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Magnetoplasma excitations in parabolic quantum wells: Hydrodynamic model
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We employ a classical hydrodynamic model to study the magnetoplasma excitations of a slab of elec-

tron fluid confined in one direction by a parabolic potential, in a tilted magnetic field. The electron gas is

treated as a classical charge fluid with an internal pressure p ~ (n —n, ), when n is the number density of
electrons and n, is a density at which the pressure vanishes. Linearizing the dynamical equations and

neglecting retardation effects, we calculate the dispersion of the magnetoplasmon frequencies as a func-

tion of the in-plane wave vector q. We study the dependence of this dispersion on the strength and tilt

angle of the applied magnetic field and on the parameter n„and show that the q =0 frequencies that we

calculate help in understanding optical experiments on imperfect parabolic wells.

I. INTRODUCTION

In the past few years, attention has focused on remote-
ly doped parabolic quantum wells as systems where an al-
most three-dimensional electron gas can be obtained with
much weaker electron-impurity interactions than are pos-
sible in conventional doped semiconductors. ' In such
a system, it might be possible to observe broken-
symmetry ground states that have been predicted for the
three-dimensional electron gas at low densities in an
external magnetic field. Experimental work has been
done on magnetotransport, on infrared optical absorp-
tion, and on photoluminescence excitation spectrosco-
py in parabolic wells.

It has been shown theoretically that in the case of per-
fect parabolic confinement, with an applied magnetic field
in a general direction, long-wavelength optical perturba-
tions can cause transitions only at the two frequencies
that correspond to exact excitations in the center-of-mass
motion of the electron gas. Experiments ' show that
parabolic wells can be grown that have optical spectra
with just two strong peaks, with the B dependence pre-
dicted in Ref. 9. Because the simplicity of the two-peak
optical spectrum is a property of perfect parabolic
confinement, it was remarked that optical absorption
might be useful in characterizing departures from ideal
parabolicity in experimental samples. Indeed, extra
peaks have been observed in tilted-field experiments on
"overfilled" parabolic wells with abrupt boundaries,
where the electron confinement has strong nonparabolici-
ties near the edges of the well, ' For the case B=0, Brey,
Dempsey, Johnson, and Halperin' have calculated opti-
cal spectra for wells that deviate in various ways from
perfect parabolicity. So far, however, the optical
response of imperfect parabolic wells when BWO has not
been studied theoretically, nor is there a detailed under-
standing of the nature of the extra excitations that appear
in imperfect wells.

Intuitively, one expects that small deviations from per-
fect parabolicity should have two main effects: to shift
the excitation energies of the system slightly, and to
redistribute the oscillator strength so that excitations oth-

er than the center-of-mass modes become visible in far-
infrared optical spectra. This expectation is borne out by
the calculations of Ref. 10, where several types of imper-
fections have the same qualitative effect on the optical
spectrum, shifting the location of the main peak and in-
troducing small peaks nearby. For small enough devia-
tions, we expect the energies of the newly visible excita-
tions to lie very near to excitation energies of the perfect
system. This suggests that optical experiments on imper-
fect parabolic wells can give information not only about
the extent to which the confining potential deviates from
perfect parabolicity, but also —for small deviations—
about the forbidden excitations of an ideal system. It
also suggests that we can understand peaks in the spectra
of imperfect systems by studying the excitations in ideal
parabolic wells.

One way to study the long-wavelength collective exci-
tations of an inhomogeneous electron system is to use a
hydrodynamic approach. " ' Such an approach has
been used extensively to study plasmons at metal surfaces
and metal-metal interfaces, and in small metal particles. "
The hydrodynamic approach has the dual virtues of al-
lowing relatively straightforward calculation even in
complicated geometries, and of providing a ready physi-
cal interpretation for the excitation frequencies found. In
principle, the hydrodynamic calculations should give
good results for plasmonlike modes in systems with large,
slowly varying electron densities, as long as the wave-
length of the excitation is long compared to the interpar-
ticle spacing. It does not, however, give information
about particle-hole excitations or about the Landau
damping of collective modes. Eguiluz, Ying, and Quinn'
have suggested that the hydrodynamic approach can be
viewed as an adiabatic generalization of the density-
functional formalism, where, in a local approximation,
the kinetic energy, exchange, and correlation effects are
incorporated through an internal pressure that depends
on the local density. It is perhaps more accurate to view
it as a dynamical extension, introduced by Bloch, ' of the
Thomas-Fermi approximation. In practice, work on in-
homogeneous systems has assumed a simple linear rela-
tionship between pressure and density.
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In this paper, we adopt the hydrodynamic approach to
study the magnetoplasrna excitations of an electron fluid
confined in one direction by a parabolic potential. Earlier
work on metallic films' and dielectric slabs' without
magnetic fields and on cylindrical plasmas' with axial
magnetic fields has dealt with issues similar to a subset of
the material presented here. All previous work, however,
has applied boundary conditions inappropriate to the
case of a perfect parabolic well. Furthermore, our work
includes a systematic study of magnetoplasmons in a
confined geometry with B in an arbitrary direction. The
organization of the paper is as follows. In Sec. II, we de-
scribe our model, calculate the self-consistent equilibrium
charge density, derive the equations of motion for collec-
tive modes, and discuss boundary conditions. In Sec. III,
we show that the center-of-mass modes are solutions both
of the full nonlinear equations of motion, and of our
linearized version of the problem. We also analyze the
dependence of the magnetoplasma frequencies on the
strength and direction of B, and compare the behavior of
the magnetoplasma frequencies for two different sets of
boundary conditions, treating both uniform and nonuni-
form. equilibrium densities. In Sec. IV, we summarize our
results.

II. MODEL

In the hydrodynamic approximation, the electron gas
is treated as a classical charged fluid which is completely
characterized at each point in space by its number densi-
ty n(r, t) and its velocity v(r, t). Quantum mechanics is
included approximately through an internal pressure that
depends on the local density. The dynamics of the elec-
tron gas are then determined by Newton's second law ap-
plied to each Quid element,

m'n +v Vv = —enE —en —XB—n VV —Vp, (1)
Bv V

Bt C

together with the continuity equation

Bn +V (nv)=0 .
Bt

Here, m * is the effective mass of the electrons, —e is the
charge of an electron, V(r)= V(z)= —,'m "cooz is the po-

tential energy per electron due to the confining potential,

p is the internal pressure, and 8 is a uniform external
magnetic field. We shall neglect retardation effects and
take E= —VP, where the scalar potential P satisfies the
Poisson equation

4~en

with e the background dielectric constant.
Hydrodynamic calculations on inhornogeneous elec-

tron systems most often use a simple linear relationship

5p=m's 5n

between variations in the internal pressure and variations
in the electron density. "' ' The parameter s is usually
taken to be —', v~, with vF the Fermi velocity for a uniform
noninteracting electron gas with some density charac-

teristic of the system. This choice of s guarantees that
the long-wavelength plasmon dispersion for a uniform
electron gas in the hydrodynamic model matches that
calculated using the random-phase approximation. " In
the present work, we proceed in the same spirit and use
the relation

p=m*s (n n, )—,
where we take s =

—,'vz, with vz the Fermi velocity
for an electron gas with the "natural" density
no=(em "coo/4me ) of our parabolic well, and where the
parameter n„which is a constant of integration from Eq.
(4), is a density at which the pressure vanishes. We dis-
cuss this choice of pressure-density relation in Sec. III C.

A. Equilibrium density profile

When it is placed in the parabolic confining potential,
the electron fluid will distribute itself in an equilibrium
density profile such that the net force on each unit
volume of the fluid due to the combination of the external
confining potential, the electrostatic potential, and the
pressure is zero. If there were no internal pressure, the
electron fluid would form a uniform slab of density n p,
the uniform density of positive charge that produces a
parabolic confining potential of the same curvature
m *cop. Taking the velocity to be zero in equilibrium, the
equilibrium profile no(z) must satisfy

0= —enpEp npm *co~—m *s B,np,

where EO=Eoz= —Vgo, $0 is the electrostatic potential
due to the charge density —enp, and the symbol 8,
denotes differentiation with respect to z. Because of
translational symmetry in the xy plane, the equilibrium
profile has no x or y dependence. Dividing by no(z) and
differentiating, and using the Poisson equation
B,po=4neno/e, w.e can write the equilibrium condition
as a differential equation for no(z),

0= no(z) m*co —
0m 's B,lnno(z)

4me

2

=m 'coo no(z) —1 —
2 B,lnno(z)

COp

where no(z)=no(z)/no. This differential equation must
be solved subject to boundary conditions that depend on
the value of n, . If n, is different from zero, the fluid will
form a slab of finite width, extending from z= —z,

„

to
z =+z,„,and no(z) will be nonzero only in this region.
In this case, the boundary conditions are that the internal
pressure vanish at z =+z,

„

to match the zero pressure
outside the fluid. If n, =0, the equilibrium density profile
will extend to z =+~ and the boundary conditions are
that no(z) must vanish as z goes to +~. The solid lines
in Fig. 1 show the equilibrium profiles no(z) for n, equal
to 1.0np, 0.5np, and 0.01np, with np=5X10' cm and

the sheet density n, =I, '" no(z)dz = 1 X 10"cm held

fixed as n, is varied. Note that if n, is equal to np, the
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FIG. l. Equilibrium density profiles fi'0(z) predicted by Eq.
(7) for I,= 1.0, 0.5, and 0.01 (solid lines). The sheet density n, is
held fixed as I, is varied. In this figure (and in all others except
Fig. 5), we take n0=5X10" cm ' and n, =1X10"cm . The
effective mass and dielectric constant in all figures have values

appropriate to GaAs: m *=0.07m, and a= 12.5. Also shown is
the ground-state electron density given by a self-consistent
quantum-mechanical calculation of the type reported in Refs.
10 and 17 (dotted line).

FIG. 2. Geometry used in calculating magnetoplasmon fre-

quencies. The electron slab defines the xy plane, and the x axis
is chosen along q. The direction of B is then given by the stan-
dard spherical angles 8 and P.

equilibrium profile is uniform. For comparison, the dot-
ted line shows the ground-state electron density given by
a self-consistent quantum-mechanical calculation of the
type described in Refs. 10 and 17.

B. Linearized equations of motion

icon 1 no(iqv„+c),v, )+v, a,n,

e 2n
i cov„—=iq $1

—s +co,„v„co„v~,—

l Nvy —
COcz Vx COcx Vz

(12)

(13)

(14)

To look for collective modes in the electron fluid, we
shall linearize the exact equations of motion for small de-
viations from equilibrium. Defining n, and E1 by
n =no(z)+n, (r, t) and E=Eo(z)z+E, (r, t), using the
equilibrium condition [Eq. (6)], and dividing by m no(z),
we obtain

Bv

at
e

E1+co, Xv —s V'

7tl

n1

n0

where co, =eB/m c. This equation is valid in the re-
gions where no(z) is nonzero, where it must be solved in
conjunction with the Poisson equation

V2$
4lre

1 n1

e 2n1
l Covz C)z P 1 S +Co~z V& CO~& Uz

Pl n0
(15)

(16)

we find that

Using Eq. (14) to eliminate v from Eq. (13) and Eq. (15),
solving the resulting equations for vx and v„and noting
that

2 2e21$E'220
~P&

—s c), —q
—no(z)

no 4lreno(z)

(17)

with E,= —Vg„and the continuity equation

Bn1
+V (nov)=0.

at
(10)

l coe 1
Vx

4m.e ' no(z)

l coe 1
Vz=

4lre ' no(z)

c), —q
—no(z)

c), q no(z—)—
s

In the regions where no(z) =0, we have the single equa-
tion

where

V $, =0.
If we assume that all quantities have the form

f(r, t)=f(z)exp(iqx icot), i.e., if we fix q along—the x
direction (see Fig. 2), we can write the equations of
motion for the electron slab as

2 [q(CO CO ) l (CO CO l COCO
&

)C) ]
Co (Co CO~ )

[q(co,„co„+icoco,y ) —i(co„—co )c), ]
+z —lS

Co (Co CO~ )

(20)

(21)
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Substituting back into Eq. (12), we obtain the differential
equation for P,

B2 —q2 —np[iqX, +(8, +B,lnnp}X, ]

n(r, t)= Jd rpnp(rp)5(r —rp —u(rp, t)}
n p ( rp )

detJ(rp}
(26)

2

X 8, —q
—np(z) $,=0 .

Sno
(22)

Because of the derivative in X„this is a fourth-order
differential equation.

where rp=rp(r, t) is the value of rp for which R(rp, t) =r.
Furthermore, with the same restriction, one can show
that any fluid element at a point rb on the boundary at
time t must have been at a point rob on the boundary at
t =0. Because our vanishing pressure condition requires
n(rb, t)=n, =n(rpb, 0), the exact boundary condition is
thus

C. Boundary conditions
detJ(rp&, t)=1+V u+(t}((Bu, lt)rpj) }=1, (27)

a—R(r, , t)=v(R(r, , t), t) .
at

(24)

The condition for no crossing is that R(rp+hrp, t)
WR(rp, t ) for all b, rp and all t, i.e., that the mapping from
rp to R(rp, t ) is nonsingular. This will be true if the deter-
minant of the Jacobian matrix J, with

M, au,
J;, (rp, t)= =fi,, +

Bro, " Br,
(25)

is nonzero for all values of ro and t. We can guarantee
this by requiring that ~(Bu, /drp ) ~

&&1 for alii and j.
With this restriction, we can write

In many hydrodynamic treatments of finite systems,
what may be called "hard-wall boundary conditions"
(HWBC) are used. These boundary conditions require
that there be no normal component of velocity at the
boundaries of the electron fluid, i.e., that the fluid behave
as though it were confined by hard walls at each of its
boundaries. While HWBC should apply in filled wells
with vertical sides, they are not appropriate in ideal para-
bolic wells. Rather than being fixed by a hard wall, the
boundaries of the electron slab in a parabolic well are free
to move. The physical boundary condition in our model
is that the internal pressure must vanish at the boundary,
even as the boundary moves. Because of our pressure-
density relation [Eq. (5)], we see that "parabolic-well
boundary conditions" (PWBC) require that the density at
the (moving) boundary be n,

Looking at the continuity equation, Eq. (10), one might
think that the condition should be n, =0 at z =+z,„.
This is not correct, however, because the boundaries do
not stay at +z,„asthe fluid moves. To derive the
correct boundary condition for the parabolic well, we
shall adopt for a moment the Lagrangian formulation of
fluid mechanics. Let R(rp, t) be the position at time t of
the fluid element that was at ro at t =0. If the original
density was np(rp), then the density at time t is

n (r, t ) =f d rpn p(rp)5(r R(rp, t ) ) . — (23)

We define the Lagrangian displacement field

u(rp, t )=—R(rp, t )
—rp and restrict ourselves to displace-

ment fields such that the paths [in (r, t ) space] of different
fluid elements do not cross. In this case, the Eulerian ve-
locity field v(r, t ) is unambiguous:

where all the derivatives are evaluated at ro=rob. If we
linearize in the derivatives of u, the condition on u is
V.u=0 at z =+z,„.

We need an equivalent boundary condition on v to use
in our Eulerian description of the dynamics. From Eq.
(24) and the definition of u, we have the exact relation

a—u(rp t)=v(rp+u(rp t) t) .
at

(28)

Taking the divergence with respect to ro, we obtain the
boundary condition on v that is linearized in the deriva-
tives of u,

0= Vp v(rp+ u(rp, t ), t ), (29)

where the divergence is with respect to ro. If we now
linearize also in ~u~, we get the simple boundary condi-
tion for v,

V v(r, t)=0 (30)

P, (+z,„)=$,(+z,„}, (31)

where P, and P, are the limits on the left- and right-
hand sides of the boundary, respectively. Third, the
discontinuity in the derivative of P& must satisfy Gauss's
law at z =+z,„.Since our boundary conditions do not
force v, to be zero at the edges of the slab, charge will in

general be transported across the original boundary, giv-

ing a gain or loss of charge in a surface region of thick-
ness u, . For our linearized problem, where ~u~ is small,
we can treat this as a 5-function surface charge density of
size +n, u, at z =+z,„.This causes a discontinuity in

the normal component of the electric field, which we can
write as

at z =+z,„.This PWBC condition on v should be con-
trasted with the HWBC condition v, (+z,„)=0 conven-
tionally used in hydrodynamic calculations.

Since we shall use P, as the dependent variable in our
calculation, we need a complete set of boundary condi-
tions on P&. These are just the usual electrostatic bound-

ary conditions plus the PWBC condition derived above.
First, P,(z} must remain finite as z~+ co. Second, P,
must be continuous at z=+z,„,a condition we can
write as
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a, y, (*z .„)—a, y, (+z .„)
=+ n, u, (+z,„)4me

4me=+ . n, v, (+z,„)
l COG'

CO=+n X, c), —q n—p(z) 2

1 2 2 p

'np z s
(32)

c), —q
—n, [c),inn p(z) ]

where we have used the linearized relationship
v, = i co—u, Th.e final boundary conditions on P, are the
PWBC given in Eq. (30), which can be written using Eqs.
(12), (16), and (19) as

corresponds to a rigid translation of the electron profile
with no change from the equilibrium shape. In this case,
neither the electric force nor the pressure force on the
fluid element labeled by rp changes during the motion, so
that the only forces relevant to the motion come from the
confining potential and from the magnetic field. More
formally, if we take u to be the deviation from equilibri-
um, we can see from Eq. (26) that n (R(rp, t ), t )=n p(z p ).
Furthermore, E{R(rp,t), t)=Ep(zp)z, where Ep(zp) is
the electric field at z =zp in equilibrium, and VR=Vp be-
cause the Jacobian matrix, Eq. (25), is the identity. Using
also Eq. (28), we can thus write the equation of motion as

c} e c)
u(rp, t ) = — Ep(zp )z+ co, X —u(rp, t )

Bt .
m* at

$2—cop[zp+u, (rp, t)]z— d, npz . (35)
np

XX, c), —q
—1Ip(z) (33) The equilibrium condition, Eq. (6), allows us to simplify

this to
In Eq. (33) and in the right-hand side of Eq. (32), deriva-
tives are to be evaluated as z~+z,

„

from inside the
slab.

2
u(t ) =co, X —u(t) —copu, (t)z .

at2
(36)

III. COLLECTIVE MODES

To find the collective modes of the system, we must
solve the differential equation (22) subject to the bound-
ary conditions given in Sec. II C. For a given confining
curvature m'cop and background dielectric constant e
(which together define the "natural" density n p of the
well), we have the free parameters n„n„co,„,co, , co„,
and q. The dependence of the eigenfrequencies on these
parameters is very intricate, and we shall analyze only a
fraction of the parameter space. First, we shall show that
there are center-of-mass modes that are solutions both of
the exact equations of motion and of our linearized ver-
sion of the problem. Next, fixing n, =n p, we shall study
the dependence of the q dispersion of the eigenfrequencies
on the magnitude and direction of co, . We shall pay spe-
cial attention to the experimentally relevant case q=0.
Finally, we shall investigate the dependence on n, in the
case B=O.

A. Center-of-mass modes

Before we proceed to calculate collective modes for
particular sets of parameters [n„n„co,„,co, ,co„],we
show that pure center-of-mass modes exist in the parabol-
ic well for all such sets. To show that such modes exist,
we return to the Lagrangian formulation and write the
exact equation of motion for the Quid element labeled by
its position rp at t =0. After dividing by rn np(rp), we
can write the equation as

e
u(rp, t ) = — E(R(rp, t ), t )+co, Xv(R(rp, t ), t )

at2 ' m*

This is an exact reduction of the equation of motion (34),
without any linearization. Furthermore, any solution of
the form u =u(t) will satisfy PWBC, since the shape of
the density profile remains unchanged throughout the
motion.

Substituting u(r, t ) =upexp( i cot ) in—to this equation,
with up a constant, we find two oscillatory modes, with
frequencies

2 )( 2+ 2)+][( 2+ 2)2 4 2 2 ]i/2 (37)

+up, n, [5(z—z,„)—5(z+z,„)] (38)

and a potential

0, z( —z,
„

4me
Pi(z) = up, f np(z}dz,

max

4me

Zm~x (Z (Zm~x

These are the modes described by Brey, Johnson, and
Halperin that account for the optical absorption in per-
fect parabolic wells.

More relevant to the present calculation, one can also
show that the center-of-mass modes are solutions to our
linearized version of the problem, as defined by the
differential equation (22), the boundary conditions at
z=kz, „given in Eqs. (31), (32), and (33), and the re-
quirement that Pi be bounded as z~+ao. Taking
P( —co )=0 for all t, a mode with u(r, t)=upexp( icot)—
will give a charge density

n, (z) =up, c),npe(z+z. .„)e(z..„—z )

s2
copR, (rp, t)z — VRn—{R(rp,t), t }, (34)R

pz s & maxE'

(39)

where the gradient in the last term is with respect to R.
A displacement field u =u( t) that is independent of rp

This is a solution to the hnearized problem provided that
CO =Ct)+.
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B. Uniform equilibrium density

2

a2 q—2 (—]qX.+a,X, ) a2 —q2 —
2s

(40)

When n, =no, the equilibrium density profile is uni-
form, with no(z) =no, and extends from z= —a to z=a,
where a =n, /2no. Because this case allows analytical re-
sults beyond those of Sec. III A, we shall use it to analyze
the dependence of the magnetoplasmon frequencies on
the magnitude and direction of the magnetic field. Since
no(z) is constant in the electron slab, the differential
equation for P], Eq. (22), simplifies to

$2
(q(cocx CO cz+'COCO

yc

CO (CO Coc )

2

—i]c (co„—co )] ]cj—q-
s

(51)

This is a set of six homogeneous equations for the six
complex coefficients I A, A ] 4,B+ ]. The eigenfre-
quencies of the system can be found by setting the deter-
minant of the coeScient matrix equal to zero.

The boundary conditions at z =ka given by Eqs. (32) and
(33) become

COO

B,P] —B,P] =+X, c), —q-
s

(41)

and

(a2 —q')y, =0, (42)

where all quantities (except c),P] at z=a and c},P] at
z = —a ) are to be evaluated as z ~+a from inside the
slab.

For q &0, the general solution inside the slab is

P](z)= g A, e ' (43)

—(co,„—co )q ] ]c —q-
s

=0 (44)

The general solution outside the slab is
P](z)=A+e4'+B+e 4', where the plus (minus) signs
refer to z ) a (z & —a). The boundary conditions at + oo

require that A+ and 8 equal zero. The six remaining
boundary conditions can be written as

K 0
A e 4' —gA;e ' =0, (45)

where the I]c; j are the four roots of the polynomial equa-
tion

2

Co (CO Coc )

1. Case q =0

We consider first the special case when q =0. This is a
very important case, both because modes with very long
in-plane wavelength are those most likely to be excited by
optical perturbations in imperfect parabolic wells, and
because these are the modes most likely to be described
correctly by a hydrodynamic model. When q=0 the
differential equation inside the slab simplifies to

(c)2 —]c2g2y =0 (52)

(k](z} A]+ A2z+ A3z + A4z (53)

Applying PWBC, we find a solution with A3 = A4 =0. If
we take P]( —oo )=0, we get

0, z( —a

P](z) oc 1+z/a, ~z~ &a

2, z)a
(54)

with n, =0 everywhere inside the slab and surface-charge
5 functions at z =.+a. The frequencies corresponding to
v =Oare

where x = [ co(co co, )—/(co„—co2)+coo]/s . The general
solution of Eq. (11) outside the slab is P](z)= A++B~z,
where the plus (minus) signs refer to z) a (z & —a).
Neglecting external electric fields and noting that

f "„n](z)dz =0, we set B+=0.
If x =0, the equation inside the slab simplifies further

to c),P]=0 and the general solution inside the slab is

K.Q

B+e 4' —gA;e ' =0, (46)

2 ]( 2+ 2)+] (( 2+ 2)2 4 2 2 ]]/2 (55)

g(lc, +c, )A, e ' —qA e 4'=0,

qB+e ~' —g(lc, +—c;)A;e ' =0,

g(]c, —
q )Ae ' =0,

(47)

(48)

(49)

so we see that these modes are the center-of-mass modes
we derived in Sec. III A.

When ~ %0, the general solution inside the slab is

P](z)= A, + A2z+ A 3e"'+ A4e

If we take P]( —oo )=0 and apply PWBC, we find that

A+ = A
&

= A2 =0 and that ~ must take the values

g(]c, —
q )Ae ' =0, (50)

. nm.w=iy„=—i, n =1,2, . . . .
2a

(57)

where
Inverting the relationship between ~ and co, we get the
eigenfrequencies
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~~~= —,
' j(r02o+co, +s y„)

+[(roc+co, +s y„)—4'„(rv()+s y„)]' J

(58)

2
&Xn

n, (z) = — P, (z)4'
cos(y„z), n =1,3,5, . . .

=an X '

sin(y„z), n =2,4, 6, . . . ,
(59)

with n=1, 2, . . . . For each n, the solutions for n& and

P, that correspond to the two eigenfrequencies ro„+and

ro„have the same z dependence in the region ~z~ (a,

where a «1 is a constant representing the amplitude of
the oscillations. In addition to this bulk contribution to
n&, there is also a surface contribution, which we can
write as

no (
—1)'" ~' 2[5(z+a)+5(z —a)], n=1, 3, 5, . . .

n surf(z)
'Yn ( —I )"y [5(z+a )

—5(z —a )], n =2,4, 6, . . . .

Given P&(z), we can use Eqs. (14},(18), and (19}to find the velocity profiles corresponding to co„+..

sm(ynz), n=1, 3,5, . . .
n+ cx cz nk cy —cos(y„z), n =2,4, 6, . . . ,
El CO&z CO„+ s

(61)

v„(z)=a ~~nh ( cy~ cz+~ink cx}

yn (~cz ~On+)

sin(y„z), n =1,3, 5, . . .
—cos(y„z), n =2,4, 6, . . . ,

(62)

l S~+
v, (z)=a X '

Yn

sin(y„z), n =1,3, 5, . . .
—cos(y„z), n =2,4, 6, . . . . (63)

Note that the center-of-mass mode frequencies are the
n =0 versions of co„+as defined in Eqs. (57) and (58).

In order to compare the two sets of boundary condi-
tions, we now apply HWBC to the same case, q =0. One
finds that HWBC allow solutions for the same frequen-
cies co„+,with n + 1, that we found with PWBC. As was
true for PWBC, the solutions n

&
and tI}, corresponding to

the two eigenfrequencies co„+and co„have the same z
dependence inside the slab, but the z dependence is
changed to [taking P, (0)=0]

sin(y„z}, n=1, 3, 5, . . .

1 —cos(y„z), n =2,4, 6, . . . ,
(64)

sin(y„z), n =1,3, 5, . . .

Pl =2
lk

n=2
/

/

/----C---
/

/
/

/

n=1

though (at q=0} PWBC require B,v, =O at z=ka and
HWBC require U, =0. This is analogous to sound waves
in a pipe with two open ends (PWBC) or with two closed
ends (HWBC). The open-ended pipe has one extra (node-

n (z)cc ' —cos(y„z), n =2,4, 6, . . . (65)

and there are no surface contributions to n &. In addition,
there is no solution at ~ =0, or, equivalently, at the fre-
quencies of the center-of-mass modes. This is to be ex-
pected, since the center-of-mass modes all involve motion
with nonzero U, .

In Fig. 3, we show the density perturbations n, (z) for
(a) the PWBC modes with index n =0, 1,2 and (b) the
HWBC modes with index n =1,2. The bottom PWBC
mode, with index 0, is the center-of-mass mode. It has
n, =0 everywhere inside the slab, and surface charge 5
functions at z=+a, indicated by vertical arrows in the
figure. The modes with n ~ 1 for both sets of boundary
conditions are standing waves formed from bulk magne-
toplasmons with wave vectors +y„in the z direction.
The two sets of boundary conditions give the same fre-
quencies because both give the same wavelengths, al-

n=o -1.0 0.0

z (10 K)

1.0

-1.0 0.0

z (10k)
1.0

FIG. 3. Density perturbations n1(z) for a uniform electron
slab at q=0 for (a) modes with index n =0, 1,2 for parabolic-
well boundary conditions (PWBC) and (b) modes with index
n =1,2 for hard-wall boundary conditions (HWBC). The verti-
cal arrows represent the 5-function surface charge that is
present for PWBC. There are two eigenfrequencies cu„+ for
each n [see Eq. (58)].
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less) mode corresponding to a uniform translation along
the pipe. This mode has co=0 in the pipe because it has
no restoring force. In the parabolic well, the restoring
force arises (within our linearized picture) from the elec-
trostatic field caused by the surface charge that forms at
the boundaries when the electron slab shifts rigidly.

It is interesting to note that the dipole moment
p= f" zn, (z)dz vanishes for all PWBC modes except
the center-of-mass modes. Although the contribution
from the interior of the slab is nonzero for odd n, the
contribution from the surface charge exactly cancels it so

(a)

1.5--

that p =0 for n ~ 1. Because it is the dipole moment that
couples to long-wavelength optical perturbations, we see
that our linearized theory with PWBC reproduces the
quantum-mechanical result that only the center-of-mass
modes can be excited by far-infrared radiation. In con-
trast, all HWBC modes with odd n have nonzero dipole
moments and will couple to a spatially uniform electric
field.

For either PWBC or HWBC, we find that
co„+~(~0+co,—co„+sy„)' and co„~co„whenthe
index n gets large. Thus the + mode frequencies in-
crease without bound as n ~ao while the —mode fre-
quencies accumulate at co„. In Fig. 4, we show the
dependence on the magnetic-field tilt angle 8 (see Fig. 2)
of the PWBC frequericies co„+,n ~0, for (a) 8 = I T and
(b) 8 =3 T. In this an all other figures, we use parame-
ters appropriate for GaAs, namely e= 12.5 and
m*=0.07m„where m, is the free-electron mass. In all
figures except Fig. 5, we have chosen n0=5X10' cm
and n, =1X10"cm . With this set of parameters, %coo

is 2.87 meV, a =1000 A, and we have co, =0.602coo and
l. 806coo for 8 = I and 3 T, respectively. In Fig. 4(a), we
see that the modes co„areconfined to a narrow band of

0 15 30 45 60 75 90

I-"„I (c.eg)

150-.
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100--

50-

0
0

250

6 8 10 12 14

B (T)
16

200-

1.5- 150.
O

100--

50--

0
0 2 4 6

B (T)

I

10 12 14 16

0 15 30 45 60 75 90

1-"„t (c.eg)
FIG. 4. Dependence on magnetic-field tilt angle 0 of

uniform-slab PWBC modes at q =0 for (a) B= 1 T and (b) B=3
T. The well parameters are as in Fig. 1.

FIG. 5. B-field dispersion of uniform-slab PWBC frequencies
(lines) compared to experimental results of Ref. 5 (symbols) for
(a) 8=23' and (b) 0=90. Circles denote peaks in the optical
spectrum that lie near the center-of-mass mode frequencies.
Squares show other peaks. The center-of-mass mode frequen-
cies are shown with heavy lines. The well parameters are
n0 =6.25 X 10' cm and n, =4.22 X 10"cm
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2. Case q+O, B=O

Now we move on to study the dispersion of the eigen-
frequencies with q, which we take to lie in the x direc-
tion. To lay the foundation for our study of the 8-field
dependence of the magnetoplasma modes and to compare
further the different sets of boundary conditions, we con-
sider first the case with no magnetic field. For PWBC,
we can solve for the eigenmodes analytically. The modes
separate into three types: bulklike modes, with eigenfre-
quencies

co„(q)=coo+s (y„+q }, n=1,2, . . . ,

surface modes, with eigenfrequencies

2
COp

co+(q) = (1+e '),

(66}

(67}

and another set of bulklike modes with co=0 for all q.
The dispersion curves for the bulklike and surface modes
are shown as the solid lines in Fig. 6. The heavy line at
~=0 indicates the infinite degeneracy there. The z
dependence of n, , P„and v for the bulklike modes is the
same as was found at q =0 and is given in Eqs. (59}—(63).
These modes are standing waves (in the z direction)

frequencies below the accumulation line at m„.As the
magnetic field increases, the co„band broadens, and for
co, & cop, the lowest-frequency co„+modes start to bunch

up, as shown in Fig. 4(b).
Because we know the frequencies m„+ for arbitrary

magnetic fields, we can compare them to the locations of
the peaks observed in the optical experiments of Ref. 5.
The only parameters necessary to make the comparison
are cop, which is given in Ref. 5 as 80 cm, and a, which
is given as between 300 and 375 A. In Fig. 5, we take
a=337.5 A—halfway between these limits —and plot
co„+and the data from Ref. 5 versus magnetic field from
8 =0 to 16 T for two different tilt angles: (a} 8=23' and
(b) 8=90'. The theory is plotted as solid lines, with the
center-of-mass modes marked by heavier lines. In Fig.
S(a) there is an accumulation line at co=co„,which also
shows up as a heavy: line. The experimental data are
shown as open circles for peaks that lie near the center-
of-mass mode frequencies, and open squares for extra
peaks that cannot be associated with center-of-mass exci-
tations. Given the simplicity of the model, the agreement
is remarkable. We point out that because of a gate volt-
age used to vary the sheet density n, in the sample used
in Ref. 5, the reflection symmetry about z =0 was broken.
Thus there are no reasons of symmetry to exclude the ex-
citations of any of the extra modes with n &1. We also
reiterate that the only difference between the spectra at
q =0 for PWBC and HWBC is the absence, for HWBC,
of the center-of-mass modes. Although the quality of the
agreement shown in Fig. 5 is perhaps fortuitous, it
nonetheless suggests quite strongly that the actual modes
excited in the experiment are closely related to the mag-
netoplasma modes calculated in this simple hydrodynam-
ic model.

3.0

CO

1.5-

1.0-

1.00-

0

0.95
0.0

4 6

0.2

10

FIG. 6. Comparison of B=0 uniform-slab spectra for PWBC
(solid lines) and HWBC (dashed lines) as a function of q with
fixed slab width. The inset is an enlargement of the region
around q =O, co=cu0. The heavy line indicates an infinite degen-
eracy at co=0 for both sets of boundary conditions (see text).
The well parameters in this and in all succeeding figures are as
in Fig. 1.

formed by bulk plasmons that have the z component of
their wave vector equal to +y„.lust as at q=0, the
bulklike modes are completely decoupled from the region
outside the electron slab, in that they cause no fields out-
side. For this reason, they have exactly the dispersion of
bulk plasmons with an integral number of half-
wavelengths (in the z direction) fitting into the slab width
2a.

The ~+ modes, on the other hand, have n, =0 inside
the slab, and P, given by

sinh( qz ), co —co+
k zo-'

cosh(qz ), co=co (68)

(q)=

' 1/2
27Tn e

m E
q' +O{(qa } ) . (69)

They are surface modes, with n, =0 everywhere inside
the slab, and an electric field arising only from the sur-
face charge at z=+a. Because the electron density
remains uniform in these modes, the frequencies co+(q)
are independent of s. If we fix the width of the slab and
let q become large, the two surfaces become more and
more weakly coupled, and both frequencies m+ go to the
surface-plasmon frequency cop/&2. If we let q go to zero,
on the other hand, e+ goes to the center-of-mass mode
frequency cop, while co approaches the two-dimensional
plasmon dispersion
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1.5

1.0-

0.5-

0.0
0.0

I

10.0 30.0
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FIG. 7. Comparison of B=0 uniform-slab spectra for PWBC
(solid lines) and HWBC (dashed lines) for fixed qs/coo=0. I as a
function of slab width.

In addition to the nontrivial bulklike modes and the
surface modes, there is an infinitely degenerate manifold
of modes at co=0. These are modes in which the electron
fluid moves in the plane of the slab, but perpendicular to
the q vector, i.e., in the y direction. Any flow of this type
with v =v„(z)exp(iqx )y will produce no change in density
and, hence, no restoring force. Because we can choose
any function v (z), there are an infinite number of modes
of this type. Although these modes are dispersionless and
degenerate when B=0, we shall see that a finite B field
can both break the degeneracy and give these modes a
finite dispersion.

For HWBC, we cannot write down analytic expres-
sions for the frequencies at finite q. There is no clean sep-
aration between "bulklike" modes and "surface" modes,
because all modes produce fields outside the electron slab,
and all modes have nonzero n, inside. In Fig. 6 we show
the B=0 dispersion for HWBC (dashed lines) along with
that for PWBC (solid lines). The zero-frequency modes
present with both sets of boundary conditions are indicat-
ed by the heavy line at co=0. The q =0 frequencies are
the same for the two types of boundary conditions, as was
shown in Sec. III B 1, except that HWBC do not give the
center-of-mass mode. This difference can be seen clearly
in the inset, which shows the small-q behavior of the
PWBC and HWBC frequencies in the neighborhood of
co=co0. Because the lowest-frequency modes for HWBC
have nonzero n„their frequencies increase like qs for
large q, while the lowest two modes for PWBC approach
the constant value coo/&2.

In order to make contact with calculations of surface
plasmons on a half-space, we can also see how the fre-
quencies evolve as the thickness of the slab is varied. In
Fig. 7, we show the frequencies for PWBC (solid lines)
and for HWBC (dashed lines) as a function of the slab
width 2a. We use the same well parameters as in Fig. 6,
and fix qs/coo=0. 1. As the width of the slab becomes
large, the PWBC surface frequencies co+ approach
coo/v 2, according to Eq. (67). In this limit, the bulklike
frequencies cu„coalesce to form the bulk continuum

above (coo+s q )' . When the width of the slab becomes
small, on the other hand ct) ~0 N+~ct)0 and the bulk-
like mode frequencies diverge. For HWBC, the situation
for large slab widths is much the same as for PWBC.
There are two modes with frequencies that converge to
coo[2

' +8((qs/coo) )] as a~~. All the other modes
with higher frequencies form the bulk continuum. As the
slab width is decreased, the frequency of the lowest mode
goes to zero, as was the case with PWBC, and, similarly,
the frequencies of the modes forming the bulk continuum
diverge as a~O. The frequency of the second mode,
however, does not go to a constant as with PWBC, but
diverges as a —+0. Thus this mode has the character of a
surface mode when the width of the slab is large and of a
bulklike mode when the width is small. We point out
that the PWBC modes that form the continuum for large
slab widths lie directly on top of HWBC modes in Fig. 7
and hide them from view. This is true of all but the
lowest such PWBC mode, which coincides with a HWBC
mode only when the slab width goes to zero.

3. Case q+O, BAO

~2(q)~ =coo+co, +s (y„+q ) n =1,2, . . . (70)

and the same z dependence for p„n„andv as that found

With a nonzero magnetic field, the frequencies that
correspond to nontrivial solutions of the set of equations
(45)—(50) must, in general, be found numerically. Even
with a uniform equilibrium density and PWBC, the
modes do not in general separate into "surface" and
"bulk" varieties, nor do they have even and odd symme-
try about z=0. In this section, we examine the depen-
dence of the magnetoplasmon dispersion on the strength
and direction of the magnetic field. In particular, we cal-
culate the q dependence of the eigenfrequencies for seven
directions and two magnitudes of B. Using the standard
polar and azimuthal angles 8 and P to denote the direc-
tion of B (see Fig. 2), we consider three directions with B
in the plane of the electron slab (8=90'), three direction
with B at 45' with respect to the plane (8=45'), and the
"Faraday geometry, " where B is perpendicular to the
plane (8=0'). These seven angles cover one octant of the
range of possible directions for B. The spectra for the
other seven octants can be found using the symmetry of
the spectrum under B,—+ —B; for i =x,y, z independent-

ly. The numerical results for a parabolic well with the
parameters n0=5X10' cm, a=12.5, a =1000 A, and
m *=0.07m, for B=1 and 3 T are shown in Figs. 8—10.

a. B in plane, perpendicular to q (8=90', /=90'). The
one case in which one can solve for the modes analytical-
ly is when B is in the plane and perpendicular to q. In
this case, the modes separate into bulklike and surface
modes just as for B=O, and the infinite degeneracy at
ca=0 remains unbroken. The bulklike modes have fre-
quencies
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+ 1 [(~2+~2)2 ~4(1 e
—4qa)]1/2 (71)

in Eqs. (59)—(63). There are also surface modes with fre-
quencies

coy(q) ~& &-„——(coo+co )

Although there is no longer a clear distinction between
bulklike modes and surface modes when B q+0, in many
cases the amount of mixing is small and we can under-
stand the qualitative features of the spectrum by consid-
ering standing waves formed from bulk magneto-
plasmons with wave vectors given by

and P, given by
qb =qx+y„z . (73)

P, (z) ~ j (co+ —co, )[2co+(co++co, ) —coo]eq'+'

—(co++co, )cooe (72)

2.3-

2.2-
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2.0-

1.9-

1.8
0 4 5 6 7

q (10 k')
FIG. 10. Detail of the Faraday geometry (8=0) dispersion

at 8 =3 T. Circles and squares denote crossings and anticross-
ings of the dispersion curves.

As was the case when B=O, the surface modes have
n, =0, and the electrostatic fields are due to the surface
charge at z =+a. Because B lies in the y direction in this
case, there is still no restoring force for modes with
v = v (z)exp(iqx )y, and we still have complete freedom in

specifying v (z). The infinite degeneracy at co=0 exists at

q =0 for all in-plane magnetic-field directions, but will be
broken for nonzero q in the presence of a magnetic field
except in the present case, where B.q=O.

In Figs. 8(a) and 9(a), we show the dispersion in this
geometry for B= 1 and 3 T, respectively. The cu„and co+
modes are shifted up in frequency by the magnetic field,
while the co mode is shifted down. As in the B=0 case,
the surface-mode frequencies approach constants for
large q because they have n

&
=0, while the bulk-mode fre-

quencies increase like qs in this limit. The splitting of the
two surface-mode frequencies at large q is due to the
different frequencies of surface magnetoplasmons with
wave vectors in opposite directions along the surface.
The heavy line at co=0 represents the infinite degeneracy
there.

b. Other in plane (61=90',/%90'). When the direction
of B is changed so that B still lies in the plane of the elec-
tron slab but is not perpendicular to q, three things hap-
pen: (i) the infinite degeneracy at co=0 is broken, and is
replaced by an accumulation line; (ii) the splitting of the
surface-mode frequencies at large q decreases as B de-
creases; and (iii) the lowest bulk modes acquire a
minimum at finite q. These effects can be seen in Figs.
8(a) —8(c) for 8 = 1 T, and in Figs. 9(a)—9(c) for 8 =3 T.

For 8 in a general direction, there are two branches of
bulk magnetoplasmons for each of the two wave vectors
qb. The frequencies of these modes [found by setting
1c=+iy„in Eq. (44) and solving for co ] are

co +(q& ) = —,
' (coo+ co, +s qb )

+ 1 [( 2/ 2+$2q2)2

4(coq)2(2+s22)]1/2 (74)

which holds for any q& of the form shown in Eq. (73).
Here, qb=q +y„,qb is a unit vector, and

CO 'qb = cx q+—cz Xn

( 2+y2 )1/2
(75)

When co„=Oor co,„=O,magnetoplasmons with both
values of qb given in Eq (73).have the same frequency,
and we can form standing waves. These standing waves
automatically satisfy the boundary conditions in Eqs.
(45), (46), (49), and (50), but satisfy Eqs. (47) and (48) if
and only if

co„(co,qb) —=0, (76)

which shows that they are exact solutions only when

q =0 or when 8 is in the plane of the slab and perpendic-
ular to q (i.e., when B=By).

When B is in plane of the electron slab (the xy plane) so
that co„=O,and when the magnetic field is small, the ap-
proximate frequencies given in Eq. (74) reproduce the
features of the exact eigenfrequency dispersion remark-
ably accurately, both for the modes above and for the
modes below the surface modes. This is shown in Figs.
8(b) and 8(c), where we show co„+(upper dotted lines)
and co„(lower dotted lines) for n =1—4. The situation
for larger magnetic fields is shown in Figs. 9(b) and 9(c).
Here, although the co„+modes still agree fairly well with
the exact eigenfrequencies, strong mixing between the
surface and bulklike modes causes the co„dispersion to
give only qualitative agreement. On the other hand, the
match between the co„ frequencies and the dispersion of
the lower manifold of exact eigenfrequencies shows that
the modes in the low-lying band have the character of
bulk magnetoplasmons. We see then that the spectrum
when 8 lies in the plane consists one infinite set of bulk-
like modes at high frequencies, another at low frequen-
cies, and two surfacelike modes lying in between.

c. Tilted geld (8=45 ). When B is tilted out of the
plane of the electron slab, the most noticeable change in
the spectrum is that the accumulation line moves from
co=0 to co=co„.For small magnetic fields, the spectrum
still has the same general character, with bulklike modes
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at high and low frequencies and surface modes in be-
tween. For large values of the magnetic field, the upper
surface mode is still visible between the upper and lower
bulklike modes, but the lower surface mode now lies
below the lower bulk modes and mixes strongly with
them. We show the q dependence of the eigenfrequencies
for 8=45' and /=90', 45', and 0' in Figs. 8(d), 8(e), and
8(f) and Figs. 9(d), 9(e), and 9(f) for B= 1 and 3 T, respec-
tively. In Figs. 8(d) and 9(d), where co,„=0,we have also
plotted co„+(upper dotted lines) and co„(lower dotted
line) for n =1—4. We see again that the approximate fre-
quencies 9„+are very close to the exact frequencies, ex-
cept in the region where co&+ and Sz+ mix significantly
with the upper surface mode. When neither co, nor co„
is zero, as in Figs. 8(e) and 8(f) and Figs. 9(e) and 9(f), the
bulk magnetoplasmons for the two wave vectors in Eq.
(73) have different frequencies, so we cannot combine
them to form a standing-wave approximate solution. In
this case, the mixing between bulk and surface modes is
strong and we get the complicated behavior seen in Figs.
8(e) and 8(f) and, more prominently, in Figs. 9(e) and 9(f}.

d. Faraday geometry (8=0 ). When 8=0', the value of
P is irrelevant. In Figs. 8(g} and 9(g), we show the q
dispersion of the eigenfrequencies for 8 =1 and 3 T. We
include also cu„+(upper dotted lines) and co„(lowerdot-
ted lines) for n = 1 —4 in each case. For 8 =1 T, when co,
is less than coo, there is a clear separation between the
bulklike modes at high and low frequencies and the sur-
facelike modes in between. Just as for the tilted field case
8=45, /=90', the lower-frequency bulklike dispersion
curves are bounded above by co„,which is now equal to
~„andgo to zero as q~ao. The lowest of the higher-
frequency bulklike modes shows the beginnings of an up-
ward kink at small q. In this low-field case, the approxi-
mate frequencies, and particularly the tco„+I, are again
very close to the exact frequencies. For 8 =3 T, the situ-
ation is more complicated. The higher- and lower-
frequency bulklike mode dispersions are now contiguous
at q =0, and the upper surface mode is not identifiable.
The lower surface mode starts at coo at q =0, then mixes
with the bulklike modes and loses its surface character.
The kinks in the dispersion curves of the first few higher-
frequency bulklike modes, just visible in Fig. 9(d}, are
now very large, so that the curves now show a complicat-
ed set of crossings and anticrossings. In Fig. 10 we show
a detail of these modes. In this geometry, the solutions
have even and odd symmetry in z, and this determines
which intersections are crossings and which are an-
ticrossings. The approximate frequencies 9„+give a
poor quantitative match for the lowest few modes in this
range of q, which suggest strong mixing with a surface
mode in this region.

$,(z,„)=JN, Q, ( —z,„), (77)

where P,(+z,„)is a vector with elements

($„B,Q„B,J„B,Q, ) evaluated at z=+z,„.Because the
solutions outside the slab are the same as in Sec. III B, we
know that B,g, =qg, for z & —z,„andB,P, = —qP, for
z &z,„.We can now apply the six boundary conditions
at z=+z,„given in Sec. C and get six homogeneous
equations for the six constants I (t,

'
( —z,„),

P, ( —z,„),P, (z,„)I.
The introduction of n, as an additional parameter in

1.5

1.4--

S 1.2 .

1.0 ——

behaved, varying smoothly between a value near no in the
center of the well and the boundary value n, at +z,„,as
shown in Fig. 1. Because we have not included surface
tension in our model, however, and because we do not al-
low negative static pressures, the case where n, is larger
than no is pathological, with the electron Quid breaking
up into an infinite number of slivers that are distributed
in such a way that the average density is no. We shall not
consider the case, but shall focus on n, (no.

Because no(z) is not constant when n, &no, we must
now solve the general form of the differential equation for
P, (z), Eq. (22). The center-of-mass modes and their fre-
quencies can be found analytically, as was shown in Sec.
III A. All other modes, however, must be found numeri-
cally, and the numerical solution is complicated by our
inability to write down the general solution of Eq. (22) for
nonconstant no(z). In Sec. III B, we were able to apply
the six boundary conditions at z =+a to write six homo-
geneous equations for six undetermined coeScients. We
can use the boundary conditions in the same way for the
case of nonuniform equilibrium density if we take advan-
tage of the linearity of the differential equation (22). Be-
cause the equation is linear, there is a linear relationship
between the values of any solution and its first three
derivatives at z = —z „andthe values of the same quan-
tities at z=z,„.In other words, there is a matrix JK
such that

C. Nonuniform equilibrium density
0.0 0.2 0.4 0.6 0.8 1.0

So far, we have discussed the case where n, =no and
the equilibrium density profile is uniform. This seems a
very special case, and we would like to know how the be-
havior we found in Sec. III B changes when n, &no. If n,
is less than no, the equilibrium profile no(z) is well

FIG. 11. Frequencies at q=0 and 8=0 for a nonuniform
slab, plotted as a function of the reduced density at the bound-

ary n, =n, /no for PWBC (solid lines) and HWBC (dashed
lines). The well parameters are as in Fig. 1.
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FIG. 12. 8=0 PWBC dispersion curves for a nonuniform

slab with 8, =0.01.

FIG. 13. Density perturbations n, (z) for lowest three eigen-

modes at q =0 for PWBC (solid lines) and HWBC (dashed lines)

with N, =0.01. The small 5-surface charge for PWBC is not
shown.

the broad range of cases treated in Sec. III 8 is beyond
the scope of the present work. We focus instead on the
case when 8=0 to try to understand the general effects of
varying n, . In Fig. 11, we plot the q =0 frequencies of
the lowest few PWBC modes (solid lines) as a function of
n, —:n, /no. As expected, the center-of-mass frequency is
unaffected by changes in n, and appears as a straight line
at co=coo. On the other hand, the spacing between the
bulklike modes decreases as n, decreases, and modes with
higher frequencies are affected more than modes with fre-
quencies near coo.

In Fig. 12, we plot the q dispersion of the PWBC eigen-
frequencies for n, =0.01. Comparing to the uniform den-
sity dispersion shown in Fig. 6, we see that the general
behavior of the bulklike modes is unaffected by the
change in n„but that the decrease in spacing seen at
q=O persists at finite q. In addition, the two surface
modes, which were dispersionless at large q in Fig. 6, now
increase as qs, just as the bulklike modes do. This comes
from the nonzero n, (z) that the surface modes must have
for any nonuniform equilibrium profile. The value of q
necessary to see the qs behavior becomes larger and
larger as no(z) becomes more uniform, and goes to
infinity in the limiting case treated in Sec. III B.

It is interesting to note that the differences between the
PWBC and HWBC spectra for a given profile no(z) de-
crease as n, decreases. This is a somewhat artificial com-
parison from a practical point of view, since the different
boundary conditions correspond to different confining po-
tentials, which will manifest themselves not just through
constraints on the oscillations about equilibrium, but in
the shape of equilibrium density itself. Nonetheless, the

comparison is important from a theoretical point of view,
since hydrodynamic calculations conventionally prescribe
an equilibrium charge density and then apply HWBC to
it.

In Fig. 11, we plot the q=O frequencies for HWBC
(dashed lines) along with those for PWBC (solid lines).
When N, =1, the HWBC spectrum is the same as the
PWBC spectrum, except that there is no center-of-mass
mode for HWBC. One way to look at this is that all the
HWBC modes are shifted up by one PWBC mode, since
the symmetry of the co„HWBCmode is the same as the

symmetry of the co„ i PWBC mode (see Fig. 3). As n,
decreases, the HWBC frequencies drop faster than the
PWBC frequencies, however, so that, when N, ~O, the
H %BC frequencies approach the frequencies of the
PWBC modes that were one mode below when n, = 1. In
Fig. 13, we show the density perturbations n, (z) for the
lowest three PWBC modes (solid lines) and the lowest
three HWBC modes (dashed lines) for n, =0.01. Not
only are the frequencies for the two sets of boundary con-
ditions almost the same for n, =0.01, but the density per-
turbations are as well. The same tendency for PWBC
and HWBC modes to coincide is seen when q&0. As
n, ~0, the dispersion curves for PWBC and HWBC be-
come indistinguishable. This suggests that HWBC calcu-
lations of surface-plasmon dispersion curves for a half-
space"' can give the same spectrum as would be ob-
tained with PWBC, provided that the equilibrium density
chosen goes smoothly to zero at the surface. On the oth-
er hand, the surface mode dispersion for (half-space) equi-
librium densities that have n, &0 will in general be
different for the two different sets of boundary conditions.

At this point, we return to the pressure-density relation
[Eq. (5)] used in our calculations, and discuss three issues:
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the introduction of the parameter n„the limits of validi-

ty of a linear relation between p and n, and the choice
s =—', UF. Although the roll played by a finite n, in our
model is to clarify boundary conditions and to facilitate
calculations, the existence of a finite density at which the
internal pressure vanishes is a property of the uniform
three-dimensional electron gas. While this density is zero
in the Thomas-Fermi approximation, all generalizations
of the Thomas-Fermi approach to include exchange and
correlation effects given a finite value. The Thomas-
Fermi-Dirac model, for example, which includes the
effects of exchange, gives a pressure p =an' Pn —~',

with a=(4n A /5m )(3/8n) ~ and P=(e /4e)(3/m')'
which vanishes (in GaAs) at a density 2.5X10' cm
Inclusion of correlation effects does not change this value
dramatically. The interpolation formulas of Hedin and
Lundqvist, ' for example, give a critical density of
3.9 X 10' cm . These densities are of the same order of
magnitude as the "natural" densities of the parabolic
wells that we are considering.

It should be remembered, however, that the pressure-
density relation given by the Thomas-Fermi-Dirac model,
or by a similar model that includes electron correlation,
applies only to nearly uniform electron systems. In the
regions near the boundaries of our electron slab, where
the electron density drops rapidly to zero, the slowly
varying density condition for the quantitative validity of
these approximations is surely violated. Furthermore,
even if the complicated pressure-density relations were
quantitatively accurate over the entire electron slab, no
linear approximation could give a good fit over such a
wide range of densities. On the other hand, a linear ap-
proximation has the substantial advantage of allowing
analytical results in some circumstances. For these
reasons, our approach has been to use a linear pressure-
density relation designed to work in the relatively uni-
form central region of the electron slab where the density
is approximately no, and to treat n, as a parameter. The
hope underlying such a procedure is that most features of
the magnetoplasmon spectrum will be insensitive to the
details of the boundary region and, in particular, to the
precise value given to n, . The results presented in this
section show that, for the parameters we have considered,
the dispersion at B=0 is indeed relatively insensitive to
variations in n, . On the other hand, it is possible that
qualitatively different behavior may arise for other sets of
parameters or in the presence of magnetic fields.

There is also the question of what value to use for the
parameter s . In our calculations, we use the pressure in

two ways: to calculate the equilibrium density profile and
to calculate the collective excitations about equilibrium.
The physics of the two situations is quite different, with
one depending on the static properties of the electron gas
and one on its high-frequency response. Indeed, a correct
treatment of long-wavelength static variations in the elec-
tron density requires that s be the ordinary sound veloci-
ty uF/&3 of the electron gas, rather than the value
(3/5)' u~ appropriate to plasmon calculations. On the
other hand, it is essential in our analysis to treat the stat-
ic and dynamic situations consistently, and in particular
to calculate both the equilibrium density profile and the

collective excitations using the same value of s. A failure
to be consistent will lead to incorrect frequencies for the
center-of-mass modes and to a violation of the general-
ized Kohn's theorem proved in Ref. 9. Previous hydro-
dynamic calculations" ' for systems without exact
center-of-mass excitations have sidestepped the question
of consistency by postulating equilibrium density profiles
rather than calculating them. Because our primary in-
terest is in the dynamical behavior of the system, and be-
cause we must choose one value of s, we have used
s =

—,'Uz for both static and dynamic calculations.
As a final note, we point out that although the smooth

equilibrium density profile for n, —+0 looks more physical
than the abruptly dropping profile for n, =1, the spec-
trum calculated for the smooth profile is not necessarily a
more accurate guide to the collective excitations in real
parabolic wells. First, and in part because of our choice
of the (larger) dynamical value of s, the smooth hydro-
dynamic profile is not a very good match to the actual
ground-state density profile. In Fig. 1, we plot the
ground-state electron density (dotted line) given by a
self-consistent quantum-mechanical calculation of the
type reported in Refs. 10 and 17 alongside the
hydrodynamic-model equilibrium densities (solid lines)
predicted by Eq. (7). One can see that, although the
quantum-mechanical density does not drop abruptly to
zero as does the profile for n, = 1, it drops off much more
quickly than the profile for n, =0.01. In addition, even if
the equilibrium profile for n, ~0 were a good match to
the actual density, the collective-mode frequencies calcu-
lated for it would depend on density fluctuations in the
low-density tails of the profile, where both the hydro-
dynamic approximation itself and our linear pressure-
density relation are least likely to be valid. We thus have
little reason to believe that the choice n, ~0 will give
more accurate spectra than n, = 1.

IV. SUMMARY

The hydrodynamic approach provides a relatively sim-

ple method for studying the collective modes of inhomo-
geneous electron systems. We have seen that, when ap-
plied to an ideal parabolic well in a uniform external
magnetic field, and provided that PWBC are used, the
hydrodynamic model recovers the center-of-mass modes
that have been found in exact quantum-mechanical calcu-
lations. These modes are solutions of the full, nonlinear
equations of motion of the hydrodynamic model, as well

as of the linearized version of the problem.
In the case of a uniform equilibrium density profile, we

have analyzed the dispersion of the magnetoplasrna exci-
tations as a function of the strength and orientation of
the magnetic field B and the magnitude of the in-plane
wave vector q. For special choices of q and B, namely 8
in the plane of the electron slab or B not in the plane but
perpendicular to q, the collective modes divide up into
two surface modes and an infinite number of bulklike
modes. The bulklike modes are very much like standing
waves formed from bulk rnagnetoplasmons, and have
dispersion curves that are often given quite accurately by
the dispersion relation of the appropriate bulk modes,
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particularly when q is small. For other orientations of q
and B, the situation becomes more complicated, and no
clear division into surface and bulklike modes is possible.
At q =0, the similarity between the bulklike modes and
the bulk-magnetoplasmon standing waves becomes exact.
For general B, there are two center-of-mass modes and
an infinite number of bulk-mode standing waves. The
dependence of the q =0 frequencies on the strength and
direction of the applied field B agrees remarkably well
with that of the multiple peaks Wixforth et a/. ' have ob-
served in the optical spectrum of an imperfect parabolic
well.

We have seen also that HWBC do not allow the
center-of-mass modes that exist in perfect parabolic wells.
For the case B=O, we have compared the spectra for
HWBC and PWBC as a function of the in-plane wave
number q, the slab width a, and the boundary cutoff den-
sity n, . Although the spectra differ considerably for
finite slab widths and for equilibrium charge distributions

with sharp boundaries, we find that the two sets of
boundary conditions give similar spectra for small q when
the width of the slab gets large and exactly the same spec-
trum for all q when the equilibrium density drops
smoothly to zero as z~+oo. This suggests that PWBC
dispersion curves for surface plasmons on a half space
can be the same as those calculated with HWBC, provid-
ed that the equilibrium density used goes smoothly to
zero at the surface.
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