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Bounds on the polymer length distribution
in equilibrium polymerization
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We obtain upper bounds on the polymer-length distribution in a class of models for equilibrium
polymerization. This rules out a recent claim for the existence of a "collapsed" phase in which
a nonzero fraction of the monomers are in infinite polymer(s). We discuss the behavior of finite
systems, in which a collapse of sorts does occur, and indicate how this collapse disappears in the
thermodynamic limit.

I. INTRODUCTION

The statistical mechanics of isolated polymer chains, '

polydisperse chain polymer solutions and equilibrium
polymerization of chains have all been usefully mod-
eled by the n ~ 0 limit of the n-vector model of mag-
netism. Recently it has been claimed' " that interact-
ing chain polymers in equilibrium should have a "col-
lapsed" phase in which t, here is a. nonzero density of
monomers in polymers which are infinitely long in the
large volume (thermodynamic) limit. This claim, if cor-
rect, would have significant consequences for the theory
of polydisperse polymer solutions and equilibrium poly-
merization. The claim has been challenged recently by
Schafer, ' who calculates the polymer distribution using
renormalization-group techniques and finds no evidence
for this condensation and positive evidence for the con-
ventional view of semidilute polymer solutions.

In this paper we obtain upper bounds for the length
distribution of polymers in a very general class of mod-
els, including the model in question, that rule out the
possibility of such a collapsed phase. Our results and
those of Schafer are complementary: Our bound is very
weak, but the argument, is rigorous, straightforward,
and very general, demonstrating with finality that the
proposed condensation cannot occur in any physically
realizable spatial dimensionality. Schafer's work gives
much more precise predictions, but. involves considerably
more complex calculations that. rely on acceptance of
the renormalization-group machinery and the accuracy of
perturbation theory, and it is carried out only in trans-
lationally invariant systems with spatial dimensionality
greater than two.

ln the model under consideration, ' each site of a. reg-
ular lattice of Np sites with coordination number q in
d dimensions may be amp/y or occupied by a monomer.
A polymer bond can form between monomers on nearest-
neighbor (connected) sites. Allowed states consist of pat-
terns of bonds such that there are only chain polymers.

That is, no more than two bonds meet at any given lattice
site and there are no ring polymers —it, is impossible in

allowed states to move from any site on the lattice back
to that site along polymer bonds without moving along
the same bond twice. In addition, in this model, only
chains having at least one bond (two monomers) are al-

lowed. That is, no isolated monomers are allowed. The
partition function for this model is given by

Z(rt, a) = ) K'il'"U„ i,
f,p

where g is the statistical weight associated with a chain
end, e is the statistical weight, for a bond, and Uz ~ is the
number of distinct configurations of p difI'erent chains
containing a total of l bonds on a lattice containing Np
sites. This model is related by simple mathematical map-
pings to both the n ~ 0 limit of the n-vector model
and the model of equilibrium polymerization studied by
%heeler and co-workers 9 in which "polymers" consist. —

ing of a single active monomer are also allowed.
The specific claim made in Ref. 10 is that there is a

nonzero positive value of g, say g', below which, in the
thermodynamic limit, and for K greater than some finite
~„anonzero fraction of the monomers are in polymers of
infinite length. Specifically, it is asserted that the density
of bonds in finite polymers is strictly less than the total
density of bonds in polymers when q & g and K ) ~, .
This claim seems counterintuitive in view of the fact. t, hat,
in equilibrium, any interior bond in a. long polymer can
break with a nonzero (albeit, perhaps small) probability,
p = gz/rc, independent of the length of the polymer or
the size of the system. If the length of (number of bonds
in) the polymer, N, is so great that pN » 1, there will be
a high probability that at least one bond will be broken.
If one of the remaining segments is still much longer than
1/p, the same argument can be employed again. It thus
seems unlikely that a monomer will be found in a polymer
of length much greater than 1/p.

This intuitive argument is not correct as it stands be-
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cause of a complication mentioned presently. It can be
made rigorous, and we do so in the next section. We re-
mark here that if the model is modified so that each poly-
mer is "isolated, " in the sense that there are no allowed
configurations in which a monomer is adjacent to more
than two other monomers (whether or not it is bonded
to them), then simple transfer matrix methods readily
establish a bound on the length distribution that decays
exponentially with polymer length, directly confirming
the above intuitive argument.

A complication arises if parts of other polymers, or
remote parts of the same polymer, may lie adjacent to
the polymer under consideration, because then the same
state with smaller polymers can arise in more than one
way by cutting longer polymers. One must then be care-
ful not to overweight such states with short polymers in
bounding the probability of a state with long polymers.

This complication is surmounted in the next section by
a recursive procedure that bounds the conditional proba-
bility that a sequence of n bonds extending from a given
bond has (at least one) additional bond at its end. The
result is a bound on the probability P(N) that a polymer
bond is in a polymer of length N or greater:

Each state in S, can be viewed as t, he progeny of a
unique parent state in S&, which is obtained from its
progeny by removing the additional bond extending froHl

the end of the right, -hand chain of n~ bonds. The i at, io
of the statistical weight of any particii1ar progeny state
in S, to its parent state in S, is at most

min( 1, tl2)

[lt, is equal to 2c%1-" if the l&ond extettdi»g the chain of 22. t

bonds is in turn connected to another bond, and equal t,o
~ if the additional bond ternainates the chain at, n~ + 1

bonds. ]
A state in St can be parent to more than one state in

S, . This occurs if more than one of the nearest-neighbor
sites of the terminal site of the right-hand chain of nq

bonds is either empty or a polymer end. It is clear, how-

ever, that a state in St is parent to no more than q —1

states in S„corresponding to the (at most) q —1 sites
other than the one already in the chain of length n& to
which this terminal site could be bonded in a state in S, .

As a consequence, the ratio W, /Wt may be bounded by

where

(q —1)K

(q —1)tv+ min(1, tl~)
'

and where min(z, y) is the smaller of z and y. Note
that p does not depend on the system size No and that
p & 1 for all g ) 0.

We prove these results in Sec. II, below, for the model
described by the partition function (1). In Sec. III we

generalize the proof to a much broader class of models.
A collapse, of sorts, does occur in Pnite systems to a

state of essentially a single polymer on the lattice, but
this is accompanied by anomalously lott2 (rather than
high) molecular weight, and the effect vanishes in the
thermodynamic limit. This, and consequences of the
bounds are discussed in Sec. IV.

II. BOUND ON THE LENGTH DISTRIBUTION

W, (q —1)~
W, + Wt (q —1)~ + min(l, 212)

(6)

Each distinct track of n~ + ng + 1 bonds through the se-
lected bond gives the same bound. Consequently, we may
bound the conditional probability, P(nt + I, n~~nt, n~),
that there are at least n] + 1 and no bonds extending
from the bond of interest, gn)en that t, here are at, least, n~

and n~ bonds extending from it by

Therefore, the probability that the bond originally in
question has a chain of (at least) nt + 1 bonds to its
right (including the specified nt) and at least the speci-
fied n2 to its left given that it has (at least) the specified
n~ to its right and the specified n2 to its left is bounded
above by

Consider a particular bond on the lattice and a specific
track of n~ bonds extending from its "right-hand" eiid
and a specific track of n-i bonds extending from its "left,—

hand" end. [Right-hand and left-hand ends of every bond
are unambiguously, if arbitrarily, defined by sequentially
numbering the lattice sites in some specific arbitrary or-
der and defining the right-hand end of any bond to be
that with the larger of these numbers. ] Let. S& be the set
of all states with the above-specified ni + n~ + 1 bonds
definitely present and no additional bond extending from
the end of the right-hand track of n~ bonds, and let S,
be the set of all states with the specified bonds present
and at least one additional bond extending from the end
of the right-hand track of ni bonds. Let W& and W,
be the statistical weights of these sets of terminated and
continued states, respectively.

and

P(nt, n2) = P(222 —I, n )P(222, 22 ~722
—.~1, 22')

P(nt, n2) = P(nt, n2 —1)P(nt, 11~~722, 22. —I }, (9)

provided that all of the arguments are non-negative in-

tegers. Combining these recurrence relations with the
inequalities for the conditional probabilities, we obtai»
the inequalities:

By exactly the same reasoning, we conclude that the con-
ditional probability P(nt, n2 + l~nt, ni) is also bounded
above by p~.

The probability that a given bond has strings of (at,
least) nt and n~ bonds to its right and left. , respectively,
satisfies the recurrence relations
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and

P(ni, nz) ( P(ni —I, ng)p

P(n(, np) ( P(n(, n~ —l}p„,.

No, then the argument in Sec. II goes through essentially
unchanged, with Ii replacing (q —l)(c. Using the notation
developed in Sec. II, the ratio of the statistical weight of
any particular progeny state in S, to its parent state in

S, is at most
Applying these inequalities recursively, we conclude t, hat

P(n, n ) ( P(0, 0}pt '+"'. (12)

Observing that P(0, 0) & 1 and that, to ensure a polymer
of length N through the chosen bond, n( may be any
integer from 0 to N —1, we conclude that the probability
that, a given polymer bond is In a polymer of lengt, h at
least N is bounded by Eq. ('2). [Adding probabilities for
the states with diferent, n~ counts states ~vore than once,
of course, since these are probabilit, ies for having at least
n~ and n2 bonds attached to the bond of interest. , but
since we are obt, aining an upper bound on t, he probability,
this only strengthens the inequality (2}.]

III. BOUNDS FOR MORE GENERAL MODELS

on the coordination number for any site. This immedi-
ately extends the bound to include models of equilibrium
polymerization on decorated latticesis and fractals '4.

The argument can be extended even further, to models
in which each site is able to be connected by a polymer
bond to any of an infinite number of other sites. Consider
a rather arbitrary collection of No sites, each of which
may contain a monomer or be empty. For each site, i,
there is a statistical weight, g;, associated with a polymer
end at that site, and for each pair of sites, i, j, there
is a statistical weight, K; &, associated with a polymer
bond between monomers on these sites. The rules for
allowed states are the same as for the model in Sec. I.
The partition function for this model may be written as

Z(r(, (c) = ) (c, ,~ rl(,
states &i,j& (

(14)

where the sum is over all allowed states, and the products
are over all bonds, & i, j ), and polymer ends, l, in the
state. For a regular lattice with uniform g;, equal to g,
and with z;& equal to z between nearest neighbors and
zero otherwise, this reduces to the partition function in
Eq. (1). Provided that there is a positive uniform loi((er
bound on the g, ,

and a uniform upper bound on a weighted sum of the
statistical ~eights of possible bonds t,o any site,

(16)

independent of the site, i, and of the number of sites,

The method employed in Sec. II is very general. Note,
first, that the argument applies unchanged to a lattice on
which different sites, i, may have different coordination
numbers, q;, so long as there is a uniform upper bound

(13)

Rip &ij gigj

min(rt;/tlat, tl;tl, ) rp min(1, rp)

where the terminal site of the specified chain of ni bonds
is assumed to lie at the site i and the additional bond is
between the i and j sites. This equation replaces Eq. (4)
in Sec. II. Summing over all sites, j, to which the termi-
nal site, i, might be connected, one finds as a bound on
the ratio of the statistical weight of all possible progeny
to that of the parent, in place of Eq. (5),

Icz j Q(('lj

rtz min(1, rl~) min(1, rl2}

The argument then proceeds exactly as in Sec. II to give
the bound in Eqs. (2) and (3), but with (q —1)e replaced
by I& as given in Eq. (16).

This generalization establishes the bound for a very
general class of models of equilibrium polymerization, in-
cluding polymerization on disordered lattices and amor-
phous collections of sites as well as on rather general sets
for which the notion of spatial dimensionality may be
rather vague. The physical motivation for the bound (16)
is that a monomer on a given site should not be readily
able to bond with monomers on sites that are very "far
away" from it in a spatial sense. Since each site is capa-
ble of supporting a monomer, it should have associated
with it a "volume" that is nonzero and bounded below.
As a consequence, only a limited number of sites will be
able to fit w'ithin a given distance of any site, and hence
the effective coordination number will be finite.

IV. DISCUSSION

The bound (2) is sufficient to guarantee that, even in
the thermodynamic limit, fraction one of the monomers
are in polymers of finite length for all nonzero values of
rl. To see this, note that for any finite system size, No,
there is an upper bound on the maximum possible length,
N, of a polymer: N & No. As a consequence, our
bound establishes that the fraction of bonds in polymers
of length less than N is at least f = 1 —P(N) for any
finite No, no matter how large. Since 1 — P(N) tends
rapidly to unity as N becomes large, independently of Np,
it can be concluded that a fraction arbitrarily close to
unity of the bonds (and therefore also of the monomers)
are in finite polymers even as No ~ oo.

The conclusion in Ref. 10 that a nonzero fraction of
the monomers are in infinite polymer(s} for nonzero i(
was deduced from the assumption of a. particular scaling
form for the distribution of polymer lengths. It follows
from the bound (2) that. the proposed scaling form is
incorrect. The form proposed there is more restrictive
than is required by scaling. A more recent analysis of
the scaling form for the polymer length distribution us-

ing renormalization-group techniques'2 finds results in
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accord with our bound.
The bound we have obtained is very weak. We make

use only of the large number of ways to cut a very long
polymer, not of the (also very large) number of ways
to move the two separate pieces relative to each other
on the lattice. In translationally invariant, systems with
spatial dimensionality, d, greater than two, it, is expected,
based on both mean-field treatments such as Tobolsky-
Eisenberg theory' and ori renormalization-group argu-
ments on the corresponding n —0 niagnet, and it,

is demonstrated in Ref. 12 using direct, renormalization-
group methods on polymers, t, hat, t, he polymer distribu-
tion for ic & K, is in fact bounded by an exponential of
the form

np 1—r7m, (ic),
No 2

(2o)

where np is the number of polymers on the latt, ice, so
that the limit

2np
m, (ic)—:lim lim

g~O Np~oo gg40
('21)

exists and is a nonzero, finite function of ~ for ~ ) v, .
Here m, (ic) is the spontaneous magnetization per site of
the corresponding n ~ 0 vector model (in the thermody-
namic limit), and vanishes proportionally to (1 —ir/K, )
as r —r, . In contrast, the bond density is predicted
to be weakly varying with g, approaching a. constant as
7)~0:

« =
N

-&i'(&), ('22)

where np is the number of polymer bonds on the lattice,
and where P& (K) is essentially (minus) the zero-field in-
ternal energy of the corresponding n-vector model. As
a consequence of these predict. ions, the mean number of

P(N) ( N exp( —AN+I~i).

Here A is a constant that, depends on the value of ~, van-
ishes as ~ ~ ~„and is expected to vary proportionally to
(1 —r/ir, ,) 7 in this limit, and n and P are the usual
critical exponents governing the heat capacity singularity
and the shape of the coexistence curve of t,he n ~ 0 vec-
tor model. [Here, and below, r, refers specifically to the
cntica/ value of z, which may be defined as the smallest
value of K for which, if a polymer end is known to be at
the origin in an infinite system, then in the limit g ~ 0
followed by the limit K ~ r., from below, this polymer
chain is infinitely long. ]

Although (2) rules out the collapse to infinite poly-
mers in an infinite system at nonzero g, there are two
senses in which a collapse of sorts does occur as g be-
comes small. First, in the thermodynamic limit, both
mean-field theories, such as Flory theory of polymer

6 appljed to equjljbrjum polymerjz@tjog. 7'

and (equivalently) Tobolsky-Eisenberg theory of equilib-
rium polymerization, as well as renormaljzatjon-group
analysis for d & 2 of the n ~ 0 vector model and poly-
mers directly, predict that the polymer concentration
vanishes proportionally to g as g —+ 0:

bonds per polymer, P = Pi/P„, diverges proportionally
to g

' as g ~ 0. This is, in a certain sense, a "collapse"
to infinite polymer(s), but one wliich occurs only in the
limit that i7 actually reaches 0. The bound (2) rules out
the presence of infinite polymers for. nonzero g.

There is a second, rTiore interesting sense ir~ whicli a
"collapse" occurs in finite systems with spatial dirneii-
sionality greater than two, and it is illuminating to ex-
amine the No dependence of the value of q for which t.his
occurs. Flory theory can also be applied to equilibriuiii
polymerization on finite lattices, '- '-' where it, niakes spe-
cific predictions about, the way the systeru crosses over

from behavior dominated by firsite size at, very snaall g
(where eventually, as r7 0, the lattice niiist be enipty)
to essentially thermodyna. nomic liniit, ing behavior at larger

g when K ) K, . These predict, ions are coi roborated by
Monte Carlo simu}ations"-of the model described by Eq.
(1) in three dimensions for z & ic, . These results will

be presented in detail elsewhere. Here we simply report
briefly the results relevant to the present discussion.

Suppose that K is fixed with rc & K„and ND is suf-

ficiently large. We require that the critical correlations
are short ranged compared to the linear dimensions of the
lattice. [This requires that the shortest spatial dimension
be large compared to (0(1—~/z, )

' where v is the critical
exponent for the correlation length, and (0 is a constant. ]
In addition, we require that No be sufficiently large that
Nom, (K) is large compared to unity, where m, (r) is given
by (21). [Sufficiently near the critical point, this latter
requirement is guaranteed by the former, but for larger
K it can be an independent requirement. ]

For g small, but sufficiently large that gNom, &) 1,
the quantities $7, Pz and P have essentially the same
behavior as they do in the thermodynamic limit. Wit, h

decreasing g, however, as the number of polymers, np

&gloom„becomes comparable to unity, a smooth, con-
tinuous collapse occurs with decreasing g to a st, ate with
a single polymer on the lat, tice. That is, np no longer de-
creases as &@Tom„but ra.ther "st,icks" a.t, np ——1. The
bond density still remains essentially constant during this
collapse. As a consequence, the mean coiicentration of
polymers actually rises above i ts expected value a t t, he

same g and K on a larger lattice, and the mean size of
the polymers, P, falls below its expected value, P&/(i7m, ),
for larger lattices, with 77P varying as p&i7NO i'Btller than
remaining constant at @i/m„as would be expected in

the thermodynamic limit.
At much smaller values of 7~, the single polymer also

goes away, leaving an empty lattice. This occurs a.t an
exponentially small value of i7 given (within powers of
No) by

r7 exp[—&NOPp(0, N;)v, ],

where p(0, ic) is the thermodyiiamic liinit. ol' the osinotic
pressure in the limit as g —0, and v, is the volume per
lattice site. This value of g decreases exponentially with

lattice size, and so is well separated from the "collapse"
value of q for large No. The quantity gP is unaAected by
this process, and continues to be given by pii7ND all the

way toy=0.
Thus, in a finite system, while there is a nonzero value
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of g below which the system "collapses" to a state in
which virtually all of the monomers are in a single poly-
mer, we see that this collapse does not lead to anoma-
lously long polymers, but is actually accompanied by a
loner than expected molecular weight. Moreover, this
collapse occurs at a value of' g, say g (No), that itself
tends to zero proportionally to No

' as No —oo. It there-
fore disappears entirely in the thermodynamic limit. As a
consequence, for d & 2, there seems to be no evidence for
the proposed collapse transition, and there appears to
be positive evidence that polymer lengths obey well the
predictions of Flory theory and renormalization-group
analysis of polymers and the n ~ 0 vector model.

It has been recognized for some time that spatial
dimensionality d = 2 is special for polymers. The behav-
ior of polymer models for small vy, and in particular in

the thermodynamic limit followed by the limit ri ~ 0 for
z ) e„ is expected to differ in some qualitative ways in
two dimensionsz4 zs (and also in one dimensionz7) from
that for d ) 2. Our bounds in Secs. II and III apply
without modification in one and two dimensions. Thus,

whatever differences may exist, in the limit g ~ 0 be-
tween systems with d ) 2 and those in d = 2 or d = 1,
there can be no infinite polymer, in either d = 2 or d = 1,
for any nonzero value of g, in contrast to the claims in
Ref. 10 concerning d = 2. In this respect, our results are
somewhat stronger than those of Schafer, who consid-
ers only d ) 2.

We note, in closing, that the bounds obtained in Secs.
II and III apply equally well to the corresponding mod-
els in which ring polymers as well as chains are allowed.
Nothing in the derivations depended on the absence of
rings and a demonstration of the nonexistence of infi-
nite rings as well as infinite chains in such systems is an
immediate extension. This generalizes still further the
applicability of these bounds.
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