation of Hedin and Lundqvist. '

The rest of the paper is organized as follows. In Sec.
II, the technical details of the implementation of the
LMTO-ASA scheme on this particular problem are
presented. In Sec. III A, the results for the band struc-
ture for bulk Mo, bulk V, and (Mo)„/(V)„superlattices
are presented and discussed. Comparisons are made with
other calculations for the bulk material properties (equi-
librium volume, band structure, density of states). The
results for the total and local density of states for the su-
perlattices are discussed in Sec. III B. In Sec. III C, the
coupled quantities —interstitial-density variation and
charge transfer in the (Mo)„/(V)„superlattices—are dis-
cussed. The hydrogen solubility in these materials is then
explored within effective-medium theory for hydrogen
heat-of-solution in transition metals. Total-energy calcu-
lations for different possible geometric structures of the
(Mo)„/(V)„superlattices are presented in Sec. IIID.
Calculated total-energy differences are used to distinguish
between different crystal structures. A summary and the
main conclusions are finally given in Sec. IV.

II. IMPLEMENTATION OF THE CALCULATIONS

In this section, we describe the unit cells of the
(Mo)„/(V)„superlattices, the calculation of the density
of states, the definition of charge transfer, the calculation
of the interstitial density variation, and the total-energy
calculations.

The basis set used in all calculations is the convention-
al LMTO basis set with nine orbitals (spd) per atom.
Relativistic effects, except spin-orbit coupling, are taken
into account for the valence electrons. All core electrons
are included in the calculations and are treated fully rela-
tivistically.

The unit cell for Mo and V in the bulk materials is
body-centered cubic (bcc}. We sample 572 k points in an
irreducible part of the first Brilloun zone and choose the
atomic sphere radius around each atom to be the
Wigner-Seitz radius. The simplest superlattice, indicated
by (Mo}&/(V), , consists of one monolayer of each of the
constituent metals, and is grown in the (100) direction-
the z direction in Fig. 1. Its unit cell is the simple cubic
(sc) with a basis. We sample 125 k points and choose the
volumes of the Mo and V spheres in every superlattice
unit cell to be equally large and the sum of their volumes
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FIG. 1. Unit cells of (Mo)3/(V)3 and (Mo)1/(V)& superlat-
tices. The shaded atoms are Mo atoms, and the unfilled atoms
are V atoms. The atoms labeled Mo and V [or Mo(1), Mo(2),
V(1), and V(2)] are the ones constituting the unit cells.

to equal the unit cell volume. The unit cells for
(Mo)3/(V)3 (seen in Fig. 1) and (Mo)&/(V)5 are tetragonal
with six and ten atoms, respectively, in the unit cell. For
these structures, we sample 75 k points.

The bulk structures are represented both as bcc and as
sc with a basis. We calculate the band structure for the
bcc bulk structures in the I -H direction and for the
(Mo)„/(V)„superlattices in the I -Z direction. The I -Z
direction corresponds to the I -H direction but extends
only partly along it, e.g., for the (Mo), /(V), superlattices,
the I -Z direction extends half the way along the I'-H
direction. The band structure of the bulk sc materials is
also calculated in the I -Z direction. The density-of-
states curves of bulk Mo, bulk V, and (Mo)„/(V)„super-
lattices are calculated using a tetrahedron integration
routine. '

The charge transfer can be defined in several ways.
The definition of charge transfer within the ASA makes
this quantity dependent on the radius of the atomic
sphere. The difference in charge transfer in different sys-
terns is though a more relevant quantity, provided that
the sphere radii are the same in all the calculations. The
(negative) charge transfer from a particular atom is here
defined as the charge ionicity of the atom. Denoting the
atomic charge of the nucleus in an atomic sphere S as Zz,
and the integrated self-consistent (negative) charge as Qs,
the ionicity is given by Zs —Qs.

If we follow the requirement that the sphere radii
should be chosen so as to minimize the total energy of the
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chosen structure, ' we find, for the (Mo)i/(V), superlat-
tice, that a choice of equal atomic sphere volumes is the
best one in the simple cubic unit cell, whereas for a
tetragonal cell there are better choices. In "tetragonal"
superlattices, contracted in the growth direction, the best
sphere radius choice is a somewhat larger molybdenum
atomic sphere (of about 0.5%%uo compared to the vanadium
atomic sphere radius). On the other hand, for tetragonal
(Mo)i/(V)i superlattices, expanded in the growth direc-
tion, the best choice of sphere radii is a somewhat smaller
molybdenum atomic sphere radius compared to the vana-
dium atomic sphere radius. The different choices of
sphere radii quoted above did not affect any final results
apart from a negligible difference in the charge transfer
quantity. The reasons for that are that the sphere sizes
did not differ much, but also that the inclusion of overlap
terms has the effect of correcting in the boundary region
between spheres. We have in the present calculations al-
ways chosen equal sphere radii for the tetragonal
(Mo)„/(V)„materials in order to keep as many parame-
ters as possible fixed, in favor of controlled total energy
comparisons.

We explore the spatial electron-density distribution in
order to get a first indication of where hydrogen would
most likely dissolve in the (Mo)„/(V)„superlattices. We
probe the electron density in the region between the
muffin-tin radius and the atomic-sphere radius —the in-
terstitial region in the ASA. This region is the relevant
one since the hydrogen atom prefers to sit in a symmetric
(interstitial) site in a metal lattice. Usually, the density in
the interstitial region is, within the ASA, calculated by
averaging the contributions of all atoms in the unit cell
over the interstitial space. In a cell with many atoms, as
in the (Mo)3/(V)3 and (Mo)~/(V)~ superlattices, a density
variation in the real material is expected also in the inter-
stitial region, depending on between which atoms we
choose to probe the density. To estimate the density vari-
ation, we calculate the density in the interstitial region
around a certain atom in the unit cell by averaging only
the tail contributions of nearest-neighbor atoms.

The total energies are calculated as usual in the
LMTO-ASA method, but with the Madelung contribu-
tion calculated according to Jarlborg and Arbman. '

The use of an approximate functional due to the restric-
tions on the potential (in the ASA, the potential is con-
structed from a spherically averaged trial charge density)
gives, evidently, not the correct total energy. The energy
differences are still significant since the functional is ex-
actly minimized. The Hedin-Lundqvist' local-density
approximation is used for the exchange and correlation
part of the effective potential.

We use a quadratic minimization scheme for finding
the (Mo), /(V), sc structure with lowest energy. The
minimization parameters are the lattice constant and the
sphere radii. All other input parameters are restricted to
have the same values in all the calculations to favor con-
trolled total-energy comparisons. The calculated total
energies lie very close so we need a convergence of 0.1
mRy in the total-energy values. The numerical accuracy
in the total-energy calculations is then +1 meV. The
efficiency of the quadratic interpolation scheme compen-

sates for the slow convergence; we only need to calculate
total energies for four different lattice constants and four
different choices of atomic sphere radii to achieve the op-
timum parameter values for cubic (Mo) i/(V), .

The quadratic minimization in the calculations for
finding the optimum tetragonal structure of (Mo), /(V)i,
is employed in a slightly different way. Now the varied
parameters are the length of the c- axis (the axis along the
growth direction) and the length of the axis parallel to
the growth direction. The atomic sphere radii are chosen
to be equal. We fit a two-dimensional quadratic function
f (x,z) to the energy values corresponding to the different
choices of axis lengths. In doing that, we obtain a 6X6
matrix equation for the coefficients of the function which
is solved, giving the variables x ad z for which Vf=0.

III. RESULTS AND DISCUSSION

A. Sand structure

We calculate the band structure in the I'-Z direction of
Mo bulk, V bulk, and (Mo) „/(V)„superlattices. Mo and
V in bulk have bcc structures with experimentally deter-
mined lattice constants of 3.15 and 3.02 A, respectively.
We determine the equilibrium lattice constant for bulk
Mo and V predicted by the LMTO-ASA calculations by
comparing the total pressure in the unit cell. The equilib-
rium lattice constant is given for vanishing total pressure.

The volume (lattice constant) dependence of the total
pressure in the unit cell is shown in Fig. 2. The resulting
equilibrium lattice constants are 3.19 A for Mo and 2.99
A for V, which differ by 2% and 1%, respectively, com-
pared to the experimentally measured ones.

We compare our calculations for equilibrium lattice
constant to independent Korringa-Kohn-Rostoker
(KKR) calculations by Morruzzi, Janak, and Williams.
The equilibrium lattice constants of Mo and V given by
the KKR calculations are 3.12 A and 2.93 A, respective-
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FIG. 2. The total pressure vs lattice constant for molybde-
num and vanadium bcc crystals. The equilibrium lattice con-
stants are given for zero pressure. The leftmost values corre-
spond to V and the rightmost values correspond to Mo. The
present work is marked with 0; the ~ denotes the calculation of
Moruzzi, Janak, and Williams in Ref. 22; the D indicates the
experimental values for equilibrium lattice constants.
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ly, which differ from the LMTO-ASA calculations by
2%. Since the KKR equations are related to the LMTO
equations, ' ' the main source for the discrepancy is the
approximation of overlapping spheres and the lineariza-
tion of the eigenvalue equations in the LMTO-ASA—
absent in the KKR calculations. We expect that the
ASA, and not the linearization, is the approximation giv-
ing the largest error compared to the KKR method.
Overlap corrections ("combined correction" terms) and
extended basis make the calculations agree with the
KKR results, as can be compared in Barbiellini, Moroni,
and Jarlborg. Calculations of equilibrium volumes in
the local-density approximation (LDA) which do not use
the muffin-tin approximation for the potential report
better agreement with experimental values —within 1%
for norm-conserving pseudopotentials and 1 —4% for
full potentials in a linear augmented-Slater-type-orbital
method. Note that we compare volumes here instead
of lattice constants. It is interesting to note the tendency
to underestimate the equilibrium volume, ' by an in-
creasing amount with smaller atomic number and espe-
cially for materials on the left-hand side of the Periodic
Table (comparing only those materials that have been cal-
culated for the same structure as the experimentally ob-
served ones). On the other hand, there exists a break-
point for large atomic numbers (around 45) where an
overestimation occurs. This is compensated with the ac-
count of (scalar-)relativistic effects which tend to
"shrink" the core radius. Inclusion of spin-polarization
effects via the 1ocal-spin-density approximation give the
opposite trend —the equilibrium lattice constant in-
creases.

The calculated band structures in the I -Z direction
and the total density-of-states (DOS) curves for Mo and
V with our calculated equilibrium lattice constants are
shown in Fig. 3. They compare favorably to the corre-
sponding curves of Moruzzi, Janak, and Williams,
which underscores the insensitivity of the band structure
to the difference in the calculated equilibrium lattice con-
stants.

The Fermi energy relative to the valence-band bottom
(or bandwidth) for Mo and V with different choices of lat-
tice constants is shown in Table I. Note the bandwidth
increase for lattice contraction and, correspondingly, the
decrease for lattice expansion, an effect seen also in calcu-
lations for Nb/Zr superlattices by v. Leuken et al. '

When comparing the calculated density of states for
different lattice constants, we find that the main features
are similar, but we notice a change in the character of the
valence electrons. As the lattice is expanded, slightly
more electrons assume free-electron-like (s and p) charac-
ter. Expansion of the lattice would thus favor some delo-
calization of the valence electrons, and a contraction
would favor a localization —also consistent with the re-
sults of v. Leuken et al. '

The (Mo)„/(V)„superlattices are grown coherent-
ly,

' ' which means that, up to a certain thickness, the
Mo layers and the V layers adjust to each other in the
layer plane (xy plane in Fig. l), and there exists a mean
lattice constant, common to both materials in that plane.
Studies for coherently grown semiconductor superlattices
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FIG. 3. The band structures in the I -H direction, and the to-
tal density of states of Mo and V with the calculated equilibri-

0
urn lattice constants of 3.19 and 2.99 A, respectively.

and simulations for superlattice growth ' indicate that
the lattice constant in a coherently grown superlattice is,
within 1%, the arithmetic mean of the equilibrium con-
stants of the constituent materials. In our case, it gives a
lattice constant for (Mo)„/(V)„of3.09 A. To begin with,
we choose the axis in the growth direction to be equal to
the axes parallel to it, assuming a cubic structure. The
effects of a possible tetragonal distortion will be treated in
connection with total-energy considerations.

Material

Mo

Lattice constant
(A)

3.09
3.12
3.19

Fermi energy
(Ry)

0.60
0.59
0.57

V 2.93
2.99
3.02
3.09

0.52
0.51
0.50
0.49

(Mo) 1/(V)1

(Mo) 3/(V) 3

(Mo) 5/(V),

3.09

3.09

3.09

0.52

0.55

0.56

TABLE I. Value of Fermi energy relative to the valence-
band bottom vs lattice constant in bulk molybdenum, bulk
vanadium, and (Mo)„/(V)„superlattices.
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The results for the band structures in the I -Z direction
of bulk Mo, bulk V, and the (Mo)&/(V)

&
superlattice —all

with a lattice constant of 3.09 A—are shown in Fig. 4.
The bulk structures of Mo and V are here represented as
sc with one extra atom in the middle of the cell. This in-
troduces an extra Bragg plane in the reciprocal cell, com-
pared to the bcc structure, where the bands are folded
back (compare with Fig. 3; note the difference in lattice
constants which makes a difference in the energy position
of the bands). In the band structure for (Mo), /(V)„we
distinguish a band with a clear s character that starts at
0.2 Ry (see Fig. 4), a distinct d character band around the
Fermi level, and a hybridized band. Note the energy
splitting of 0.08 Ry (l eV) of the s band at the Brillouin-
zone boundary due to the potential difference of Mo and
V, characteristic for layered structures of different ma-
terials. '6 3' In the band structures for the (Mo)3/(V)3 and
(Mo)5/(V)5 superlattices with lattice constant of 3.09 A,
even more Bragg planes are introduced in the reciprocal

5.0
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cell—two extra planes for (Mo)3/(V)3 and four extra
planes for (Mo)z/(V)& in the I -Z direction. The multiple
band folding in the zone makes it diScult to follow par-
ticular bands. The energy splitting of the bands at the ex-
tra Bragg planes is still noticed.

The Fermi energy (or bandwidth, according to our
definition above) for (Mo)&/(V)& with the overall lattice
constant of 3.09 A is 0.52 Ry compared with 0.60 Ry for
Mo and 0.49 Ry for V with the same lattice constant (see
Table I). If the DOS shapes for the constituent atoms do
not change much, then the superlattice-bandwidth con-
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FIG. 4. The band structures in the I -Z direction of bulk Mo,
bulk V, and (Mo)&/(V)& superlattice, all having a lattice con-
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FIG. 5. The total density-of-states curves for bulk Mo, bulk
V, and the (Mo)&/(V) I superlattice, all with a lattice constant of
3.09 A.
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traction relative to bulk Mo (and expansion relative to
bulk V) is an indication of electron transfer from Mo to V
in the superlattice. The Fermi energy (bandwidth) for
(Mo)3/(V)3 is 0.55 Ry and for (Mo)5/(V}5 it is 0.56 Ry.
Seemingly, the bandwidth increases with larger superlat-
tice unit cell. This may be coupled to the amount of elec-
tron transfer between Mo and V atoms. The larger the
Fermi energy of (Mo)„/(V)„,the lesser the electron
transfer at the molybdenum-vanadium interface.

B. Density of states

The total-density-of-states (DOS) curve for (Mo), i(V},
is shown in Fig. 5 together with the total-DOS curves for
bulk Mo and V with the same lattice constant as
(Mo) &/(V)

&
(3.09 A). It seems that the DOS for

(Mo)&/(V), is approximately a superposition of the DOS

of the constituents. In order to make a more detailed
comparison, we show in Fig. 6 the local-density-of-states
(LDOS) curves for bulk Mo and V with calculated equi-
librium lattice constants and with a lattice constant of
3.09 A. The LDOS for Mo and V in (Mo)&/(V)& (3.09 A)
is also shown. The effects on the LDOS for the bulk ma-
terials due to the volume change manifest mainly in
changes of the valence-band widths —a narrowing of the
d and p bands for vanadium and a corresponding widen-
ing for the molybdenum bands —when changing the lat-
tice constants from equilibrium bulk values to 3.09 A.
The molybdenum bands seem also to undergo a shift to
lower energies. For the LDOS of (Mo), /(V) „wenotice a
shift to lower energies for V, relative to its bulk LDOS,
and for Mo a corresponding shift to higher energies. The
intensities of the molybdenum s and, especially, p elec-
trons have diminished in the superlattice, compared to
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FIG. 6. In (a) is shown the local-density-of-states curves for bulk Mo with calculated equilibrium lattice constant (3.19 A) and a
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the bulk material. Correspondingly, the s and p intensi-
ties of vanadium in the superlattice have increased which
is an illustration of sp-electron transfer from Mo to V in
the Mo/V superlattices.

The LDOS for interface, near interface and bulklike
Mo and V in superlattices with larger periodicity are
shown in Fig. 7. For the valence s electrons, we notice a
shift in the s-electron "center of gravity" when compar-
ing interface atoms and bulklike atoms. The shift is
downwards in energy for interface vanadium and up-
wards in energy for interface molybdenum with respect
to the bulklike atoms. The positions of the s-electron
peaks for bulklike atoms in the superlattices coincide al-

most with the corresponding positions of the bulk materi-

als, but their shapes have not adopted the "bulk shape"
even for the bulklike positions of Mo and V atoms in the
superlattices with largest periodicity.

For the valence p electrons of vanadium, there seems to
occur a redistribution over the energy range when going
from bulklike to interface atoms so as to broaden the p
band of bulklike vanadium. That indicates stronger sp
hybridization and less pd hybridization for the interface
vanadium atoms compared to the bulklike ones. The p
electrons in molybdenum distribute to energies closer to
the Fermi level, when going from bulklike to interface
layers, and the p-electron intensity diminishes —p-
electron transfer occurs from Mo to V at the interface.

The valence d electrons in the superlattices redistribute
to higher energies for Mo and lower energies for V when

going from bulklike to interface layers, but the peaks are
rather rigid in shape, in contrast with the sp peaks. Com-
pared to the bulk materials, the most striking difference
of the d bands in the superlattices is the narrowing (vana-
dium) and broadening (molybdenum) of the bandwidth.
This is understood as an effect of the local volume
changes; for V, the volume has increased relative to its
bulk value which results in the narrowing of the d-
electron-band width, and the opposite is true for Mo.
This fact manifests in the separation of d-electron peaks
of Mo, most clearly seen at the lower energy range, and
in the contraction of the vanadium d-electron peaks in
the superlattices.

The redistribution in energy of the valence electrons
when going from bulklike to interface atoms in the super-
lattices may be seen as an adjustmentprocedure, referred
to as "matching" by v. Leuken et al. '

C. Interstitial density variation
and hydrogen solubility

We clearly see an electron transfer from molybdenum
to vanadium at the superlattice interface, some excess
electrons on the bulklike Mo atoms, and some lack of
electrons on the bulklike V atoms. The results are sum-
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FIG. 7. The local-density-of-states curves for Mo and V in (Mo)3/(V), is shown in (a), and in (b) is shown the corresponding curves
for (Mo)5/(V)5. The lattice constant is 3.09 A. The subscripts int, blk, and nblk denote interface, bulklike, and near bulklike posi-
tions, respectively, of the atoms.
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marized in Table II. The charge oscillation seen here,
also seen in Nb/Zr by v. Leuken et al. ,

' is a typical
response of an electron gas to a formation of a dipole lay-
er due to an abrupt change in the potential, which we
have at the superlattice interface. We expect the oscilla-
tions to assume the typical Friedel oscillation wavelength
at larger distances from the interface in electron structure
calculations for superlattices with larger periodicity.

The amount of charge transfer at the interface seems to
decrease with larger superlattice periodicity and to satu-
rate. That leads also to a saturation of the Fermi energy,
which we coupled to the amount of charge transfer in
Sec. IIIA. For (Mo), /(V), with lattice constant equal to
3.09 A, the electron depletion for molybdenum at the in-
terface is 0.34 electrons whereas the respective electron
loss in(Mo)3/(V)3 and(Mo)5/(V)5is0. 11 electrons.

The results for the interstitial density variation in the
larger (Mo)„/(V)„supercells are shown in Fig. 8. We
have an overshoot and undershoot of the density around
the values for the interstitial electron density in bulk
Mo (0.040 electrons/a. u. ) and bulk V (0.032
electrons/a. u. ), both with a lattice constant of 3.09 A.
This is a reflection of the charge-transfer situation in the
superlattices.

The interstitial densities for bulk molybdenum and
vanadium, with calculated equilibrium lattice constants,
are 0.037 and 0.035 electrons/a. u. , respectively. The ab-
sorption energies for hydrogen in these metals are —0.26
eV/H for vanadium and 0.45 eV/H for molybdenum,
which means that hydrogen dissolves in vanadium but
not in molybdenum. In an effective-medium (EMT) ap-
proach for explaining the difference in hydrogen heats of
solution, Nordlander, Ndrskov, and Besenbacher' con-
sider the effect of the surrounding electron density —the
key parameter in the model —on the hydrogen atom in a
transition metal. In the work of Nordlander, Ngrskov,
and Besenbacher, ' the hydrogen impurity is embedded
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(Mo)3/(V),

in a homogeneous electron gas (jellium) and the absorp-
tion energy is calculated, within the I-DA, as the
difference between the total energy of the hydrogen-in-
jellium system and the sum of the total energies of the
electron gas and the free hydrogen atom. Then the con-
tributions to the absorption energy due to the differences
between the model problem and the real situation(hydro-
gen in a transition metal) are treated perturbatively.
These contributions come in as core corrections, hybridi-
zation effects, and lattice relaxation effects. In practice,
this scheme works best for close-packed situations (see
Zwartkruis and Himbergen for a critical discussion). In
our case where we compare hydrogen absorption in two
similar metals of the same structure, we have confidence
in the qualitative results of Nordlander, Ndrskov, and
Besenbacher. ' The absorption energy of hydrogen-in-
metal, E,b„is related to the hydrogen heat-of-solution,

EHos, and the Hz binding energy, EH . It is given by
2

E,b, =EHos+ —,'EH . For hydrogen in Mo and V the

difference in the value of their interstitial density is the
main cause for the different hydrogen heats of solution in
these materials since the total total-energy correction for
the other effects(hybridization, core repulsion, lattice re-
laxation) only adds up to 0.04 eV for vanadium and 0.07
eV for molybdenum. For both metals, these corrections
lower the hydrogen heat of solution. Following the re-
sults of Nordlander, Ngfrskov, and Besenbacher, ' the

Superlattice
(notation)

Type of atom
(position)

Electron transfer Valence
(electrons/atom) electrons

(Mo) $/(V)] Mo at interface
V at interface

—0.34
0.34

5.66
5.34

(Mo)3/(V)3 Mo at interface
Mo near bulk
V at interface
V near bulk

—0.11
0.10
0.12

—0.11

5.89
6.10
5 ~ 12
4.89

TABLE II. Electron transfer in (Mo)„/(V)„superlattices.
The electron transfer is defined in Sec. IIB and the different

types of atoms are depicted in Fig. 1. The amount of valence
electrons in the atomic sphere is shown to illustrate the cou-

pling to the interstitial density variation shown in Fig. 8.
0044
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Type of atom
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Type of atom

(Mo),/(V), Mo at interface
Mo near bulk
Mo bulk
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V near bulk
V bulk

—0.11
0.14
0.10
0.13

—0.14
—0.12

5.89
6.14
6.12
5.13
4.86
4.88

FIG. 8. The values of the interstitial electron density for
different types of atoms in the (Mo)3/(V)3 and (Mo)5/(V)5 super-
lattices with a lattice constant of 3.09 A are shown. The nota-
tions int, blk, and nblk denote interface, and bulklike, and near
bulklike positions, respectively, of the atoms. The full horizon-
tal line at the value of 0.035 electrons/a. u. ' indicates that hy-
drogen dissolves at and below that limit.
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conclusion is that for sites with electron density lower
than 0.035 electrons/a. u. (V equilibrium bulk interstitial
density), hydrogen will dissolve, and for sites with density
higher than 0.037 electrons/a. u. (Mo equilibrium bulk
interstitial density), hydrogen solution is not preferred.
The implications for the (Mo)„/(V)„superlattices are
then that hydrogen will dissolve in interstitial
(tetrahedral) sites in a vanadium layer, even in the inter-
face vanadium layers. To clarify: at tetrahedral sites
with an environment of three vanadium atoms and one
molybdenum atom, i.e., half a lattice constant away from
the interface molybdenum layers, hydrogen solution is
preferred. The hydrogen concentration in the vanadium
layers is expected to be modulated since the absorption
energy is most negative in the bulklike vanadium layers.
The present discussion is valid in the presence of perfect
interfaces, small lattice distortions, and small hydrogen-
hydrogen interaction effects, i.e., small concentration of
hydrogen corresponding to the a phase.

The discussion in Hjorvarsson et al. "concerns the in-
terface effects in Mo/V superlattices on hydrogen uptake.
The hydrogen concentration in the vanadium layers in
Mo/V is found to diminish drastically close to the inter-
faces. It is extracted that there is a hydrogen-free layer
of 2—3 lattice spacings at the Mo/V interface. By argu-
ments of EMT, this is believed to be due to electron-
density increase because of electron transfer from Mo.
At first it seems reasonable to assume that the electron-
density is increased —and hydrogen solubility
diminished —in the interface vanadium layers due to
electron transfer from molybdenum. There is, though, a
compensating effect —the expansion of the volume that
vanadium undergoes when forming a coherent superlat-
tice with molybdenum —resulting in an interstitial-
electron-density decrease. The amount of electron
transfer is not the same for all kinds of superlattices, as
we already have seen (depicted in Table II). The smaller
the superlat tice periodicity, the larger the electron
transfer at the interfaces, which means that there is a
higher interface electron density for small-periodicity su-
perlattices. In particular, the interface vanadium intersti-
tial density in (Mo)3/(V)3 is 0.034 electrons/a. u. 3,

whereas for (Mo), /(V), it is 0.036 electrons/a. u. . The
conclusion in the present work, where a self-consistent in-
terstitial density is extracted, is that it is possible for hy-
drogen to dissolve close to the interface in superlattices of
a periodicity of at least three layers of each constituent.
If it fails to do so, the reason is not increased electron
density at the interfaces but should be sought in devia-
tions from perfect interfaces and possible changes in the
H-H interactions for larger hydrogen concentrations.
The hydrogen heat of solution in the bulklike vanadium
layers in the Mo/V superlattices should not be destruc-
tively affected by the layering, but rather increase due to
the expansion of the vanadium volume.

more reliable as long as we consider close-packed, highly
symmetric structures. For more open structures, the
results become uncertain. It has been found by Skriver
that, for V and Mo, the reproduction of the equilibrium
bcc structures is possible within the ASA. In addition,
calculated total-energy differences between fcc and bcc
structures by Barbiellini, Moroni, and Jarlborg agree
well with what is generally obtained with similar
methods. We consider here superlattices of Mo and V
which have the additional complication of possessing an
interface where the use of spherical potentials may be
questioned. We argue that if no geometrical relaxation is
considered across the interface between Mo and V layers,
the I =1 terms in the potential are reasonably small.
That Mo and V have unequal potentials is not as crucial
as geometric relaxation since the difference in potential
(and charge) is more important in the interior of the
muffin-tin (MT) spheres. The sensitivity to geometrical
changes is a reason to keep the MT spheres at the Mo/V
interfaces of equal size. With the above in mind, we limit
the present total-energy considerations of the Mo/V su-
perlattices to perfect-interface bcc structures and tetrago-
nal structures that do not depart much from cubic cells.

We consider the simplest "superlattice" —the
(Mo), /(V), —having sc and tetragonal unit cell with a
basis. For the sc superlattice, total-energy calculations
give minimum total energy for a lattice constant of 3.07
A and a choice of equal volumes of the atomic spheres in
the unit cell. The values for the total energy of sc
(Mo), /(V)~ for different lattice constants are shown in
Table III. The energy values are given as the difFerence
between the sum of the total energies of bulk Mo and V
with calculated equilibrium constants and the total ener-
gy of the superlattice unit cell (containing one Mo and
one V atom). It should be kept in mind that the numeri-
cal accuracy is +1 meV when comparing the calculated
energy values. The total pressure is also tabulated and its
variation with lattice constant is consistent with the
total-energy values. We notice immediately that the su-
perlattice structures are stable (or metastable) with
respect to the bulk structures. Once a coherent superlat-
tice is formed, it should remain stable. The tetragonal
(Mo), /(V)& superlattices have the c axis parallel to the
growth direction (see Fig. I). We calculate total energies

0
Lattice constant (A)

(Mo) /(V)
Energy (eV) Pressure (kbar)

TABLE III. Total energies for sc structures of (Mo)&/(V)&
with different lattice constants. The energy values are given as
the difference between the superlattice total energy (per one Mo
atom and one V atom) and the sum of the bulk total energies of
Mo and V with calculated equilibrium lattice constants. The to-
tal pressure of sc (Mo)&/(V)& with different lattice constants is
also tabulated.

D. Total-energy calculations

As discussed earlier, the LMTO method in the
atomic-sphere approximation (ASA) has a limited accura-
cy in the computed total energy but energy differences are

3.10
3.09
3.07
3.06

—0.632
—0.653
—0.664
—0.662

—13
—9

2
7
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TABLE IV. Total energies for (Mo)&/(V)& with tetragonal
structure and di8'erent choices for the axis lengths. The z axis is

directed along the growth direction (it is also the c axis of the
tetragonal unit cell). The x and y axes are always chosen to
have unit lengths and all axes are here multiplied with various
lattice constants. The energy values are given as differences be-
tween the total energy for the tetragonal (Mo)&/(V)& superlat-
tices and the equilibrium sc (Mo) &/(V) &

superlattice.

x,y (A)

3.05
3.08
3.07
3.09
3.07
3.08

(Mo), /(V),
z(A)

3.09
3.07
3.06
3.06
3.05
3.05

Energy (meV)

37
1

—5
—10
—12
—18

for a configuration of six different choices for axis lengths
(multiplied by the lattice constant), shown in Table IV.
The energy values are given as the total-energy difference
between the sc (Mo)&/(V)& superlattice with lowest ener-

gy and the tetragonal (Mo)&/(V)& superlattice. Negative
values in Table IV indicate that the particular tetragonal
structures are preferred to the optimal cubic one.

No absolute minimum is found within the area
spanned by the points in Table IV and further efforts
prove fruitless. The reason is that the system becomes
unstable for too asymmetric structures, due to the ASA.
Calculations of tetragonal elastic constants for bulk V
and bulk Mo give reasonable results, but they may not
be transferable to the superlattice structures, where the
elastic constants undergo changes, which means that the
total-energy values for tetragonal Mo/V must be inter-
preted with care. Comparing total energies for tetragonal
structures with unit cells that do not depart much from
cubic unit cells, we notice that the tetragonal (Mo) &/(V),
superlattice structures where there is a compression in
the growth direction seem to be preferred to the sc struc-
ture. This has also been suggested in experimental and
theoretical work ' concerning the superconducting
critical temperature of (Mo) „/(V)„superlattices.

The severe limitations of the ASA when considering
nonuniform distortions made us avoid total-energy corn-
putations of hydrogen in Mo/V superlattices. Calcula-
tions beyond ASA for hydrogen in such materials will be
considered in a future work where one aim is also to com-
pare rigorous calculations to the more approximate EMT
scheme.

When we compare the properties of different
(Mo) &/(V)

&
superlattices, such as charge transfer, Fermi

energy, and interstitial electron density, we see that the
only property affected noticeably by the difference in the
structures considered is the amount of charge transfer.
One might then expect changes in the interstitial-density
variation because of that but the effects of a volume-
change on the density compensate the density effects of
the charge-transfer change. Volume expansion acts to
decrease the interstitial-electron density but to increase

the electron transfer across the interface, giving negligi-
ble net effect on the interstitial-density value. Even com-
putations where different sphere sizes and different inter-
layer spacings (for larger superlattices) were used did not
show any dramatic changes in the results and in no case
affected the conclusions regarding hydrogen solubility
(within EMT) in these materials.

IV. SUMMARY AND CONCLUSIONS

The electronic structure of (Mo)„/(V)„metallic super-
lattices has been calculated for n=1, 3, and 5. The
specific aim has been to study the valence-electron-
distribution effects on hydrogen solubility in these ma-
terials, and the general aim has been to understand the
valence-electron-character and lattice-structure effects on
the electron structure in metallic superlattices.

The interstitial-electron-density variation in the super-
lattices is explored and, following effective-medium
theory for hydrogen heat of solution in transition metals
where the surrounding density is the key parameter, ' '
it is found that the hydrogen solution is possible in every
tetrahedral site in the vanadium layers of (Mo)„/(V)„for
n ~ 3. In experiments, " the interface vanadium layers in
Mo/V are found to be almost hydrogen-free in a region
of two to three layer spacings. The explanation given for
the reduction of hydrogen solubility at the Mo/V inter-
faces also follows EMT arguments and is based on
enhanced electron density at the interfaces due to elec-
tron transfer from Mo to V. We find here that there is a
compensating effect —volume expansion of V—that al-
lows H to have a negative absorption energy also at the
interface vanadium layers. The observed reduction of hy-
drogen solubility cannot be explained by EMT arguments
alone but may be sought in interdiffusion and relaxation
at the interfaces and effects of H-H and H-metal interac-
tions for higher H concentrations. The hydrogen concen-
tration is expected to be modulated within the vanadium
layers due to differences in H absorption energy in bulk-
like vanadium layers and in interface vanadium layers.

The band structure of the (Mo)„/(V)„system in the
I -Z direction is compared to the band structure of the
bulk metals. Grossly, it can be understood in familiar
terms of introduction of extra Bragg planes in the Bril-
louin zone where band folding and energy splitting of the
bands are observed. The electron transfer at the inter-
faces follows intuitive rules also. Electrons flow from Mo
to V in order to align the Fermi levels of the two metals.
The character of the transferred electrons across the in-
terfaces is mainly free-electron-like (s and p). Charge os-
cillations are seen because of the formation of a dipole
layer at the interfaces due to the abrupt change of the
effective potentia1. The loca1 density of states of the su-
perlattices show energy shifts —upwards for Mo and
downwards for V—when going from bulklike to inter-
face layers. This energy redistribution acts to adjust the
LDOS peaks from their bulklike energy positions at the
bulklike layers towards similar energy positions for the
LDOS of interface molybdenum and interface vanadium.
The LDOS shape is rather different for s and p electrons
in the superlattices compared to the bulk shapes; this is
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especially valid for interface atoms. The d-electron
LDOS shape is somewhat more rigid within the superlat-
tices for Mo and U atoms. They are, though, sensitive to
the volume change which Mo and U undergo when form-
ing a superlattice. The Mo d-electron band broadens due
to volume expansion and, correspondingly, the U d-
electron band becomes more narrow due to volume ex-
pansion. The volume changes also have the effect of
changing the character of the valence DOS to more local-
ized electrons in the case of volume contraction and more
delocalized electrons in the case of volume expansion.
Many of the above features have also been observed in
electron structure calculations for other metallic superlat-
tices' and give an indication of what can be expected
when two metals are put together to form a superlattice.

The atomic-sphere approximation in the present calcu-
lations have certain implications with regard to the re-
sults. It is seen that in the calculations of equilibrium
volume, the lattice constant is overestimated compared to
KKR calculations where nonoverlapping spheres were
employed. Since both methods use mufFin-tin potentials
and the linearization of the eigenvalue equations in
LMTO is expected to give a minor error, we believe that
the ASA is the major cause of the overestimation of the
equilibrium volume when no corrections for the sphere
overlap are made (combined correction terms) and when
the basis is limited to the usual spd basis. More severe is
the limited types of crystal structures that can be con-
sidered for total-energy comparisons and the inhibition of

including hydrogen impurities due to the inability of the
ASA to treat nonuniform distortions. In the total-energy
calculations, we are limited to considering cubic struc-
tures and tetragonal structures that do not depart much
from cubic cells.

Restricting the geometric structure of the superlattices
to be within a region where the ASA gives reasonable re-
sults, we find that a tetragonal distortion of the
(Mo), /(V), superlattice so as to compress it in the growth
direction is favored over the sc structure, which is con-
sistent with the findings of Karkut et al. and Triscone
et al. Within this set of Mo/V superlattices, there are
no property changes affecting the results and conclusions
regarding interstital-electron-density variation and band
structure. In a planned future study beyond ASA, prop-
erties of more crystal structures and hydrogen impurities
will be considered,
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