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Lattice dynamics of the niobium (001) surface
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In contrast to the reconstructing bcc (001) surfaces of molybdenum and tungsten, the niobium (001)
surface is stable. From our helium-scattering experiments we find that the Nb(001) surface displays a
regular surface phonon dispersion in spite of the pronounced phonon anomalies in bulk niobium that are
due to strong electron-phonon interaction. We have modeled the surface dynamics of Nb(001) using a
bulk-lattice-dynamical model that includes conventional central and angle-bending (three-body) interac-
tions as we11 as electronic degrees of freedom. The latter are needed to account for the bulk phonon
anomalies but are found to have little effect on the surface modes. This explains our experimental obser-
vation that the surface phonons do not exhibit an anomalous dispersion.

I. INTRODUCTION

The clean bcc (001) metal surfaces, other than W(001)
and Mo(001), have not been studied very well so far. It is
known from low-energy-electron-diffraction (I.EED) ex-
periments that some of these surfaces reconstruct [e.g.,
W(001) (Refs. 1 and 2) and Mo(001) (Ref. 2)], whereas
some others are stable [for instance Nb(001) (Ref. 3) and
Ta(001) (Ref. 4)]. In particular, the lattice dynamics of a
stable bcc (001) surface such as Nb(001) has not yet been
investigated.

Niobium is a very interesting material in itself: It has
the highest superconducting transition temperature
(T, =9.3 K) of all metals, indicating a strong electron-
phonon interaction. In fact, strong anomalies in the bulk
phonon dispersion of Nb have been observed by neutron
scattering, resulting in strong deviations from the regu-
lar sinusoidal shape of phonon-dispersion curves. In par-
ticular, one would expect that the parabolalike increase
of the bulk transverse modes in the [100] and [110]direc-
tions would influence the dispersion of the Rayleigh
mode, which is the most pronounced surface phonon
mode.

Due to this anomalous behavior, simple force-constant
models fail to describe the bulk dispersion relation unless
force constants to a large number of neighbors are includ-
ed. ' It should be noted that these models are somewhat
unphysical, since the electronic screening in a metal
reduces the range of the interactions between the ion
cores to a few lattice constants. The screening can be ac-
counted for by calculating the electronic contribution to
the dynamical matrix from the electronic band structure,
as was successfully done by Varma and %'eber using a
tight-binding approach. However, a phenomenological
model introducing new electronic degrees of freedom '

into the usual force-constant scheme proved to be very
useful in the case of niobium. In this model, force con-
stants up to third-nearest neighbors and electronic pa-
rameters up to second neighbors are used, which results

in a much simpler analysis than in the tight-binding cal-
culation, nevertheless yielding a very good agreement
with the experimental bulk phonon data. We have there-
fore used the latter approach in our analysis of the sur-
face phonons of Nb(001).

Our paper is organized as follows. In Sec. II we de-
scribe the experimental technique and the surface
preparation. The results of the helium-atom scattering
measurements are presented in Sec. III. Section IV pro-
vides a description of our lattice-dynamical model. Fi-
nally, our results are summarized in Sec. V.

II. EXPERIMENTAL PROCEDURE

The helium time-of-flight spectrometer consists of a
nozzle beam source and a time-of-flight tube attached to
the target chamber. Incoming and outgoing beam lines
include a fixed angle of 101'. A monoenergetic He atom
beam is produced in a nozzle expansion through an
orifice 10 pm in diameter at a stagnation pressure of typi-
cally 100 bar. The nozzle temperature can be varied be-
tween 50 K and room temperature, resulting in beam en-

ergies between 15 and 70 meV. The beam is chopped for
the time-of-flight measurements by a rotating disk with
two slits. The sample can be manipulated in ultrahigh
vacuum (typically 5 X 10 "mbar) with respect to the po-
lar axis varying the incident angle and the azimuth, in or-
der to adjust for different directions on the surface.
Detection of the scattered He atoms takes place in a mag-
netic mass spectrometer, and their final velocities are
time-of-flight analyzed by a multichannel sealer. By the
conservation laws of energy and quasimomentum, the
phonon energy and wave vector can be determined. '

The niobium single crystal was provided by K. Schulze
of the Max-Planck-Institut fur Metallforschung in
Stuttgart, FRG. A specimen of dimensions 20X10X1
mm was cut from the crystal by spark erosion and was
then oriented and mechanically polished to within 0.1 of
the (001) plane. After polishing, it needed to be annealed
in vacuo at 2300 K for about 30 h until the first LEED
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spots showed up. The main contaminants of the niobium

specimen, as observed by Auger electron spectroscopy,
were carbon, sulfur, and oxygen. Sulfur could be
thermally desorbed by heating to temperatures of 2000
K. Carbon was removed by several cycles of exposing
the surface to oxygen at 1500 K and heating it afterwards
to 2300 K to remove the oxygen. However, it turned out
to be a problem to eliminate the last traces of oxygen
from the sample, which is characterized by a (3 X 1)
LEED pattern. Such a structure has been observed pre-
viously on the chemically similar Ta(001) surface and was
ascribed to a subsurface oxygen species. Heating the
sample to within 200 K of its melting point (2740 K)
finally resulted in a clean surface. This heating procedure
was repeated before each measurement.

III. EXPERIMENTAL RESULTS

After the sample preparation, angular distributions of
the scattered He beam were recorded in order to measure
the He diffraction patterns, which are presented in Fig. 1.
Characteristics of a clean metal surface are a strong spec-
ular reflection and much weaker diffraction spots, since
the He atoms are scattered from the electron density in
the topmost layer, which is very smooth due to the delo-
calized nature of the electrons in a metal. The intensity
of the first-order diffraction spots is indeed only 0.004
and 0.001 times that of the specular beam in the [100]
and [110] directions, respectively. Higher-order
diffraction spots are too weak to be seen aside from weak
(20) spots at higher beam energies. In the [110]direction,
the He diffraction pattern shown in Fig. 1(b) displays an
additional diffraction peak close to the specular direction,
the position of which does not depend on the incident
beam energy. Obviously, this peak is a second specular
reflection from a facet formed at a spot on the surface
that had been slightly overheated during one of the clean-
ing cycles. The resulting deformation of the sample was
due to an inhomogeneity of the crystal heating. Howev-
er, this second specular reflection is a factor of 50 less in
intensity than the main one. Therefore, it will not give
rise to an error in the inelastic measurements, since the
phonon signal from the corresponding facet will be weak-
er in intensity by the same factor. It should be mentioned
that the He beam illuminates an area of 5 mm in diame-
ter on the sample.

A scan of the diffraction peaks is also helpful for ad-
justing the crystal to within 0.5' (full width at half max-
imum of a diffraction peak) along the azimuth of the re-
quired high-symmetry direction for the surface phonon
measurements. Time-of-flight spectra taken along both
symmetry directions ([100] and [110]) reveal that there
are two surface phonon modes on the Nb(001) surface
that are separated in energy by less than 1 meV. In Fig. 2
a series of these spectra in the [110]azimuth are shown.
Aside from the double-peaked phonon feature, a peak
centered at zero energy transfer is also present in all these
spectra, which is due to diffuse elastic scattering from
surface defects. Since the energy separation of the two
modes is close to the resolution limit of the apparatus,
the incident beam energy had to be chosen carefully: As

the relative He velocity spread is about l%%uo and nearly
constant for all beam energies, the beam energy had to be
sufficiently low to guarantee the required resolution. At
the same time, it had to be high enough to ensure a
reasonable value of the inelastic cross section. Therefore,
it was necessary to use beams of several different energies
to measure the surface phonon dispersion.

All phonon spectra were taken at a sample temperature
of 900 K for the following reason: The main constituent
of the residual gas in the scattering chamber is hydrogen,
which is known to dissolve into bulk niobium" and does
not form any ordered surface structures. ' ' Since hy-
drogen is desorbed from the niobium lattice at about 750
K, ' keeping the niobium crystal at 900 K during the
He-scattering experiment guaranteed that no hydrogen
uptake occurred. In this way, measuring times of typical-
ly half an hour could be achieved before the surface
deteriorated and had to be cleaned again. Some test pho-
non spectra taken at room temperature showed no
significant temperature effect on the surface phonons
within our resolution of about 0.5 meV. However, after
deliberate hydrogen exposure, the phonon signal de-
creased drastically, even though a (1X1)He diffraction
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FIG. 1. Helium-atom diffraction from the clean Nb(001) sur-
face in the (a) [100] and (b) [110]directions. Note that the first-
order diffraction peaks are sharp and weak as compared to the
specular reflection, which is typical for a smooth, well-ordered
metal surface. The splitting of the specular reflection in (b) and

0
also the small peak at about 0.2 A ' are due to macroscopic
facets on the sample surface that had developed in the course of
the heating cycles of the cleaning procedure.
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pattern still persisted. Its intensity was, however, re-
duced as compared to that of the clean surface, indicating
an increased amount of disorder in the topmost surface
layer.

The measured surface-phonon-dispersion curves along
the [100] (I X) and [110](I M) directions are presented
in Fig. 3. The two distinct modes observed close to I
cannot be measured for wave vectors in the second half of
the surface Brillouin zone. The mode at lower energies
gradually diminishes in intensity compared to the mode
at higher energies and cannot be detected for phonon
wave vectors larger than 0.3 A '. The higher-energy
mode also becomes unobservable for wave vectors larger
than 0.6 A . A possible explanation for this behavior is
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FICx. 2. Series of time-of-flight distributions measured along
the [001]direction and converted to energy-loss spectra at a low
incident beam energy of E; =22 meV. The strong peak at zero
energy loss (E) is due to diffuse elastic scattering from surface
defects. The peak at —2 me V in the topmost spectrum
disperses upward in energy with decreasing incident angle e;.
For e; &47.5' it splits into a doublet of phonon inelastic peaks.
The peak at lower energies (L) refers to the Rayleigh mode and
weakens more rapidly with decreasing 6; than the second peak
( U). The third inelastic peak at even larger energy losses refers
to this second surface mode detected under different kinematic
conditions {cf.Ref. 10).

that the surface, towards the end of the measurements,
having suffered a number of heating cycles, had
deteriorated and become rough. The temperatures need-
ed to produce a clean surface cause a considerable eva-
poration of the topmost layers. Surface disorder might
lead to a preferential attenuation of the surface modes,
since these modes are strongly localized in the topmost
surface layers (particularly in the vicinity of the zone
boundaries) and will be strongly scattered by surface de-
fects. Surface resonances, such as the upper energy
mode, and surface-projected bulk modes are less affected
by surface defects. It is, however, to be expected that the
coupling of these latter modes to the impinging He atoms
is strongly reduced by imperfections in the surface elec-
tron density due to defects, which will lead to a large de-
viation of the actual scattering potential from the one of
an ideal surface.

Another experimental problem is that the measure-
ments had to be performed at a surface temperature of
900 K, at which a considerable multiphonon background
in the spectra (cf. Fig. 2) reduces the single phonon con-
tribution. Hence it cannot be ruled out that the observa-
bility of surface phonons at higher wave vectors on the
clean Nb(001) is hindered by experimental limitations due
to the high chemical reactivity of this transition-metal
surface and the diSculties in maintaining a clean surface.

From a comparison with the corresponding bulk pho-
non data, ' we can assign polarization vectors to the ob-
served surface phonons in the long-wavelength limit, i.e.,
close to the I point. Let us first examine the modes
along [100]. The lowest surface mode lies just below the
surface-projected transverse bulk band and can be
identified as the Rayleigh mode. The surface mode at
higher energies is located close to the longitudinal bulk
band. It is embedded in this band and represents a sur-
face resonance. Further comparison with the bulk modes
reveals that the anomalous (parabolalike) increase of the
transverse bulk mode along g'00] is not found for the
Rayleigh mode along I X. The transverse bulk modes in
this direction are degenerate. For temperatures ranging
between 300 and 1000 K, these modes drop below the line
co=cTq (cf. Ref. 6), where cT denotes the transverse
sound velocity and q =(2~/ap)g the phonon wave vec-
tor. The measured surface phonon dispersion of the Ray-
leigh mode, however, lies slightly above the correspond-
ing line. The same considerations hold for the I M az-
imuth. However, they now refer to the transverse bulk
mode of lower energy near 1, since in the [g'0] direction
the two transverse bulk modes are no longer degenerate.
Note that in our scattering geometry, for symmetry
reasons, the He atoms do not couple to the shear hor-
izontal surface modes. Therefore, we do not detect the
surface analogue of the second transverse bulk mode.

IV. LATTICE-DYNAMICAL MODEL

A. Bulk model

Our modeling of the measured surface vibrational
modes is based on a lattice-dynamical model for bulk
niobium. This model includes radial (a, ) and tangential
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FIG. 3. Surface phonon dispersion on the clean Nb(001) surface along both high-symmetry directions at a sample temperature of
900 K. Two surface modes can be clearly resolved. The corresponding lower edges of the longitudinal and transverse surface pro-
jected bulk phonon bands are sketched as dashed lines. Close to I the slope of these curves corresponds to the appropriate sound ve-

locities. From the behavior in the long-wavelength limit, the surface mode at lower energies (L) can be identified as the Rayleigh
wave. The mode at higher energies ( U) lies close to the longitudinal bulk band. It is embedded in the bulk band and thus represents
a longitudinal resonance.

(P, ) force constants up to third neighbors (i.e., i =1—3),
one-parameter angle-bending (three-body) interactions,
and charge-fluctuation parameters of scalar and quadru-
polar symmetry.

The dynamical model including the central and angle-
bending interactions has been described in detail by Kul-
karni and de Wette' and Kulkarni, de Wette, and
Prade' for tungsten. The use of angle-bending interac-
tions is a convenient way to account for the fact that
niobium does not satisfy the Cauchy relation

C12 —
C44

where c,z and c44 are components of the elastic tensor.
This relation is necessarily obeyed if only central forces
(satisfying the equilibrium condition} are involved and if,
in addition, every particle occupies a site of inversion
symmetry (cf. Ref. 16, p. 136). Bolef' reports that for
niobium the Cauchy relation (1) is strongly violated:
c,z

= 13.45 X 10" dyn/cm and c~ =2. 873 X 10"
dyn/cm . The angle-bending interactions are also needed
to obtain dynamical stability of the bcc structure (which
is unstable under a broad class of central interactions; cf.
Ref. 16, p. 152). For these reasons we include in our
model an angle-bending force constant y, defined as fol-
lows: Let p, i, and j be a triad of atoms such that i and j
are first neighbors of p, and j is the second neighbor of i
(cf. Fig. 4). Then y& is the force constant associated with
the angle at p such that the lattice potential energy con-
tributed by one such angle is ( —,

' }y,(aoM), where ao is
the lattice constant of niobium (3.30 A) and 58 is the
change in the angle at p from its equilibrium value of
70.53 .

The charge-fluctuation parameters ' are included in
the model to account for the strong electron-phonon
anomalies in the phonon-dispersion curves of niobium.
Here we use the scalar ( A

&
symmetry) and quadrupolar

( T2g symmetry) model proposed by Allen, which in-

eludes 12 charge-fluctuation parameters. (For a pictorial
representation of these charge fluctuations see Ref. 18.)
From Allen's calculations it is seen (cf. Table II of Ref. 9)
that out of the 12 charge-fluctuation parameters, only six,
namely the scalar charge-fluctuation parameters up to
second neighbors (P&, $2, A„A2) and the quadrupolar
charge-fluctuation parameters up to first neighbors
(8&„8») have the largest effect on the bulk phonon-
dispersion curves. We therefore include only these six
charge-fluctuation parameters in our model. Since our
model utilizes only six of the 12 charge-fluctuation pa-
rameters, the numerical values of these parameters given
by Allen (in Table II of Ref. 9) cannot be used in our
model. Moreover, Allen's model does not include angle-
bending interactions. Due to these differences, we need
to redetermine the numerical values of our model pararn-
eters by carrying out a least-squares fit to the bulk
phonon-dispersion data.

Since our He-scattering experiments were performed at
900 K, our bulk dynamical model should ideally
represent the experimental bulk phonon-dispersion data

Bp

FIG. 4. Conventional unit cell of the niobium (bcc) lattice.
The isosceles triangles similar to that formed by p, i,j are con-
sidered in the angle-bending interactions. The force constant gi
is associated with the angle at p.
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= —6.58M THz (2)

which is within 15%%uo of the experimental value' of

at that temperature. These data were taken from Deder-
ichs, Schober, and Sellmeyer. However, since Ref. 6
contains extensive phonon-dispersion data at 296 K, we
proceeded as follows: We obtained an initial set of model
parameters by a least-squares fit to the 296 K data. By
using this fit as a starting point, a subsequent fit-
essentially a perturbation of the 296 K fit—was obtained
by using the available 900 K data [see Fig. 5(a)]. The re-
sulting parameter set is given in Table I, which shows
that our values of the charge-fluctuation parameters are
quite close to those found by Allen. Thus the six
charge-fluctuation parameters not included in our model
do not have a significant effect on the bulk phonon-
dispersion curves, and their exclusion is justified. Note
that the violation of the Cauchy relation (1), which is a
measure of the noncentral interactions, is

QO(C44 C12)—4(pl+p2+4p3)+ 9 Xl

8(2A, + A2)

1+8((),+6/2

a I
=4.619M

a2 =4.011M
a, = 1.447M

pi = —0.65M
P, =0.155
$2=0. 130
B

&

=0.0352M

P, =3.367M
P, = —1.139M
p3 = —0.515M

A, =0.268M'I"
A, = —0.498M'"
B&b

=0.287M

—5.73M THz (M is the mass of the Nb atom). Also
note that most of the contribution to Eq. (2) comes from
the term 64', /9= —4.62M THz, which justifies our use
of the angle-bending force constant y, to account for the
violation of the Cauchy relation (1).

The value of g& was also dictated by the requirement
that the dynamics of the Nb(001) slab be stable
throughout the surface Brillouin zone: We found that
the dynamics of the Nb(001) slab was especially prone to
instabilities in the vicinity of the zone center of the sur-

TABLE I ~ Fitted values of the lattice-dynamical model of
bulk niobium. a;, P; (i =1,2, 3), and y, are expressed in THz,
where M is the mass of the niobium atom. t)), and p2 are dimen-
sionless. A &, A2, Bl„and Bib are expressed in THz.
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FIG. 5. (a) Bulk phonon data for niobium (Ref. 6) and the dispersion curves calculated from the lattice-dynamical model given in
Table I. The solid and dashed lines represent the calculated longitudinal and transverse phonon-dispersion curves, respectively. The
closed circles represent the longitudinal phonon data; the crosses and triangles denote the transverse phonon data. The data points
with vertical bars correspond to the 900 K data. (The vertical bars are not error bars. ) The dimensionless variable g is defined by
g=q/(2'/ao), where q is the phonon wave vector and as the lattice constant of niobium. The numbers above [ggl ], [0.5,0.5$], etc. ,
are the values of g. (b) Same as in (a) except that the dispersion curves are calculated from the lattice-dynamical model given in Table
I with all the charge-Auctuation parameters set equal to zero. The dispersion curves in this figure illustrate the importance of the
charge-fluctuation parameters in accounting for the phonon anomalies.
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face Brillouin zone, and the only way to remove this in-
stability was to choose y, & —0.65M THz Thus y& was
taken to be —0.65M THz to stabilize the Nb(001) slab
dynamics and to obtain the smallest discrepancy between
Eq. (2) and the corresponding experimental value' of—5.73M Thz . [The Nb(110) slab dynamics did not have
these instability problems; it was found to be stable for
the parameters of Table I.] In passing, we point out that
our model does not satisfy the equilibrium condition; i.e.,
P, +P2+4P3=0. 167M THz %0. However, the deviation
(0. 167M THz ) is small compared to the magnitudes of
the tangential force constants P; in our model (cf. Table
I). Thus, in view of Eq. (2), it is seen that the P s contain
small noncentral components.

In Fig. 5(a) we display the calculated bulk phonon-
dispersion curves in the symmetry directions of the bulk
Brillouin zone together with phonon-dispersion data
from neutron-scattering experiments. We draw atten-
tion to the following pronounced phonon anomalies in
these curves: (i) The parabolalike increase (near I ) of the
lowest transverse dispersion curves in the [(00] and
[g'0] directions; (ii) dips in the longitudinal dispersion
curves in the outer parts of the Brillouin zone in the
[$00] and [g'g] directions. As already mentioned, the
charge-fluctuation parameters are included in the model
to account for these anomalies. The eS'ect of these pa-
rameters can be judged from Fig. 5(b), where the disper-
sion curves are obtained by setting all the charge-
fluctuation parameters equal to zero. It is obvious that
the agreement with the experimental data is substantially
worse in the regions of the anomalies. We find that even
the least-squares fit obtained by using just the force con-
stants a;, p; (i =1—3), and X& is not much different from
the dispersion curves shown in Fig. 5(b). We have also
carried out least-squares fits using additional force con-
stants and angle-bending parameters. None of the addi-
tional parameters reproduce the phonon anomalies as
well as the introduction of the charge-fluctuation parame-
ters.

B.Surface modes

The surface modes and resonances of Nb(001) were
determined by calculating the dynamics of a 51-layer slab
of Nb(001). The use of such a thick slab enabled us to
calculate the surface-projected density of states, which we
used to locate all the surface modes and resonances pre-
dicted by our model. In order to be applicable to a slab
(having more than one particle per unit cell), we had to
generalize the charge-fluctuation model of Allen, which
was developed for one particle per unit cell. The general-
ization is described in Appendix A.

The best representation of the measured surface modes
(Fig. 3) was obtained by modifying the second- and
third-neighbor radial (a2, a3) and tangential (P2,P3) force
constants in the surface layer, as shown in Table II. All
other force constants were kept at their bulk values. It
was found that the charge-fluctuation parameters at the
surface do not appreciably influence the surface phonons;
hence all those parameters were kept at their bulk values.
The dispersion curves calculated using this model are

C. Surface modes at 900 K

The calculated dispersion curves of the surface modes

SP~~ (solid lines), SPj (long-dashed lines), and SH (short-
dashed lines) along I X and I M are shown in Fig. 6(a).
The lower bulk band edges are seen to exhibit a parabola-

TABLE II. Force constants (in THz ) at the surface of the
Nb(001) slab. Only those force constants that are changed from
their bulk values are listed. The subscript s denotes that the
force constants are in the surface layer.

a2, =1.6M
a3, =0.4M

Pp, = —0.8M
p3, =0.0

shown in Fig. 6(a).
We need to comment here on the fact that the first-

neighbor radial and tangential force constants between
the surface and the second layers are not modified in the
model. To understand this we refer to Eqs. (Bl)—(BS) of
Appendix B, which are taken from our earlier work on
W(001).' These equations give analytical expressions for
the dispersion of the Rayleigh (SP~), longitudinal (SP~~),
and shear horizontal (SH) modes along I X and I M, in a
model in which only the top layer is allowed to vibrate,
while all lower layers remain static. While admittedly
this is a rather crude approximation, it is of great help in
estimating which of the force constants are likely to have
the most influence on a given surface mode.

Another fact to note is that without any force-constant
changes at the surface, the SPj mode is below the corre-
sponding experimental data, whereas the SP~~ mode lies
aboue the corresponding experimental data [see Fig.
6(b)].' Thus, in order to obtain agreement with experi-
ment, SP~ needs to be raised and SP~~ needs to be lowered.
With this in mind, consider Eqs. (B1)-(BS). It is seen im-

mediately that changing the first-neighbor force con-
stants will raise or lower both modes simultaneously,
making it very difficult to modify these modes in opposite
ways, by manipulating the first-neighbor force constants.
Now consider the ways in which az„a3„P2„and P3, ap-
pear in Eqs. (Bl)—(B8). All these force constants are mul-

tiplied by a factor of 4 or 8. As a result, even a small
change in these force constants is magnified by a factor of
4 or 8, and such a behavior is indeed observed in the full
surface dynamics. Also note that a2, and a3, appear only
in the dispersion of the SPl modes (the expression for the
SH modes are not taken into consideration, since these
modes are not measured). Thus it is possible to modify

a2„a3„P2„and P3, in such a way as to simultaneously
raise SP~ and lower SP~~ to obtain agreement with experi-
ment. This analysis shows, in addition, that there could
be small changes in a& and P& between the surface and the
second layer, but the experimental data do not enable us
to determine these changes with any certainty. Similarly,
there could be surface-related changes in the charge-
fluctuation parameters. However, as mentioned earlier,
the influence of these changes on the surface modes is
small, and therefore they cannot be determined unambi-
guously. We have kept the charge-fluctuation parameters
at the surface at their bulk values.
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like increase in the neighborhood of I ~ Along I X the
SH and SP~ modes lie very close to each other, while SP~~

lies in the bulk band as a resonance. Along I M the SP~~0
resonance becomes weak for Q &0.7 A ' and ceases to
exist at Q=0. 8 A '. Hence it is shown as a dashed line
(two dashes) in this region, namely, 0.7(Q (0.8 A
At Q =0.65 A ' a well-localized SPl~ surface mode ap-
pears in the bulk band; it emerges from the bulk band at

Q =0.75 A '. For Q &0.94 A ', the SP~l and SP~ modes
interchange their vibrational character. Hence, for
Q &0.94 A ', the lower mode is shown as a solid line
and the upper mode is shown as a dashed line. Such an
interchange is not observed along I X. However, along
both directions, both modes have mixed character; i.e.,
the vibration in SP~~ is predominantly longitudinal and in
SP~ it is predominantly perpendicular to the Nb(001)
plane.

Note that the measured SP~ mode along I M and the
measured SP~~ resonance along both directions can be
fitted quite well. Along I X the agreement for the SP~
mode is not satisfactory. However, inclusion of all the
charge-fluctuation parameters of Allen will not solve this
problem, since the charge-fluctuation parameters do not
affect the nature of the surface modes appreciably. In
other words, the discrepancy in SP~ along I X apparently
points to a shortcoming of the underlying bulk model.
This is a significant observation since, judged on the basis
of the bulk phonons alone, the bulk model seems to be
quite adequate. This is a clear example of the fact that
surface modes can reveal the shortcomings of a bulk
model because of the broken symmetry at the surface.
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FIG. 6. (a) Measured and calculated surface phonons and
resonances of Nb(001) along the symmetry directions [100]
(I X) and [110](I' M). The closed circles represent our experi-
mental data at 900 K. The theoretical dispersion curves are
determined from the dynamics of a 51-layer Nb(001) slab, with
the bulk and surface force constants given in Tables I and II, re-
spectively. The solid lines represent the surface phonons and
resonances having mainly longitudinal (SPII) polarization. The
lines with long dashes correspond to the surface phonons having
polarization mainly perpendicular to the Nb(001) surface (SP&
modes), and those with short dashes denote the shear horizontal
(SH) surface modes. The dotted lines represent the bulk modes
of the 51-layer slab. For clarity, only a half of the 1S3 bulk
modes (alternate dispersion curves) are drawn. (b) Same as in
(a) except that the force constants at the Nb(001) surface are
taken to be the same as their bulk counterparts (dynamics of the
truncated bulk). A comparison of this figure with (a) shows the
effect of the force constants in Table II on the surface modes
and resonances.

Using helium-atom scattering we have measured the
surface phonon dispersion of the Nb(001) surface in both
high-symmetry directions. Two distinct phonon modes
are clearly resolved, which have been identified as the
Rayleigh mode and a longitudinal resonance at higher
phonon energies. This ordering in energy is typical for a
stable metal surface. No phonon anomalies could be
found within the accessible wave-vector range. In partic-
ular, the parabolalike increase in the transverse bulk
phonon-dispersion curves close to I does not show up for
the corresponding surface modes. We were unable to
detect phonon inelastic scattering from the two surface
modes for wave vectors in the second half of the surface
Brillouin zone. The reason for this behavior could be
that the inelastic cross section becomes unfavorable. It
cannot, however, be ruled out that experimental limita-
tions due to problems in maintaining a clean Nb(001) sur-
face for a sufficiently long measuring time are responsible
for the apparent vanishing of the surface modes for large
wave vectors.

We have constructed a lattice-dynamical model that
includes the usual central and angular forces as well as
electronic degrees of freedom. This model is capable of
describing the experimental data, both in the bulk and at
the (001) surface. However, the modifications of the sur-
face force constants with respect to the corresponding
bulk values are quite large, and even then the calculated
SP~ mode along I X does not agree fully with the experi-
mental data [cf. Fig. 6(a)]. This discrepancy reveals the
limits of applicability of the force-constant models to sur-
face dynamics. Moreover, our analysis also demonstrates
that a model that describes the bulk phonon dispersion
well does not suffice to reproduce the details of surface
phonon dispersion. A satisfactory description of the sur-
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face phonons will probably have to be based on a first-
principles approach.

aH,
=pL (1';k'p) A (1 —1',k'p, ka) (A5)
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and

aa, = A (1'—1;ka, k'P)u(1';k'P)
BpL 1;ka

+4 (1'—1;ka,k'p}p, (1';k'p)=0

(A6)

The right-hand side of Eq. (A6) is zero due to the adia-
batic approximation [cf. Eq. (4) of Ref. 9]. Assuming
plane-wave solutions to these equations, namely,

APPENDIX A: CHARGE-FLUCTUATION
MODEL FOR A SLAB

The charge-fluctuation model was formulated by Al-
len for one particle per unit cell. In order to apply it to a
slab, it needs to be generalized for a multiparticle basis.
Such a generalization, applicable for a lattice in two or
three dimensions, is outlined here. We start with Eq. (3)
of Ref. 9, which gives the charge-fluctuation part of the
Hamiltonian for one particle per unit cell:

and

u (1',k'P) =uq(k'P)exP[iq(l' —1)]

and

pL (1';k'P) =pL.q(k'P)exp[iq(l' 1)—),
we obtain

aH,
=pl q(k'P) A (k'P, ka)

(A7)

(A8)

(A9)

H, = g g p«(l)A~&(R)up(l +R)
L, I, R a, P

+ —,
' g g g pi~(1)4~p (R)pl p(l+R), (Al)

L,L' I,R a,P

where l denotes the lattice points, R the lattice vectors,
u (1) the ath Cartesian component of the displacement
of the 1th atom, and pi ~(l) the charge-fluctuation (elec-
tronic) coordinates having Cartesian components a and
symtnetry L (cf. Ref. 9 for details). A &(R) and 4 & (R)
are phenomenological coupling constants between a
charge fluctuation and a displacement and between two
charge fluctuations, respectively.

In order to generalize Eq. (Al) for a multiparticle
basis, we write it in an equivalent form as follows:

0= Aq (ka, k'P)uq(k'P)+4q (ka, k'P)pt. (k'P),

(A 10)

where A and 4 are defined by

A (ka, k'P)= A (1',ka, k'P)exp(iql') (A 1 1)

and

(ka, k'P) =4 (1',ka, k'P)exp(iql') . (A12)

Here and hereafter no sum over q is implied. Equation
(A10) can be solved for pL (k'P). Then Eq. (A9) yields

BHi = —(Aq ) (ka, k'P)(4 ') ~ (k'P, k"o)
t

H& = pI (1;a)A (1'—1;a,P)u (1';P)
X Aq (k "cr,k"'v)uq(k'"v) . (A13)

+ ,'p, (1;a)e"(1'-1;a,P)p, (1';P—) . (A2)

(1'—1;ka, k'P)=N (1 —1';k'P, ka) . (A4)

The equations of motion associated with H
&

can now be
obtained immediately:

Here and hereafter me assume summation over repeated
indices unless stated otherwise. Now replace the lattice
points l and I' by l, k and l', k', respectively, where k and
k' denote the basis. Then H, can be generalized as

H, = pI (1;ka) A (1'—1;ka, k'P)u (1',k'P)

+ ,'pL (I;ka)4 (1' —1;ka,k'P)pL. (1';—k'P) .

(A3)

Since the second term in Eq. (A3) is a quadratic form, we
can assume without any loss of generality that the matrix

is symmetric; i.e.,

g Do"(ka, k'P) =Q Do"(ka, k'P) =0 .
k k'

(A 15)

In view of Eqs. (A14) and (A15), we see that the following

Thus the contribution of H& to the dynamical matrix,
denoted by Dq~ ~(ka, k'P), is

D"'(ka, k'P) = —( A )f(ka, k "o )

X(4 ')~ ~ (k o' k v)Aq (k v k P)

(A14)

Note that the above analysis is valid for a lattice in three
as well as in two dimensions; i.e., also for a slab.

Next we derive a sufficient condition for the transla-
tional invariance of the dynamical matrix. Since the
non-charge-fluctuations part of the dynamical matrix
satisfies the translational invariance, the charge-
fluctuations part must be translationally invariant in-
dependently; i.e., we must have
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condition is suf5cient to establish translational invari-
ance:

g Ao (k "o,ktz)=g g A (l I—";k"o,ka)=0
k k I —I"

(A16)

ary. These expressions are reproduced from our earlier
work on W(001) (Ref. 15) and do not incorporate the
charge-fluctuation parameters. Along I X,

Mrosp (q) =C~ +4(/3pz + 2P3 9&~ )sin (qao/2)

(B1)
for every L", k", o., and o.. This condition can be stated
in words as follows: For every row of each one of the
matrices A o indexed by the superscript L", the sum of
every third element (corresponding to tz= xy, z) must
vanish. We have used this condition to ensure the
translational invariance of the Nb(001) slab.

In our lattice-dynamical model of Nb(001) we include,
(i) scalar (L =1) interaction 4" up to second neighbors,
which yields parameters P, and P2, (ii) on-site (zeroth-
neighbor) quadrupolar (L =25') interaction

(l' —1;ka, k'P}=5tt 5kk.5a&, i.e., no free parame-
ters, (iii) scalar (L =1) interaction A' up to second
neighbors, which yields parameters A, and A z, and (iv)

quadrupolar (L =25') interaction A up to first neigh-
bors, giving two parameters B„and B,b (see Table I of
Ref. 9 for details). With the use of these parameters in
Eq. (A14), the contribution of charge fluctuations to the
dynamical matrix of the Nb(001) slab is calculated.

Mrosp (q)= Cp+4(ized. +a3, +P3.+ —9y& )sin'(qao/2)
II

MtosH(q) = Ca+4(132, +a3, +F3. —p&)sin'(qao/2),

and along I M,

Mrosp (q) = C, +8(Pz, —
—,'y, )sin (qao /2)

+4f33 sin (qao)

M cosp ( q ) = C, +4(cz„+P„+—", y, )»n'( qa o /2 )

+4ct3, sin (qao),

McosH(q) = C2+4(tz2, +P2, + —9'y, )sin (qao/2)

+4133,sin (qao),

(B2)

(B3)

(B4)

(B5)

(B6)

APPENDIX B: ESTIMATES
OF SURFACE-MODE DISPERSIONS

In this appendix we present analytical expressions for
the dispersion of the Rayleigh (SPt), longitudinal (SP~~),
and shear horizontal (SH) modes of an unreconstructed
bcc (001) slab, in an approximation in which only the
atoms in the surface layer are allowed to vibrate, while
those in the second and subsequent layers remain station-

C, =—3(a, +2p, )+a2+2a3+2f33+ 9

C2= —', (a, +2p, )+p~+a3+3p3+ —", y) .

(B7)

(B8)

where M is the mass of the niobium atom, ao is the bulk
lattice constant of niobium, 0 qao ~ ~ along both direc-
tions, and a;„/3,, (i =2, 3) are the ith-neighbor interac-
tions among the surface atoms. Here C, and C2 are
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It would appear from Fig. 6(b) that the lower measured
dispersion curve may be due to the bulk band edge, particu-
larly along I M, where it even seems to duplicate the parabo-
lalike increase of the bulk band edge. However, our surface-
projected density-of-states calculations show no appreciable
contribution due to the bulk band edge, thus ruling out this
interpretation.


