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Interband absorption in quantum wires. II. Nonzero-magnetic-field case
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We theoretically investigate a two-dimensional semiconductor system subjected to a periodic modula-
tion in one lateral direction in a perpendicular magnetic field. Both type-I and type-II lateral superlat-
tices are considered. The conduction and valence subbands as well as the polarization-dependent inter-
band absorption are studied as a function of the strength V& of the lateral modulation. With increasing
V&, the optical transitions become increasingly anisotropic with respect to a polarization in the two-
dimensional plane. Just as the calculated changes in the shape of the absorption spectrum, this reflects
the continuous transition from a quasi-zero-dimensional characteristic to a quasi-one-dimensional
characteristic of the electronic structure in the presence of a magnetic field.

The present second part of our discussion of the inter-
band absorption in quasi-one-dimensional (1D) semicon-
ductor structures deals with the influence of a constant
magnetic field. In the first part [U. Bockelmann and G.
Bastard, preceding paper, Phys. Rev. B 45, 1688 (1992)],
in the following labeled I, we have developed the theoreti-
cal framework and have applied it to different 1D struc-
tures at zero magnetic field. ' A particular emphasis has
been put on the influence of the light polarization in the
lateral (xy) plane. It depends characteristically on the
hh-lh mixing in the 1D valence subbands.

The magnetic field is an interesting additional parame-
ter, since it can be applied experimentally in a well-
controlled way and modifies fundamentally the electronic
structure. Brum and Bastard have calculated the
conduction-band energy levels of quantum wires using a
confinement by finite-barrier quantum wells in the x and z
directions in the presence of electric and magnetic fields.
Here, we present calculations of the valence-band struc-
ture and the interband absorption of 1D systems in a
magnetic field. First of all, we show how the magnetic
field can be incorporated into our theoretical description
of the 1D states of the I 6 and I 8 bands. Then the theory
is applied to the type-I and type-II wire arrays of Sec.
III B of I which consist of symmetric, 10-nm-large
GaAs-Gao 7AlQ 3As quantum wells subjected to periodic
modulations of the conduction- and valence-band edges
in one lateral (x) direction. This model describes a
variety of experimental situations. The 2D (Vi =0), the
spatially direct 1D (large V„type I), the spatially in-
direct 1D (large Vi, type II) systems, as well as the con-
tinuum of systems between these three, are studied by
varying the modulation V, .

The electronic system is coupled in two ways to the
magnetic field B. First, the quasiangular mornenta and
spins of the periodic Bloch functions give rise to rnagnet-
ic moments that interact with B. This is described by
adding the "spin" terms g*p~Bm, to the conduction-

band Hamiltonian [Eq. (4) of I] and 2ap&8mj to the diag-
onal elements of the Luttinger-Kohn Harniltonian Hz

8

[Eqs. (6) and (7) of I]. The Bohr magneton is defined by
ps=eA/(2mo). The spin splitting of the conduction-
band energies is neglected because it is usually small com-
pared to the broadening caused by impurities and inho-
mogeneities in real samples. In GaAs, for instance, the
effective Lande g factor g" = —0.445 (from Ref. 4) leads
to a splitting g*p&B of only 0.26 meV at 10 T.

Second, a charged particle moving in a magnetic field
is deflected by the Lorentz force. This leads to the re-
placement of the wave vector k by k'=k+e A/A in the
effective-mass equation for the envelope wave function.
We consider a constant magnetic field B=(O,O, B) that is
described by the vector potential A=(O, Bx,0) in the
Landau gauge. Therefore, k has to be replaced by

ky ky +x A. , where the magnetic length A, is defined by
=eB/A. We shift the origin of the coordinate system

in x by k A, , so that the minimum positions of the
magnetic-field-induced parabolas are fixed at x =0 and
the off-diagonal elements of H& are independent of k .

8

The potential V„(x—k A, ) becomes the only k»-
dependent term. For zero V„,the eigenenergies are de-
generate in k and the spectrum of eigenvalues consists of
discrete Landau levels. For nonzero V„,the position of
V„(x)relative to the magnetic-field-induced parabolas
matters, and the Landau levels become bands with a
dispersion in k . When V„(x) is invariant under a
translation of xo in the x direction [V„(x)= V (x+xo)],
the corresponding energy dispersions are also periodic
[E(k»)=E(k»+xoA. )]. The hh-lh coupling in the
valence band does not affect this symmetry.

We suppose that the carrier motion in the x and z
directions are decoupled due to a stronger confinement in
the growth (z) than in the lateral (x) direction. Our I 6

wave functions correspond to the lowest z-related con-
duction subband, while the I s wave functions qI t and 41
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are based on the first and second heavy-hole and the first
light-hole state of the quantum well in the z direction. '

The magnetic field in question does not lift the inver-
sion symmetry in the z direction. The two different types
of I

&
wave functions %1 and %g remain decoupled, but

the corresponding eigenenergies differ due to the "spin"
terms. We expand the lateral wave functions qr(x ) on the
basis of harmonic-oscillator functions

q(x }= g c„(x~n ),
n=0

~X+
A,

2

Xa= c)„+
2 A.

(3)

which increase (a ) or decrease (a) the index of the oscil-
lator function in the usual way and obey [a,a ]= 1.

When projected on this basis, the conduction-band ei-
genvalue equation becomes

g [[%co,(n+ ,'} E—]5—„+(m~ V„(x—A, k )~n )]c„=O,

(x~n ) =(2"n!&nA)' , e ' '" 2' H (XIA, ) (2) (4)

In Eq. (2) the H„'s are the Hermite polynomials. We
define the following raising and lowering operators:

with co, =e8/m *. The valence-band Hamiltonian 0 that
determines the solutions %f via Eq. (12) of I reads for
nonzero 8

+hhl ~hh(a a +
+ V„(x—A, k )+3«psB

r'~2
a

moloch

Ehh2 ~~hh(a a +I}1

+ V„(x—A, k~) —3«p&B
R2&2

a
moloch,

2a
pk

Eu i
—

&corn(a a+-,' }

+ V„(x—A, ky) «p,sB—

where cohh
=eB Im hh and cosh

=eB!m&h. The functions
%J, are described by interchanging a and a in the off-

diagonal terms and reversing the signs of the "spin"
terms.

The lateral potentials are supposed to be

277V„(x)=+V, cos x
X

lattices subjected to a magnetic field perpendicular to the
superlattice axis. '

For the matrix elements of the harmonic V„ofEq. (6)
we use the analytical expression

(n ~cos[q(x —x, )]~m )

cos(qxo) for n+m even
=M~ X

i sin(qx—o) for n+m odd,
for the conduction band, and

277
V (x)= V, cos xX 1

X

(6)
with

n, m

ling

v'2

' m —n &l2
—2. q /4g m —

n( 1 g2 2)n!
m.

e

for the valence band. We use the same magnitude of the
lateral modulation for the conduction- and valence-band
edges. The negative and positive signs in Eq. (6) corre-
spond to the type-I and type-II configurations, respective-
ly (see Fig. 7 of I). At large V& the former (latter)
configuration leads to electron-hole transitions that are
spatially direct (indirect) in the x direction.

When the magnetic field 8 lies along the z direction,
particularly interesting features arise from the competi-
tion between the modulation period L and the magnetic
length A.. A new type of oscillation, periodic in 8 but
different from the Shubnikov —de Haas oscillations, has
been observed in the low-temperature magnetoresistance
and explained by calculations of the Landau conduction
subbands of laterally modulated 2D systems. ' These
systems exhibit a formal similarity with ordinary super-

for n~m .

The condition n & m does not restrict the general validi-

ty, since M~ =Mq „.The Laguerre polynomials L are
defined in accordance with Ref. 10.

The parameters used in the following calculations are
given in Sec. III of I, with the exception of a, for which
we take the bulk GaAs value «=1.2 (from Ref. 4). For
clarity, we discuss the energy levels and interband transi-
tions of only one valence-band solution (%1). The other
one (+1), although its energies and wave functions differ
slightly from those of %1', shows very much the same
general behavior.

Figure 1 shows the dispersion of the lowest Landau
conduction and valence subbands of the type-I array for a
magnetic field B of 4 T. The lateral potential has a
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FIG. 4. Polarization-dependent absorption (lower curves)
and normalized xy anisotropy (upper curves) of type-I wire ar-
rays with different modulation V& of the lateral potential in a
magnetic field B.

FIG. 5. Same as Fig. 4 for type-II wire arrays. The absorp-
tion curves are multiplied by a factor of 0.5 for V& =2 meV.

directions existing for V, =0. This results from the cal-
culation as follows. For V&=0 the oscillator functions
(x ~n ) [Eq. (2)] are the exact conduction-band eigenfunc-
tions [Eq. (4) has only diagonal elements]. The off-
diagonal terms of the valence-band Hamiltonian & [Eq.
(5)] couple only basis functions that exhibit diff'erent in-
dices. Thus, a given conduction-band eigenstate (x ~n )
cannot have simultaneously a nonzero overlap integral
with the hh and with the lh part of a valence-band eigen-
state. The xy anisotropy, being proportional to the prod-
uct of the two overlap integrals [Jh&, Jih„seeEq. (16) of
I] becomes zero.

How does the lateral confinement ( V, WO) changes the
interband absorption in a magnetic field? Figure 4 sum-
marizes the results for the lowest-energy transitions of
the type-I wire array. With increasing lateral potential,
the energy position and the height of the peaks in the ab-
sorption spectrum decrease. Exhibiting the shape of a
OD density of states at zero V&, the transitions become
similar to the shape of a 1D density of states with in-
creasing V&. For V& =2 rneV, the peaks of the x and y
absorption at 38.5 and 44.5 meV correspond to transi-
tions between the first electron and hole subbands (h lel)
at qy=0 and qy=0. 5, respectively. The peak for the z
polarization at 50 meV is due to the first lh-like transition
h7e1 at qy =0. All the transitions of Fig. 4, correspond-
ing to either q =0 or q =0.5, can be identified by corn-
paring their energy position with Fig. 2. The transitions
at k =0 obey the same general dependence on the polar-
ization in the xy plane as the 1D systems at B=0.' This
anisotropy, which allows the identification of the hh or lh
character of the participating valence subband, increases
with increasing lateral potential. The absorption and an-
isotropy curves for V, = 10 meV are similar to the corre-
sponding zero-magnetic-field results of Fig. 10 of I. By
increasing V, from 0 to 10 meV, we continuously change
a magnetic-field-controlled system into a system where
the inhuence of the magnetic field is negligible in compar-
ison with that of the lateral potential V .

Figure 5 shows the results for the type-II wire array. It

follows from symmetry that this system has the subband
dispersions of the type-I configuration (Fig. 1) with the
electron branches rejected at q =0.25. In the same way,
Fig. 2 describes the type-II system when the solid and
dashed electron curves are interchanged [then, the
dashed (solid) electron curves correspond to q~

=0
(q~=0. 5)]. At zero magnetic field, the transitions be-
tween the lowest conduction- and the topmost valence-
band states are weak because they are strongly indirect in
real space. At finite B, these transitions are forbidden by
the conservation of the in-wire wave vector ky The fun-

damental absorption edge shifts barely, with V& increas-

ing from 0 to 5 meV. Already the lowest allowed transi-
tion (h le 1) exhibits a sizeable overlap of the electron and
hole wave functions. The transition extends over a small-
er energy range, and its joint density of states is larger in
comparison with the direct system. For V& increasing
above 5 meV, the absorption edge shifts to lower ener-

gies, but the wave-function overlap decreases. At V&
= 10

meV, the energy of the transition with qy 0 5 equals 33
meV, as can be seen from Fig. 2 by comparing the lowest
solid electron with the highest dashed hole curve. It con-
tributes to the absorption that increases continuously
with the photon energy in this range. This characteristic
increase shows that the OD spatially direct transitions of
the 2D system in a magnetic field become 1D spatially in-
direct with increasing lateral confinement. The xy-
anisotropy curves of Fig. 5 obey no simple rule.

In conclusion, we have shown how a lateral 1D rnodu-
lation of increasing strength V, changes the shape and
the xy anisotropy of a 2D system in a perpendicular mag-
netic field. At small V, , the type-I configuration leads to
stronger modifications than the type-II configuration. A
striking consequence is the stronger absorption peak of
the type-II system with respect to that of the type-I sys-
tem at V, =2 meV, although the former configuration
spatially separates the electron and holes. Over the
whole range of V, , the xy anisotropy of the peaks of the
type-I system that correspond to van Hove singularities
at k =0 obeys the characteristic dependence on the hh-
lh mixing derived in I.
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