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Wave-packet approach to noise in multichannel mesoscopic systems
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Noise in conductors transmitting electrons coherently between attached reservoirs is calculated by fol-

lowing wave packets incident on the sample. The Pauli principle restricts the occupation of wave pack-
ets, spreading electrons more uniformly among the available packets, and thus reducing the noise below
that of the classical shot-noise expression for totally uncorrelated electrons. After a brief review of the
results for one-dimensional leads, we treat the case of the sample attached to two multichannel leads. A
proper choice of basis for the wave packets permits this case to be reduced to that of a set of independent
parallel one-channel samples. This picture is extended to the case of excess noise in multiterminal sam-

ples at zero temperature, leading to anticorrelated fluctuations between different leads. The anticorrelat-
ed fluctuations are analyzed, in particular detail for a Y-shaped three-lead sample. Our wave-packet ap-
proach is presented as a physically intuitive alternative to the existing approaches to mesoscopic noise,
and leads to identical results.

I. INTRODUCTION

In the past decade, progress in nanostructure fabrica-
tion techniques' has led to the discovery of many phe-
nomena in mesoscopic physics. Among those are the
quantum Hall effect (QHE) and all its derivatives, the
quantization of the conductance of a narrow constriction
as a function of the gate voltage, the observation of the
Aharonov-Bohm effect in metallic rings, etc. In these
systems, the reduced size of the samples and a very low
temperature can allow electrons to cross the sample in a
coherent way. While an electron may suffer elastic col-
lisions with the boundaries of the sample, or with impuri-
ties, inelastic collisions, such as phonon scattering, spin-
flip, and electron-electron scattering processes, which are
responsible for the loss of phase coherence, can be
neglected. As a result, interference effects due to the wave
nature of the electrons are expected to occur, in close
analogy with the propagation of electromagnetic (EM)
waves in a complex structure. However, there is one ma-

jor difference between EM waves and electrons: Elec-
trons obey Fermi-Dirac statistics, while EM waves are
composed of photons, obeying Bose-Einstein statistics.
For electrons, the Pauli exclusion principle restricts the
occupation of quantum-mechanical states, therefore
affecting electronic transmission through a sample, while
no similar constraint exists for photons: many photons
can coexist in the same state. The purpose of this paper
is to give an illustration of these effects on excess noise
due to electron transport in coherent structures.

To a large extent, the effort in this field has focused on
the average properties of electronic transport, such as the
conductance. New ways of characterizing these systems
include the measurement of the spectral density of
current or voltage noise. Here, we will attempt to calcu-
late noise current from quantum-mechanical transmis-
sion. As is well understood in classical systems, noise
arises whenever random processes are present in electron
transport. A classical example is shot noise for vacuum

diodes: the uncorrelated emission of electrons from a
cathode. In general, noise in solid-state devices can have
different origins. First there is 1/f noise, which typical-
ly arises from fluctuations in the resistance of the sample.
Feng, Lee, and Stone showed that the motion of a few
defects out of 10 atoms can lead to fluctuations in the
conductance of the order e /fi, independent of sample
size. On top of the 1/f noise, a white spectrum of noise
is superposed, associated with the stochastic nature of
electron transport. This latter contribution, due to both
quantum and thermal fluctuations of the electrons, will
be the focus of the present paper. Other sources of noise,
such as telegraphic noise due to impurity motion, or the
noise associated with the electromagnetic environment
which defines the sample, are also present in real systems,
but will not be discussed here.

Reference 10 reported measurements of noise in a
double-barrier resonant tunneling structure. The mea-
surement frequencies were chose to be small compared to
the inverse transit time of an electron through the struc-
ture. For frequencies below 100 Hz, 1/f noise gave the
dominant contribution, but between 1 and 10 kHz the
amplitude of the noise signal did not depend on frequency
(white noise). For resonant tunneling structures with
asymmetric barriers and small transmission, the noise
level in that frequency range was found to lie almost at
the full shot-noise level. For more highly transmitting
symmetric structures, the measured noise was suppressed
compared to shot noise.

Another experiment performed by Li et al. " attempt-
ed to measure shot noise in a narrow constriction, at fre-
quencies ranging from 100 Hz to 100 kHz and a tempera-
ture of 4.2 K. Upon separation of the spectral density
into a 1/f and a frequency-independent component, the
white-noise contribution was found to increase with the
injected current, but never reaching the full level of clas-
sical shot noise. The 1/f component was attributed to
the trapping and detrapping of electrons by impurities.
The increase in white noise was attributed to thermal
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effects and to the nonadiabaticity of the constriction,
which permits the backscattering of electrons incident on
the constriction. It was inferred that for an ideal contact
(with no backscattering}, transport at zero temperature
does not generate shot noise, due to the absence of ran-
dom processes. This conclusion is consistent with the
fact that a filled set of states cannot generate any noise, as
we shall see below.

At the same time, noise has also been measured in
two-dimensional electron systems which exhibit the
quantum Hall effect. ' There, the spectral noise intensity
of the longitudinal and Hall voltage was explained in
terms of fluctuations in the number of extended states ly-
ing in the Landau-level tails. More recently, voltage
noise measurements where performed on gated struc-
tures, ' characterizing the noise for fractional and integer
filling factors. Noise plateaus were observed for filling
factors corresponding to the Hall quantization condition.

Previous calculations of noise in quantum coherent
structures have been based on essentially two types of ap-
proaches: the wave-packed approach, which was success-
fully applied to calculate thermal equilibrium noise, ' or
alternatively a first-principles calculation of the current
correlations in time, ' ' which is related to the Keldysh
formulation of nonequilibrium quantum statistical
mechanics. ' Much of our work is an attempt to under-
stand and verify the results of Biittiker' from the wave-
packet viewpoint. Other work, ' based on semiclassical
approaches, has been used to calculate excess noise in
small structures, but will not be discussed.

In the wave-packet approach of Ref. 14, electrons are
visualized as traveling through the idea leads connected
to the sample, forming orthogonal wave packets. Upon
hitting the sample, a wave packet may be partially
transmitted or reflected, and the fluctuations in current
are determined from the occupation probabilities of the
different incident states in the leads, as well as the
transmissive behavior of the sample.

We pause here, for a supplementary comment on our
motivation, and on the relation to the more formal
theories. ' ' The latter invoke the calculation of
grand-canonical averages of products of current opera-
tors, whose relation to actual noise measurements is not
displayed in a direct physical way. First of all, to dispel
one possible misperception, current measurements are not
measurements of momentum. Currents can be measured
through their magnetic fields, reflecting the sum of elec-
tronic and displacement current, and yielding a result in-
dependent of the location along a circuit branch. Most
likely, however, they are measurements of voltage across
a small resistor inserted between the sample and a reser-
voir. At the low frequencies of interest in this discus-
sion, low compared to the reciprocal of any kinetic time
associated with the sample (see below), noise currents
measure the fluctuation in the arrival and departure rate
of electrons. In a given time interval, do we have more or
less than the average number transmitted into and out of
a given lead'7 That is essentially an electron counting
operation; an electron arrives, or does not arrive, and this
is relatable to the use of the second quantization formal-
ism in Refs. 15—17. The fluctuations arise from the fact
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FIG. 1. Transport through a sample connecting two reser-
voirs at differing chemical potentials. The capacitors provide an
effective short circuit at the frequencies of interest.

that occupation and transmission probabilities specify an
average rate. A given electron, incident on the sample in
the form of a wave packet in a given lead, is either
transmitted into another lead, or not. Experimentally, of
course, it is easier to characterize these fluctuations in the
frequency domain, rather than in the time domain, and
this is precisely what our analysis addresses.

As mentioned earlier, ' it is expected that the Pauli ex-
clusion principle will tend to spread electrons apart.
Coulomb repulsion between electrons will have a similar
effect. In a vacuum diode, such efFects have long been
known to occur as the voltage between the two electrodes
is reduced, and the electron being emitted from the
cathode sees both the field due to the applied potential
and the field associated with the electron cloud near the
cathode. The current is then limited by the applied volt-
age, and the measured noise lies well below the shot-noise
level. %'hile related effects may turn up in mesoscopic
systems, we shall not address them, and only consider the
independent electron model.

A simplified schematic circuit for noise measurement
in a two-terminal structure is illustrated in Fig. 1. The
sample to be analyzed is connected on the left- and the
right-hand side to two electron reservoirs through ideal
leads. Applying a bias between the two reservoirs causes
current to flow through the sample. For simplicity, the
sample is assumed to be a purely elastic scatterer; inelas-
tic processes take place only in the reservoirs. To permit
fluctuating current to flow, the reservoirs are short cir-
cuited via two large capacitances. In what follows, the
frequency range will be chosen such that (i) the inverse of
the typical time associated with an electron passing
through the sample (traversal time } is large compared
to the measurement frequency, (ii) the impedance of the
two capacitors in series is small compared to that of the
sample, (iii) the impedance of the stray capacitances due
to the electronic circuitry surrounding the sample is
large, and (iv) the measurement frequency is low enough
to make the self-inductance negligible.

Note that the setup illustrated in Fig. 1 can only be
used to measure current noise. To measure voltage fluc-
tuations, which are eliminated by the two large capaci-
tances, we need to disconnect this short circuit and. in-
stead, connect the reservoirs to each other through a
higher impedance circuit. The open circuit voltage fluc-
tuations can be calculated from the current fluctuations
by simply multiplying the latter quantity by the square of
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the resistance of the sample.
The paper is organized in the fo11owing way. Section

II gives the general definitions and introduces our wave-
packet approach in the one-dimensional case, where we
obtain explicit formulas for combined thermal and excess
noise. Section III is devoted to the multichannel two-
terminal case. Section IV deals with the multiterminal
case at zero temperature. Section V discusses current
correlations in a Y-shaped structure, where effects associ-
ated with the Fermi statistics of the electrons are expect-
ed. Section VI discusses coherence between leads. The
results are summarized in Sec. VII.

II. NOISE IN T%0-TERMINAL STRUCTURES

A. Preliminaries

() &+t«, 1 1 dk
E —aE hE 2m. dE'

ik (E')z —iE'( t + n ~)/AXe (2.1)

with ~=2M/hE. These wave packets provide a com-
plete basis for waves within hE incident from one side;
the left side as written in Eq. (2.1). A wave packet is con-
structed from a superposition of plane waves, each plane
wave carrying the same flux, and can be occupied by two
electrons, with their respective spins pointing in opposite
directions.

The spectral density of current noise W(v) in the fre-
quency interval [v, v+5v] is obtained from the Fourier
transform of the current-current correlation function
C( )2s

with

W(v) =4f "dr C('T) cos(21Tv'T),
0

(2.2)

C(r)= lim —f dt I(t)I(t+r)T

T~co T 0
(2.3)

Using the Fourier transform of the current I(22rv), the
expression for the spectral density of noise becomes

W(v)= lim —( ~I(2mv)~ )
2

7~00 T (2.4)

where the angular brackets denote an average over pulse
histories.

Denoting the current associated with one electron
wave packet by j(t), the total current, as a superposition
of orthogonal wave packets shifted in time, will then be

I(t)= g j(t nr)g„, — (2.5)

To illustrate our approach, we first consider the sim-
plest case, where the leads carry only one channel (one-
dimensional case). This amounts to saying that electrons
traveling in the sample in the form of wave packets are
sent from a given 1ead one at a time, at a rate 1/~, to-
wards the sample region.

If we restrict the wave packets to an energy range AE,
we can construct a series of successive orthonormal wave
packets in the following way 4 24

' 1/2

where g„denotes the number (and sign} of the electrons
transferred across the sample in the nth pulse period. g„
can take the value +1 if a pulse is transmitted to the
right, 0 if no pulse is transmitted, or —1 for a pulse
transmitted to the left. From Eq. (2.5), the Fourier com-
ponent of the current reads

I(2rtv}= g g„j(2mv)e' " "' . (2.6)

The cross terms in Eq. (2.7) vanish after ensemble averag-
ing (or after considering many such terms} because there
is no correlation between current pulses in different time
slots. The summation over n extends over all T/r time
slots, with each time slot allowing for two electrons with
opposite spin. The final right-hand side of Eq. (2.7) is
essentially an evaluation of the average value of (g„);ad-
ditionally, the sum depends on the number of terms in
the interval T. Therefore, Eq. (2.7) leads to the noise
power

Te2 hE&i[I(2 )]'~&= ' &g'&, (2.8)

where we made use of the definition of ~, as required by
the orthogonality condition of successive wave packets in
Eq. (2.1). Our calculation of the spectral density of noise
is, therefore, directly related to the statistics of the
current pulses: "Has an electron crossed the sample, and
with what probability?"

In the typical situation of interest, a bias is applied be-
tween the two reservoirs, and a dc current flows in the
sample. To calculate the effect of the bias on the spectral
density of noise, we make the substitution
I(t)~I(t) (I ) in Eqs. (2—.2)—(2.4) and obtain the noise-
power contribution for the frequency interval [v, v+5v],
due to carriers in the energy interval
[E bE/2, E +bE—/2]:

25v hE e&(bI)2),.= ' ' (g' —&g&') . (2.9)

This is the starting point of our approach. The remain-
ing sections will be devoted to the computation of the
fluctuations in occupation probabilities.

B. Excess noise in one dimension

For a two-terminal sample which is narrow enough to
allow only one channel, the situation is fairly simple: car-
riers can be emitted from the right- and left-hand side
(Fig. 1). Furthermore, we assume that the wave packets
incident from the right and from the left are synchron-
ized. This ensures that a transmitted wave packet from

Because the frequency is assumed to be small compared
to the duration of a current pulse, j (2m v) is essentially an
integral over time, of the pulse, and thus reduces to the
electric charge e within our framework. The quantity of
interest in Eq. (2.4) is then

( ~I(2mv)
~
) =e g (g g„)exp[i2mvr(m —n)]

m, n

e2y (g2) (2.7)
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the left maps into the same state as a rejected wave pack-
et from the right. The reservoirs are assumed to be in
thermal equilibrium, with respective occupation probabil-
ities specified by Fermi distribution functions f, and fz

corresponding to chemical potential p& and p2, respec-
tively.

There are six possible pulse histories. They are as fol-
lows.

(i) The probability for a wave packet incident from the
left and the right at the same time is fifz, in this case, no
current results.

(ii) The probability that both wave packets are empty is
(1 f, )(1 —fz);—again, no current is associated with this
case.

(iii) A current + 1 is measured when a wave packet in-
cident from the left is transmitted to an empty state on
the right. The weight factor for this case is f, (1 fz)T,—
with T the transmission probability.

(iv) A current —1 is measured when a wave packet in-
cident from the right is transmitted to the left, with prob-
ability fz(l fi)T (—the probability for transmission to
the right is the same as the probability for transmission
to the left).

(v) Same as (iii), except that the wave packet is
rejected; no current results, and the weight factor is

fi(1 fz )(1—T—).
(vi) Saine as (iv), except that the wave packet is

reflected; this yields fz(1 f, )(1——T). In cases (i), (ii),
(v), and (vi), the deviation from the average over the set
of pulses is —T(f, fz) (we have —chosen the positive
sign for carrier motion from left to right). For case (iii)
this deviation is 1 —T(f, f z) and for cas—e (iv) the devi-
ation is 1+T(f, fz). —

The expression for (g —(g ) ) is thus the sum of each
mean-square deviation, multiplied by its appropriate
weight factor. The result is

& g' &g »' =—T(fi+fz —2f ifz) —(f i
—fz)'T'

=2Tfz(1 f,)—
+T(f, f )[1—T(f, f —)] . (2.10)—

The total excess noise is obtained by inserting (2.9) into
(2.10) and then adding up each contribution of the form
Eq. (2.9) over all energy intervals [E hE/2, —
E +b E/2]. We then find

&(hI)'& .= f dE T(E)f (1 f,)—
2

Q+ fdE T(E)(fi —fz)

X [1—T(E)(fi
—fz)] . (2.11)

This expression can be written in a more transparent way
if we consider the special case where the transmission
coefficient has a weak dependence on the energy
T(dT/dE) ')&p, —pz, k~8 (we set p, )pz), which cor-
responds to the limit of low temperatures and small ap-
plied biases. In that case we can take T(E) to be con-
stant within the range of integration in Eq. (2.11) that
matters. This simplification is not crucial, but only serves

to yield more transparent results.
In the low-temperature limit, k~8 «p, —p2, the first

contribution in Eq. (2.11) vanishes, as the two factors
(1 f—, ) and fz have no nonvanishing region of overlap.
The second term of this equation gives a contribution

2 5
lim ((bI)z)s = T(1—T)(p~ —pz) .

0" ~Q
(2.12)

In the limit of small transmission (T~0), we recover the
classical shot-noise formula. It is interesting to note that
the noise is suppressed in the limit of perfect transmission
(T~ 1): there is a symmetry between this case and that
of weak transmission. A channel which cannot transmit
generates no noise, and so does a perfectly transmissive
channel. In terms of the average current, we can rewrite
the zero-temperature result of Eq. (2.12) in the form

lim ((bI) )s =2e 5v(I ) (1—T) .
0~ ~Q

(2.13)

Apart from the factor (1—T), this is the shot-noise for-
mula. This states that excess noise in a quantum system
is always less than the shot-noise level, precisely as ob-
served in the experiments discussed in the Introduction.

In the opposite limit, k~8&&p& —p2, where the tem-

perature is large compared to the applied bias, we should
recover the expression for thermal equilibrium noise.
This time, only the first term on the right-hand side of
Eq. (2.11) survives, and we find

&(~I)'),„=" k, 8T,
which coincides with the result of Ref. 14.

Between these two limits, the noise is a combination of
thermal and excess noise. Choosing the energy scales so
that the bottom of the conduction band corresponds to
E =0, we. can eva1nate theinte, graL~ of Eq. (2.11&.

(2.14)

—2k~8 . (2.15c)

This allows us to give the result for arbitrary tempera-
ture:

((bI) )s = kziO+ T(1—T)(p, —pz)

4e 5v+ T(1—T)k~8

(pl pz}/kBO —1
exp[(p —p )/k 8]

(2. 16)

At high temperatures, the first term on the right-hand
side dominates, while the second term leads to the zero-
temperature result. The last term in Eq. (2.16) gives the

2 sinh[(p, —pz) /2kzi8]
dE z(l —,)=

X exp[ —(p, —pz)/2kzi8], (2.15a)

f dE(f, fz)=p, pz—, — (2.15b)
Q

f dE(f, fz ) =(p, —pz) coth—[(p,—pz)/2kzi8]
Q



1746 TH. MARTIN AND R. LANDAUER 45

first-order corrections to the shot-noise and thermal-noise
limits. Note that there is no clear separation between
these two contributions.

III. MULTICHANNEL CASK

The preceding section dealt with quasi-one-
dimensional wires, where only one channel propagates in
the ideal leads connected to the sample. For wider leads
several transverse states can coexist in the leads at the
Fermi level. Our description of electron transport, there-
fore, has to be generalized to allow several simultaneous
wave packets to enter the sample, from a particular in-
cident direction. In this section, we will propose a
method for calculating excess noise in a sample connect-
ed on the right and on the left to two ideal wide leads,
which for the sake of generality will be allowed to carry
M channels on the left-hand side and N channels on the
right-hand side.

In the conventional description of quantum trans-
port, the sample is described by an M+N by M+N
matrix called the S matrix, which determines the ampli-
tudes of the outgoing waves in the leads, given the ampli-
tude of the waves incident on the sample. This definition
relies on a choice of basis for the states in the ideal leads,
such as the transverse eigenstates of a narrow wire. The
transmissive properties are contained in two submatrices
of the S matrix, an N XM matrix $2, for transmission to
the right and an M XN matrix $,2 for transmission to the
left. The reflective properties are specified by the
reflection matrices s» (M XM matrix) and s22 (N XN
matrix). Without loss of generality, one can write the S
matrix for a two-terminal sample in the following form:

$11 $12

$21 $22
(3.1)

I E(x„z)=
1/2

dk ikl (E)z
gt(x, )e

1/2

+~11 dE
J

on the left side of the sample, and
' 1/2

PI, E(xt~z) g S21
J

(3.2)

(3.3)

on the right side of the sample. If we now picture a situa-
tion where many incident states are occupied, and we
detect what fraction of the incident flux ends up in a
given outgoing channel, the S matrix can be used to
specify what mixture of these incident states is contained
in this outgoing channel [see Fig. 2(a)]. Each channel has

To illustrate this formalism, let g, (x, ) denote the wave

function associated with transverse channel i in the lead
(i =1,2, . . . , N), and let k;(E) denote the set of longitu-
dinal wave vectors corresponding to each channel, at en-

ergy E. The wave function associated with electrons in-

jected from the left-hand side of the sample in a given
channel l has the form

(b)

FIG. 2. Invertible case. (a) Schematic representation of mix-

ing between incident and outgoing channels in the sample. The
sample is connected on both sides with three propagating chan-

nels. Vertical lines represent the transfer from incoming chan-
nels to outgoing channels. (b) In the representation of channels

specified by the transformation of Eq. (3.6), the sample simply
reduces to a set of decoupled one-dimensional channels.

'k —iE'(t + n r)/fi (3.4}

with i the channel index and n identifying the time slot in
which the wave packet is sent. Note that many other
constructions of this type can be generated by simply
choosing a different basis for the transverse states, or by
adding an energy-dependent phase factor in the integrand
of Eq. (3.4). As far as the ideal leads are concerned, the
generalization of the wave-packet construction to the
multichannel case is a trivial one.

A. Diagonal representation, M =N

We start with a specific case considered by Lesovik. '

At zero temperature with a sample connected to the left
and right by two identical leads (same number of chan-

nels) the transmission matrix for the sample was assumed

to be diagonal. As before, we fix the left (right) reservoir

a weight factor (dk; IdE)', proportional to the square
root of the density of states. For a given energy E, waves
in different channels travel at different longitudinal veloc-
ities, and the density-of-states factors normalize each
channel to a unit flux.

We now turn to the wave-packet construction for the
lead with M channels. In principle, we could assign to
each wave packet a transverse eigenstate of the leads, so
that wave packets that are orthogonal initially, because
they are in different channels, remain orthogonal. Fol-
lowing the example of Sec. II [Eq. (2.1)],we can construct
a set of orthogonal wave packets that describes the de-
tails of electronic transport as follows:

' 1/2
dk

P', "'(x„z,t }=f dE', g;(x, )
E —SE/2 AE 2m dE'
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at a chemical potential p& (pz), with p, )p2. Wave pack-
ets from reservoir 1 in the energy range [pz,p, ] can be
partially transmitted to the right, with no electrons arriv-
ing from reservoir 2. Since the transmission matrix from
left to right is diagonal, there is no mixing between chan-
nels, and the excess noise is simply a sum of contributions
of the type shown in Eq. (2.12). We sum over all chan-
nels, with a transmission probability for each channel
equal to the square modulus of the corresponding eigen-
value of the transmission matrix. We shall now show
that the assumption that the transmission matrix is diag-
onal is, in fact, unnecessary, and thereby confirm the re-
sults of Ref. 17.

In general, an electron incident on the sample can be
partially reflected, or partially transmitted through the
sample. Unless the transmission and reflection matrices
are diagonal, we expect that wave packets from different
incident channels will interfere with each other after
reaching the sample region. Either we have to take into
account these interference effects, or we must find a way
around this issue by finding a representation where inter-
dependence between wave packets in the calculation of
net transmission is absent.

The scattering probabilities for each incident channel
into all the emerging channels must add up to 1. This re-
quires a unitary S matrix, i.e.,

0 T 1/2
1

decomposition has been pointed out in the past, in the
context of the transfer matrix. In the present context,
this decomposition is the result of a collaboration with
Biittiker. The decomposition of Eq. (3.6) is unique, up
to a permutation of the eigenvalues of R ' or T'

At the beginning of this section, we gave an example of
wave-packet construction for the multichannel case based
on the transverse eigenstates in the ideal leads. This
choice of representation is not unique, as any unitary
transformation acting on the transverse states can lead to
an alternative wave-packet construction. The transfor-
mations U1, U2, V, , and V2 can be exploited to obtain an
additional representation for the states in the leads: U,
(U2) specifies a unitary transformation for the states in
coming from the left (right), while V& ( V2 ) specifies a uni-

tary transformation for the states outgoing to the right
(left).

The key ingredient of the decomposition of Eqs. (3.6) is
the fact that on a given side of the sample, the same uni-
tary transformation describes all the outgoing states,
transmitted or reflected. In the new representation, the S
matrix takes the form

STS=SS =1 . (3.5)
T 1/2

1 0
M 0 T 1/2

M

Let us first examine the case where we have the same
number of channels on the two sides of the sample
(N=M). In Appendix A, we show that if the matrix
s~11s» has no eigenvalues which are equal to 0 or 1, then
the following decomposition exists:

T1/2
M 0

(3.7)

s»= —iV R' U„s,2=V, T' U2,

—21 —2— —1 & —22 —2— —2s =V T'/Ut s = —iV R' U
(3.6)

where R ' and T' are real, diagonal matrices, and U1,
U2, V, , and V2 are unitary transformations. Such a

i.e., the nonzero elements are only on the diagonal of the
four submatrices. In this representation, the sample can
be thought of as a set of single-channel samples which are
decoupled from each other [see Fig. 2(b)].

In the diagonal representation, the wave packets in-
cident from the left-hand side will now have the form

' 1/2

P'"'(x z t)= dE' g U'I'(E') g (x )e ' et (3.8)

A similar construction exists for the wave packets in-
cident from the right-hand side, with the unitary trans-
formation U2. Synchronism between wave packets com-
ing from opposite sides of the sample is necessary only to
the extent that wave packets belong to the same one-
dimensional eigenchannel.

The absence of correlations between these wave pack-
ets permits us to write down the general result for the ex-
cess noise in a multichannel two-terminal structure as a
sum over eigenvalues, each eigenvalue giving a contribu-
tion of the form Eq. (2.11):

4 5 N

((bl)~)= JdE g T, (E)f~(1 f,)—
TTA

2 5v N

f dE g T;(E)(fl f2)—
7Th i=1

x [1—T;(E)(fi f2)] . —

(3.9)

As anticipated in the beginning of this section, this result
has precisely the form of that of Lesovik, ' who assumed
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from the start that the S matrix has the structure of Eq.
(3.7). In the general case, the decomposition of the S ma-
trix outlined in this section leads us to a representation
through channels that do not interfere, which brings us
back to the simplicity of the uncoupled channels assumed
by Lesovik. The reader must be cautioned: the apparent
simplicity of Eq. (3.9) is not readily accessible to the ex-
perimentalist. Our noninterfering channels were con-
structed from knowledge of the S matrix; and only in the
simplest of situations will this be known for a real sam-
ple. If the S matrix is determined by the geometry of the
sample, as determined by lithography, then we may be
able to calculate an S matrix. If the S matrix is deter-
mined by the location of randomly placed point scatter-
ers, it will not be easily ascertained.

B. Noninvertible and nonsymmetric case, MAN

We will now show how Eq. (3.9) can be generalized to
arbitrary situations, where a decomposition of the type
(3.6) does not exist.

We start with the noninvertible case, for M =N. The
matrix s

& &s&& then has eigenvalues that are equal to 0 or
I. In Appendix A, we point out that a decomposition of
the type Eqs. (3.6) still exists, but only for the eigenvalues
of this matrix that differ from both 0 or 1. These remain-
ing eigenvalues have to be treated separately. In the
remainder of this paper, we use the word eigenchannels
for the set of channels constructed from the eigenstates of
the transmission and refIection matrices. An eigenvalue 0
corresponds to an incident eigenchannel that is perfectly
transmitted: the reflection coefficient for waves incident
on both sides of the sample is zero, so that the transmit-
ted wave is not related to a reflected eigenchannel as in
the invertible case. This eigenchannel therefore can only
give a contribution to thermal equilibrium noise, which
corresponds to the first term on the right-hand side of Eq.
(3.9). An eigenvalue I corresponds to an eigenchannel
that is totally reflected and therefore is not coupled to
other eigenchannels on the other side of the sample. .
Since T; =0, this eigenvalue does not give any contribu-
tion to Eq. (3.9). This is illustrated in Fig. 3(a): eigenval-
ues that describe partial reflection/transmission require
that the corresponding outgoing eigenchannels collect
states incident from both sides of the sample. No such
restriction exists for total reflection/transmission.

The nonsymmetric case (MAN) can be understood in
a similar manner. For M )N, the S matrix can be ex-
tended to an 2M X 2M matrix, by adding rows and
columns to the matrices s22, s,2, and L~, in such a way
that the new S matrix keeps its unitarity: it simply
amounts to adding a set of M —N passive channels that
are totally reflected on the side with only N channels.
From this new S matrix, we can then repeat the argu-
ment of the preceding paragraph to obtain the expression
for combined thermal and excess noise: channels that are
totally reflected do not give any contribution in Eq. (3.9).

Before ending this section, we can ask whether this
type of diagonal decomposition is not too far removed
from what happens in the laboratory. We know at least
one example where electrons behave exactly as described
above: electrons confined to a two-dimensional plane in a

(b)

(o'

FIG. 3. (a) Noninvertible case: if the transmission-reAection
matrices have zero eigenvalues, the sample can still be regarded
as a set of decoupled channels. Channel 3 is perfectly transmit-
ted, and channel 4 is totally reAected; it does not couple to the
other side of the sample. (b) Transport of electrons confined to
two dimensions in a perpendicular magnetic field. The dotted
line represents the edge states, and the shaded region represents
a metallic gate which causes the electrons to backscatter. Note
the analogy with (a).

high perpendicular magnetic field. A bias is applied be-
tween the two sides of the sample, allowing current flow.
In the direction perpendicular to the current, a
confinement potential can be achieved by means of elec-
trostatic gates, allowing only a few sets of channels to
propagate through the sample. In the presence of a
strong magnetic field, electrons travel from one side of
the sample to the other along so-called edge states, '
which are the quantum analog of the classical skipping
orbits. If a rneta11ic gate is placed in the middle of the
sample, electrons from the innermost edge states can be
backscattered, as illustrated in Fig. 3(b). Incidentally,
Fig. 3(b) describes the geometry of the noise experiment
of Ref. 13, initially suggested by Biittiker. ' Although
Fig. 3(b) gives a simplified view that ignores scattering be-

tween edge states, in this particular case the S matrix as-

sociated with this situation has precisely the structure of
Eq. (3.7).

IV. MULTITERMINAL CASK

Until now, we have limited the discussion to two-
terminal samples. The situation where the sample is ac-
tually connected to many leads is of practical interest; an
example is the Hall bar geometry. Biittiker proposed a
scattering matrix approach for the quantum Hall effect,
treating current supply and voltage probe contacts on an
equal footing. From the reflection and transmission
properties of the multiterminal sample, Biittiker was able
to predict the quantization of the Hall conductance.
Here, we will extend the reservoir picture to calculate the
noise in current at zero temperature with our wave-packet
method.

A. Current noise in an arbitrary lead

The sample is connected to the reservoirs by ideal
leads, as in the two-terminal case. To each reservoir y
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(y=1,2, . . . , P), we attribute a chemical potential p, .
The reservoirs are numbered in order of decreasing
chemical potential:

P1)P2) )P ) ' )PP . tyty =

Sa1$a1

S a2$a1

Sa1$a2

a2 a2

S 1$ay

Sa2$ay
(4.2)

t =&s s ~ ~ ~ s—ya —a1 —a2 ~), (4.1)

where the first index specifies how many injecting leads
are involved, and the second index identifies the lead
where noise is measured. This matrix is all we need to
calculate the noise in lead a at zero temperature. The
transmission probabilities that enter in Eq. (3.9) now re-
placed by the eigenvalues of the matrix

This situation is illustrated in Fig. 4. For simplicity, we
assume that each lead connected to the sample carries the
same number of channels, 1V. To calculate the noise, we
consider separately the contribution coming from each
energy range [ju,r+„pr]. Current flow in this structure
can be understood in terms of electron transport from
one lead to another, or alternatively in terms of hole
transport in the opposite direction. In the above energy
range, electrons (holes) travel from leads y' y (y') y)
to leads y' & y (y' ~ y ). This very separation between in
jecting leads and receioing leads suggests that the tools
developed in the preceding section for the two-terminal
sample can be used here.

We make a distinction between the contribution from
energy ranges above and below p, the chemical potential
of the reservoir connected to the sample through lead a
where we shall calculate the noise.

For energies above p, lead a belongs to the group of
leads that receives electrons. Consider the contribution
from the energy range [p,~+„p~].We have a situation
similar to the two-terminal case with a different number
of channels on each side of the sample: leads 1 to y can
be pictured as one single lead with y XN channels that
injects electrons in a. Transmission into lead u is thus
characterized by an X by yXN transmission matrix of
the form

SaySa1 S ayS a2 S aySay

Let T~ (i =1,2, . . . , yN) denote these eigenvalues. In
general, each of the corresponding eigenvectors of the
matrix ty ty is a superposition of channel states from
disci"erent injecting leads. Now, wave packets emerging
from one reservoir, via a lead, are incoherent with those
coming out of another reservoir, into its lead. Our use of
incoming wave packets that are coherent over a number
of leads is probably an unnecessary complication, avoid-
able in an alternative formulation which does not yet ex-
ist, except in the very limited way discussed in Sec. VI.
Such an alternative formulation will, presumably, yield
identical results but demonstrate more explicitly the fact
that these results do not really depend on coherence be-
tween different leads. Consider the density matrix p
characteristizing the wave packets emerging from the
reservoirs into the leads. p is diagonal in a representation
in which the wave packets occupy very narrow energy
ranges, and assigns an occupation probability to each
packet corresponding to the Fermi occupation probabili-
ty. We have used a representation in which the wave
packets invoke coherent behavior between different leads.
But, of course, we could with equal justification use wave
packets coming from a single lead, characterized by the
same density matrix and occupation probability. In that
case, however, the subsequent noise evaluation is less
straightforward, but must nevertheless lead to our result.

Summing up over contributions of the type Eq. (2.12)
for each eigenvalue, the noise-power spectrum coming
from the energy range [jMr+ t, p ] with a )y reduces to

2e 6v((bI )'~s„,i~„,,v, i (~r ~~+&)

yN
XQTr(1 —Tf ). (4.3)

To establish a connection between this result and that of
Ref. 17, we can express this last result in terms of the
coeScients of the S matrix. In Appendix B, we show that
the sum over eigenvalues in Eq. (4.3) can be written as a
trace of the matrix

Tr[t t (1 t,, t )]= g Tr(—s ss ~s „s„).
(4.4)

FICx. 4. Multiterminal sample: each lead carries two chan-
nels, and the arrows specify the direction of electron motion, as
constrained by Fermi blocking at zero temperature. The shaded
boxes represent the mixing between channels (the fact that the
spatial sequence of the reservoirs agrees with the ordering of the
chemical potentials is only for simplicity, and not part of the ar-
gument).

The unitarity of the S matrix was used to derive the
preceding expression.

Next, we turn to energy ranges below p . Here, lead o.
injects electrons into leads y+ 1,y+2, . . . , P (a ~ y).
Alternatively, we can think of holes being injected into
lead a from these leads. The transport properties of
holes are then described by an N by (P —y ) XN transmis-
sion matrix:
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—ya —a, y+1 —a, y+2t =(s s s p), (4.5) ((hI( +tt)) )~ {( ( 1

and the transmission probabilities are now the eigenval-

ues Tf (i =yXN+1, . . . , PXN) of the matrix t z tz
The contribution from the energy range [p, +(,(M ] for
y & a thus reduces to

2e 5v(
) Tr( +~~(1 T' +t()yN

Py Ay+1 t

i=1

(4.11)

((&I.) ),.{„„,)= (p, —p, , )

PN

TP(1 T,'—).
i =yN+1

(4.6)

Again, this sum can be expressed as a trace (see Appendix
B):

Tr[tr tr (1 t~ —t~ )]= g Tr(s ss ss „s„),
g&y&5

(4.7)

which is of similar form as Eq. (4.4).
We now sum up the contribution of all energy inter-

vals, for energy ranges above and below p:
((&I )'),= g (p, —p„)T ( „„),

g&5

which is precisely the result of Ref. 17.

B. Noise correlations

Our wave-packet approach can be extended to the cal-
culation of noise correlation between different leads. To
illustrate this, we consider the simple case where the
leads a and P for which correlation is measured have the
same chemical potential ((M =p&). Grouping leads a and

P into one single lead (a+P), we calculate the noise in
this new lead.

Above p, , electrons in an energy range [(M~+(,(((,r] are
injected into (a+p) from leads 1,2, . . . , y. The
transmission matrix that describes this process is

with Tr' ' (i =yN+1, . . . , PN), representing the ei-

genvalues of the matrix ty[a+p&ty~a+p&. In Appendix B,
we rewrite the two sums over eigenvalues in Eqs. (4.9)
and (4.11) in terms of the block elements of the S matrix.

Regrouping the contribution of energy ranges above
and below p, we determine the excess noise in lead a+P
to be

t, (bI, p, )'),= ((bI )'),+ ((aI,)'),
„

4e 5v

g&5

XTr(s~~stsgpss~s ) .

(4.12)

The noise current in lead a+P can thus be decomposed
into three distinct contributions: the noise current in a,
the noise current in P, plus an interference term that
represents the correlations between a and P,
2(i((.I b,I&)s„.As pointed out by Biittiker, ' for a sam-

ple with more than three leads, the correlations between
two leads cannot be expressed in terms of probabilities
(elements of the S matrix multiplied by their complex
conjugates). Biittiker suggests that this permits the ob-
servation of interference effects in the measurement of
correlations, even if the interfering paths originate in
different reservoirs that emit incoherently.

At this point, we have not managed to generalize our
multichannel results to finite temperatures. Reference 17
does not suffer from this limitation, as in this case Fermi
factors are the result of averages of products of creation
and annihilation operators.

ty( +p)

Sal Sa2
~ ~ ~ $—ay

—P1 —/32 —Pys s ''' s (4.8)
V. NOISE CORRELATIONS

IN A Y-SHAPED STRUCTURE

((b,I( p) ) )

2 yNv
( ) y Ty(a+@)( 1 Ty(a+t() ) (4 9)

i=1

Below p we consider the transfer of holes into lead
(a+P) with the matrix

C y(a+p)

Sa y+1 Sa y+2 SaP

$P y+1 $P y+2
(4.10)

This leads to a contribution

Following the prescription of the preceding subsection
for calculation of noise in this energy range, the eigenval-
ues Tr( +~' (i = 1,2, . . . , yN) of the matrix

ty[a+p&ty[ +&~ specify the transmission properties of each
eigenchannel, giving a noise contribution

We illustrate the formalism developed in the preceding
sections with a simple example: the calculation of noise
correlations between two leads which divide the electrons
emitted from a third lead. A long time ago, an analogous
experiment for photons was performed by Hanbury
Brown and Twiss, measuring the correlations between
two photomultipliers detecting light from a coherent
source. The resulting observation of a positive correla-
tion between the two detectors was correctly attributed
to the fact that photons are undistinguishable particles
which obey Bose-Einstein statistics. It is thus reason-
able to ask whether a corresponding effect exists for par-
ticles obeying Fermi-Dirac statistics, a question posed by
Murphy. Here, we go one step further, applying these
ideas to electron transport in multiterminal structures.

woilsideT the structMes dcscHb& Qn-r'fg. -5,—w ltil ci1em-—
ical potentials p, „jM2,and p3 associated with leads 1, 2,
and 3 satisfying the inequality p, & p2) p3. Let X be the
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We thus have to evaluate the noise terms on the right-
hand side of this equation for the two energy ranges
[p2 pl] and [p3 p2].

In the energy range [p2,p, ], electrons are injected from
lead 1. For transmission into lead 2, we then have

2e 5v((&I,)'&,.[„,„,]= (p, —p, )

FIG. 5. Y-shaped sample, with p&) p2) p3. Lead 1 injects
electrons into 2 and 3, where anticorrelated current fluctuations
are predicted.

XTr[s2]s2, (1—sp]s2] )],
and similarly for lead 3,

2e 5v((ar, )')„[„„,=

XTr[s3]$3,(1—s3]$3, )] .

(5.2)

(5.3)

—((sr, )'),„]. (5.1)

number of channels in each of these leads (as mentioned
in Sec. III, we always reduce a system with an arbitrary
number of channels in each lead to the present case by a
redefinition of the S matrix). At zero temperature, elec-
trons injected from lead 1 can be transmitted into 2 and
3, and lead 2 itself can inject electrons in lead 3.

Before facing the analytical details in their general
form, let us consider a somewhat idealized illustrative
possibility, closely related to the above-mentioned sugges-
tion by Murphy. Let p2=p3, let all the leads be single-
channel leads, and let us specialize to the low-
temperature limit. Assume that the Y of Fig. 5, near its
junction, consists of a slowly and smoothly varying po-
tential, symmetrical about the vertical axis. Assume that
the injecting lead widens adiabatically to twice its origi-
nal width, as it approaches the junction. Then all the
carriers coming up along lead 1 will be transmitted with
equal probability into leads 2 and 3, and without
reflection back into lead 1. All the states or wave packets
in lead 1, between p2 and p„will be filled. The stream in
lead 1 is noiseless. Leads 2 and 3 will each have their
wave packets half occupied, resulting in noise according
to Eq. (2.12). The sum of these noise currents, however,
must vanish. Thus the two leads have perfectly an-
ticorrelated noise. When more electrons, in a given time
interval, enter lead 2, fewer will enter lead 3.

Related effects were discussed in the vacuum tube
literature. As we have mentioned, Coulomb interaction
can produce "space-charge smoothing, " regulating the
flow of electrons, and thus reducing noise below the
shot-effect value predicted from the current flow actually
present. If a part of the regulated beam is then intercept-
ed, we destroy the regularity of the remaining beam pro-
duced by Coulomb interaction, and push the noise in this
remaining portion closer toward its shot-noise value. In
our case, the regularity in the original undivided beam is
not a result of Coulomb effects, but of the Pauli principle.
But as in the case of vacuum tube, partition noise, ran-
domly selecting a part of the incident beam, reduces the
correlation and increases the relative noise.

Now let us return to the more general treatment. To
calculate the correlations between 2 and 3, we proceed as
before:

(ar, sr3 )s [((EI(2+3])')s
—((EI,)')s„

In a lead constituted by grouping 2 and 3, the transmis-
sion matrix has the form of Eq. (4.8), and we obtain

4e 5v

XTr($21$21$31$31) ' (5.4)

In the energy range [p3,pz], electrons flow from 1 and
2 into 3. Alternatively, holes are injected from 3 into 1

and 2. This leads to the result

2e 5v((~r, )') „[„,„,}= (p, —p, )

XTr[sz3$23(1 —s23$23)] .

For the noise in lead 3, we use Eqs. (4.3) and (4.4):

2e 5v((EI,)') „[„„}=(p, —p )

(5.5)

XTr[s33S33(s3]$3]+$32$2)] . (5.6)

In this energy range, the noise in lead (2+3) comes from
holes transmitted from 3 into 1 only, which gives

2e 5v((&I[, , ) ) „[„,„,}
— (p2 —p3)

XTr[s]3$]3(1—s]3$]3)] . (5.7)

Summing up the contribution from the two energy
ranges considered and using Eq. (5.1), we get an expres-
sion for the correlations:

Note that the correlations are always negative: using the
cyclic property of the trace, both traces on the right-hand
side of Eq. (5.8) can be written as the trace of a Hermitian
matrix, and the trace of a Hermitian matrix is always
positive. The current fluctuations between these two

( Isr2 bI3 ) Q [(p, —p2) Tr(s2, s2, s3]$3, )
7Tfi

+(p2 p3) Tr($23$23$33$33)]

(5.8)
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leads are anticorrelated. This is a direct consequence of
the fact that electrons obey Fermi statistics. This result
has been noted by Buttiker, who also showed that if
electrons are replaced by bosons, the resulting correla-
tions become positive, in agreement with the Hanbury

I

Brown and Twiss experiment.
In principle, this effect should be observable experi-

mentally. If we assume that the two receiving leads have
the same chemical potential, Eq. (5.8) further simplifies,
and we can normalize the noise correlations as follows:

(bI2 bI3 )s, Tr($ 31$31$21$21)

((bI2) )s ((bI3) )s ITr[s3,s31(1—s3,s31)]Tr[s21s21(1—s21s21)]] ' (5.9)

In the simplest case, where one channel can propagate in
each lead, the traces drop out of this equation, and the
effect is optimized if we arrange the sample so that the
electrons from the injecting contact pass on out with lit-
tle probability of reAection back into that injecting lead.

VI. COHERENCE BETWEEN LEADS

Our results in Sec. IV for the multilead case invoked
wave packets that have coherent contributions emerging
from different reservoirs. We know, however. that elec-
trons entering a reservoir suffer inelastic scattering before
reemerging. They are incoherent, when again emitted,
with the stream coming out of other reservoirs. Similar-
ly, in Eq. (3.8) we utilized "eigenchannel" wave packets
that have coherent contributions from diff'erent channels,
with these channels corresponding to the eigenvalues of
the original transverse Hamiltonian. But we also know
that electrons emerging from a given reservoir, in
different channels, can be considered incoherent. As al-
ready suggested in Sec. IV, this results in expressions that
imply more coherence than they really involve. We will
clarify this through an example.

Consider an energy range [p, 1M +1] as in Sec. IV, in
which reservoirs 1,2, . . . , y are emitting a fully occupied
stream of electrons, some of which are transmitted into
reservoir cx, with a&y. Reservoir a and the remaining
reservoirs are not emitting in this energy range. For sim-

plicity, we assume that only one channel can propagate in
each lead.

Reference 21 analyzed this situation. Let
T„.. . , T r denote the respective probabilities of an
electron coming out of reservoirs 1,2, . . . , y and ending
up in the reservoir connected to lead a. The discussion in
Ref. 21 gave an expression for the noise in lead 0.:

(6.1)

We stress that the derivation of Eq. (6.1) explicitly in-
voked a lack of coherence between reservoirs.

Consider now the alternative approach of Sec. IV,
which treats the combination of the incoming leads
1,2, . . . , y as one source with y channels. We then use
the "eigenchannels, " i.e., the input modes in the com-
bined y channel lead, whose probability of transmission
into lead a can be calculated independently, without at-
tention to interference between the eigenchannels. There
can be only one of these eigenchannels with a nonvanish-

ing transmission probability T into lead a (if there were
two eigenchannels with nonvanishing transmission, then
we could get interference between these two). Let us
identify the y eigenchannel incident wave packets byP„.. . , gr, where P, is associated with the nonvanishing
transmission probability T into lead u. Let

r
Q1= g U1sgs, (6.2)

where g„.. . , gr are the normalized wave packets limit-
ed to each lead, and the matrix U& & defines the unitary
transformation for the eigenchannel representation.

We can now proceed to express T &, . . . , T in terms
of T . For a given emitting lead P, P& can be specified as
a sum of eigenchannel wave packets,

r
Qp= g Us13$s . (6.3)

Since only g, contributes to transmission into a,
T &

=
~ U, p ~

T . As a result, the sum of the transmission
probabilities appearing in Eq. (6.1) becomes

r r
g T s=T g ~U, s~ =T (6.4)

Therefore, Eq. (6.1) becomes

(6.5)

in agreement with our treatment in Sec. IV. The ap-
parent dependence, in Eq. (6.5), on the coherent behavior
of particular eigenchannels is deceptive.

VII. SUMMARY

We have proposed a wave-packet approach for noise-
current calculations in multichannel, multiterminal struc-
tures. A description of electron transport was intro-
duced, which takes into account the constraints imposed
by the Fermi statistics of the charge carriers in the leads
connected to the sample. From this description, we
showed that the noise current at low frequencies can be
related to the statistics of charge carriers crossing the
sample. In one dimension, we noted that excess noise is
suppressed both in the case of weak and ideal transmis-
sion: in a quantum coherent sample, excess noise can
therefore never reach the level of classical shot noise.
Turning to the multichannel case, we showed that the
calculation of noise can be reduced to a superposition of
one-dimensional contributions using an appropriate rep-
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resentation for the different transverse channels in the
leads connected to the sample. This picture was extended
to multiterminal structures at zero temperatures. The
principal ingredient of our method lies in the choice of a
representation such that the total transmission is the sum
of separate transmission probabilities, without cross
terms. Finally, we suggested an experiment for electrons
injected into one branch of a Y-shaped sample, where
current fluctuations in the two receiving leads are an-
ticorrelated.

While it may seem that the wave-packet approach is a
naive picture of electron transport, we were able to repro-
duce the results derived from other more formal ap-
proaches with minimal complexity. We believe that this
approach captures the essential physics of noise in mesos-
copic systems as derived from quantum-mechanical
transmission.

—21 —2—21—1s =8'D Ut

—12 —1—12—2s =VD U

—22 —2—22—2s =VD U~

(A3)

—12—12 — —»—»D*D =1—D*D

—21—21 D 12—12

D 11D11=D 22D22

(A4)

So far, we did not use Eqs. (Ale) and (Alf}. These can be
cast in the form

where D2„D,2, and D22 are complex diagonal matrices,
multiplied on the left and on the right by unitary ma-
trices. These diagonal matrices are subject to the con-
straints
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D D = —Dt8 VD—»—12 —21—2—2—22

(A5)
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put leading to the decomposition of Appendix A.

We consider the following two cases: the case where
none of the eigenvalues of the diagonal matrices have a
modulus equal to 0 or 1, and the case where there exists
at least one eigenvalue of these matrices which is equal to
0 or e'P.

APPENDIX A

$»$» +$21$21 (Ala)

In this appendix, we derive the diagonal decomposi-
tion ' of the reflection and transmission submatrices of
Sec. III. We will assume that the number of channels is
the same on each side of the sample. If this is not the
case, the present decomposition can still be achieved if we
add rows and columns to the S matrix so that each sub-
block s», s12, s,2, and s22 is a square matrix, as explained
in Sec. III B.

From Eq. (3.1), the unitarity property of the S matrix
translates into six independent equations:

1. Invertible case

If none of the diagonal elements of D», D12, D2, , and

D22 are either 0 or of the form e', with P a real number,
then all of these matrices have an inverse. From Eqs.
(A3), we can write each diagonal element in the form

)0]] i0]2
Di i R 1/2 i Di i T1/2 i

(A6)
Di i T 1 /2e i Dii g 1/2 i—21 —i e

& —22 —i

Here, none of the elements of the diagonal matrices R '

and T'~ can take the value 0 or 1. From Eqs. (A4), we
find that s2, can then be written as

S»S» +S12S12 1 (A lb)
—21 —2—21—1
s =VD Ut (A7)

$22$22 +$12$12 1 (Alc)
with a relation between the phases of the eigenvalues:

—22—22 —21—21s $ +s s =1 (A id) 8„—8~~ +—8,2 +8~, =0, (A8)
s22$ 21 +$12$22

—0 (Ale)

$12$» +$22$21 (A lf)

Without loss of generality, we start by introducing the
following decomposition for the matrix s» ..

for i =1 to M. The phase factors can then be absorbed in
the unitary matrices U„U2, V1, and V2, by redefining
the latter transformations as follows:

i( —0]] /2+~/4)

—11 —1—11—1
s =VD U (A2)

i (0]2 —0]] /2+7T/4)

with unitary matrices V, and U, , and D» a diagonal ma-
trix. The eigenvalues of the matrices s»s» and s»s» are
then simply the diagonal elements of the matrix D11D»,
where e denotes the complex canjugate. We now
proceed ta a similar decomposition for the other blacks
of the S matrix, taking into account the constraints irn-
posed by Eqs. (Ala) —(A 1f).

In a first step, we obtain the decompositions:

i (0]] !2—m/4) (A93

i (022 —0]2 +0]] /2+ —377/4)

V2~ V2e

With these transfarmations, we finally obtain the decarn-
position of Eq. (3.6):
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s11=—i V1R ' U1, s12 = V1 T' U2,

21 —2— —1) —22 l—2s =V T' U s = —iV R' U
(A10)

The matrix [t t ] is a yN by yN matrix which can be
decomposed into yXy blocks of size NXN with ele-
ments

2. Zero eigenvalues
2

([ryatya] )ps g sajkagsagas
g=1

(82)

If the matrix T has a diagonal element equal to 0 (1),
then R has a corresponding diagonal element equal 1 (0),
and one of these matrices has no inverse. As we shall see,
this still allows a decomposition of the type (A10).

In the invertible case, Eqs. (A5) allowed us to relate the
matrices 8'2 and V2 by a unitary, diagonal matrix. We
thus study the structure of the matrix 8'zV2. For those
indices i,j which satisfy T;%0, 1 and T %0, 1, we have

r
Tr(s „sg ss s),

r],5=1
(83)

The trace of the matrix [ty ty ] is thus the sum of the
traces of all diagonal blocks of this matrix, which gives

yN y

Q Ty (1—Ty )= Q Tr(s „s„)

i/1
~ ~ ~ 0 Q ~ ~ ~ Q

—2—2
8'V=

'4'M
e Q ~ ~ 0 p

(LV2V2);, =e '5;~ .i/i

Fori such that T; =Qor T, =1, but jas before,

(IV2V2); =0 .

The matrix 8'z V2 thus has the following form:

(Al 1)

(A12}

(A13)

where we used the cyclic property of the trace. In a mul-
titerminal structure, the unitarity of the S matrix imposes
the relation

g sasSas 1

5
(84)

Breaking up this sum into two contributions,
5=1,2, . . . , y and 5=y+1,2, . . . , P, we rewrite one of
the sums in the second term of Eq. (83) as
1 —gP +, Tr(s „s"„).It then follows that

yN y P
Ty (1—Ty )= g g Tr(s g ss ~s „), (85)

i =1 g=1 5=y+1

which is precisely Eq. (4.4).
The derivation of Eq. (4.7) follows closely the above

reasoning. Expressing the sum over eigenvalues in terms
of a trace of elements of the S matrix, we find

with U' a unitary matrix. We thus conclude that for the
eigenvalues T, X0, 1, a decomposition of the form (A10)
can still be achieved. Eigenvalues with T; =1 (T;=0)
which correspond to perfectly transmitted (reflected)
eigenchannels do not require such a decomposition. In
the noninvertible case, the decomposition is specified by
Eqs. (A2) and (A3), where W2 and Vz are related by Eq.
(A 13).

An understanding of the noninvertible case can also be
reached by simply considering the limit T; ~0 and

T, ~1. Even for an infinitesimal reflection-transmission
eigenvalue, the decomposition (A10) is still valid. In this
case, the unitary transformation U' of Eq. (A13) turns
out to be diagonal.

PN P
Ty (1—Ty ) = g Tr(s „s,„}

i =yN+1 g=y+1
P

Tr(s „sass s).
g, 5=y+1

(86)

Exploiting once again the unitarity of the S matrix, we
recover Eq. (4.7).

The matrix ty[ +&&t~[ +&~, which appears in the calcu-
lation of correlations between leads a and P, is a y by y'

matrix of blocks of size N X¹
( y(a+ p) ry(a+ p)—gs —avgas pep ps— (87)

APPENDIX B

Here, we derive formulas that help establish a connec-
tion between the present eigenvalue formulation and the
approach of Ref. 17 where the noise-power spectrum is
expressed in terms of the coe%cients of the S matrix.

With T;y denoting the eigenvalues of the matrix

ty ty, we first recognize that the sum of the square of
the eigenvalues of this matrix can be written as the trace
of the matrix [t t t ] . This yields

Proceeding as before [Eq. (Bl)], the sum over eigenvalues
in Eq. (5.11) is written as a trace of this matrix, minus its
square. In a first step, we calculate the block elements of
the matrix [r ( +p)t ( +p)]:

([t t ]) = ~(s L +s" st[—y(a+p) —y(a+p) ] qs ~ ~g~g ~P~s pgpc ppps
/=1

+st stagan pP p~— —

(81)
yN

g Ty (1—Ty )=Tr[t,, t (1 rt r )] . —
The sum over eigenvalues now takes the form

(8&)
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yN
Tr(a+is)( 1 Ty(a+is) )J

yN yN= y T/r (1—T;r )+ y T; ~(1—Ty~)

The cgculatton of the sum over the eigenvalues of the
matrix ty~~+&&ty~~+&~ is carried out along similar lines.
Here, we give the result

yN
Ty~~+lB(1 Tr'~+»)

l 1—2 g g Tr(s „s&g&ss s),
q=1 5=y+1

(B9)

where we recognize contributions of the form (B3) in the
two first terms on the right-hand side. For the last term
of Eq. (B9), we have used the identity

gs ssps=0, aAP . (B10)

yN

=QTr(1 —T; )+ Q T; (1—T;
i =y+1

—2 g g Tr(s sitgpss s) .
v]=1 5=y+1

(B11)
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