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Interband absorption in quantum wires. I. Zero-magnetic-field case
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We describe the theory of interband transitions in quasi-one-dimensional semiconductor structures. It
is based on the effective-mass approximation and takes into account the mixing of the heavy-hole and the
light-hole states in the valence band. The dipole matrix element for optical transitions between the
valence-band and the conduction-band states is derived for different linear photon polarizations with
respect to the wire orientation. The theory is applied to single wires and periodic arrays of coupled
wires exhibiting spatially direct or indirect optical transitions. We also study the influence of sample im-

perfections by calculating the optical properties of a statistical ensemble of confinement potentials exhib-
iting random fluctuations.

I. INTRODUCTION

In quasi-one-dimensional (1D) structures as will be dis-
cussed in this paper the semiconductor crystal periodicity
is maintained in only one spatial direction. Perpendicu-
lar to it, artificially introduced potentials modify the
probability densities of the carriers on a nanometer
length scale. Due to progresses in the epitaxial growth of
III-V semiconductor layers and in nanostructuring tech-
niques, such 1D systems are becoming realizable with in-
creasing quality, nowadays. '

The spectroscopy of optical transitions across the band
gap (interband transitions) is a powerful and versatile
method to study the electronic structure of semiconduc-
tors. Such experimental activities are increasing in 1D
structures. Some effects, which were related to a 1D car-
rier motion, have already been observed in photolumines-
cence and photoluminescence-excitation spectra, and
their dependence on the light polarization and on
time has been studied. Recently, single-particle and col-
lective excitations of the 1D electron gas have been inves-
tigated by Raman spectroscopy. '

On the theoretical side, there have already been some
calculations of the energy levels in the conduction and
valence bands of 1D structures. ' ' Until recently, 1D
interband transitions have been studied only in the para-
bolic approximation for the valence band. ' ' A proper
treatment of the valence band leads not only to modified
transition energies and oscillator strengths, but is neces-
sary to account for the different possible polarizations of
the light relative to the wire structure. The absorption of
a light beam traveling parallel to the epitaxial growth
axis is more easily measurable than that of a beam travel-
ing perpendicular to it. Recently, we have shown' that
the polarization dependence of the absorption in the
former configuration is determined by the heavy-hole (hh)
or light-hole (lh) character and the amount of hh-lh mix-

ing of the 1D valence subbands.
In the present paper we develop the theory of the

polarization-dependent interband absorption by 1D
structures in detail and present results for different
confinement potentials. It is organized as follows. Sec-
tion II contains the theoretical framework. We define the
relevant absorption quantities (Sec. IIA), show how the
1D eigenstates are calculated (Sec. II B) and develop the
expression for the polarization dependence of the inter-
band matrix element (Sec. II C). In Sec. III the theory is
applied to different 1D structures. In Sec. IV we investi-
gate the influence of statistical fluctuations of the
confining potential. In Sec. V we finally discuss the limi-
tations and the applicability of our theoretical results to
actual experimental situations. The influence of a mag-
netic field on the optical properties of 1D structures will
be studied in the following paper [U. Bockelmann and G.
Bastard, Phys. Rev. B 45, 1700 (1992)j.

II. THEORETICAL BASIS

A. Derivation of the absorption quantities

In general, the electronic structure and the dielectric
properties of lower-dimensional systems can be modified
in comparison with those of the 3D crystal. We are in-
terested in how the electronic structure finds expression
in the optical properties of 1D systems. It is assumed
that the refractive index n is spatially constant. This
should work fine for a light wave propagating in as-
grown or overgrown etched quantum wires that are based
on semiconductor heterostructures with similar refractive
indices of the host materials (e.g. , GaAs-A1As). In free-
standing etched structures the spatial variation of n may
be of importance. Variations of n, caused by the absorp-
tion to be calculated, are negligible in real systems where
any singularity of the joint density of states is suppressed
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by level broadening.
In the dipole approximation, the absorption coefficient

a for a plane electromagnetic wave in a medium of re-
fractive index n is given ' ' by

y ( &f ~s p~i & ('n(Zf —Z, —r~) .
)le E'pm @coV ' f 4"(r)= g f' (r)u" (r) .

J
(3)

bulk band (k=0).
In the valence band (I s), we have to account for two

different carrier types, which originate from the k=O de-
generate heavy-hole and light-hole bands of the bulk
semiconductor. There, the equivalent of Eq. (2) reads

Ep, mp, V, and Ace represent the permitivity of free space,
the mass of the free electron, the sample volume, and the
photon energy, respectively. The polarization vector c
defines the orientation of the electric field of the linearly
polarized wave. It is assumed that any initial electronic
state i (final state f) is occupied (unoccupied).

In OD, 1D, and 2D systems the sample volume V has
to be replaced by 1, X (length of the wire), and X„X»
(area of the 2D layer), respectively, in order to obtain an
unambiguous definition of an absorption quantity via Eq.
(1). This can be seen by converting the sum into integrals
(X„/2~fdk„) for the directions v that are translational-

ly invariant. In the other spatial directions ill-defined
lengths remain in the expression of a. The proposed re-
placements of V in Eq. (1) avoid this problem by absorb-
ing these lengths in the definitions of the absorption
quantities: 3D—a, in units of m; 2D—aX„ in units of
1; 1D—nL„X„ in units of m; OD nL„X»X—„in units
of m . In a way, the definitions of an "effective wire
width" aX„X, for 1D systems and an "absorption proba-
bility" aj, for 2D systems close the gap between the ab-
sorption cross section o,h, =aX„X~X, and the absorp-
tion coefficient a, which are well known from atomic and
solid-state physics. In Appendix A, these definitions are
explicitly related to the attenuation of a light wave that
propagates parallel or perpendicular to 1D or 2D struc-
tures.

The u' (r) are the degenerate Bloch functions at the top
J

of the I 8 bulk bands. The sum extends over the four ex-
pectation values (m =+—,'for the hh and +—,

' for the lh)

of the j =
—,
' multiplet.

For the sake of simplicity we assume that the potential
IV(x, z) that confines the carriers into the 1D structure
can be written as IV(x,z)= V„(x)+V, (z). In addition,
any dependence of the effective mass in a given direction
on the motion perpendicular to it is neglected. Accord-
ing to that, the envelope wave functions in Eqs. (2) and
(3) separate in the three spatial coordinates x, y, and z.
This "decoupling approximation" describes well the com-
mon situation, where the confinement in the growth
direction (z) is stronger than that in the lateral direction
(x) 12

In the conduction band, the envelope wave function

fi
( —8„+k }+V„(x) E„g),( )—x=0,

2m'(0)
(4a)

1
a, a, +V, (z) —Z, q, (x)=0.'

m "(z)
(4b)

f'(r)=y, (x)X '»'e ' y, (z)

and the corresponding energy E =E„+E, are deter-
mined by the following two differential equations:

B. One-dimensional conduction- and valence-band states

'P' (r)=f'(r)u' (r), (2)

where the u' (r) are the two spin-degenerate
$

(s =
—,', m, =+—,

'
) Bloch functions at the bottom of the I 6

In order to calculate interband transitions, the energy
dispersions and wave functions of the initial and the final
electron states have to be known. This paper deals with
the optical transitions that are close in energy to the fun-
damental absorption across the bulk semiconductor band
gap. We suppose that the initial and final electron states
are eigenstates separately described by the valence band
I 8 and the conduction band I 6 effective-mass Hamiltoni-
ans, respectively. In that way, we neglect the presence of
the electron-hole Coulomb interaction (excitonic effects}
and suppose that the band-gap energy as well as the
splitoff energy are sufficiently large to prevent a sizeable
coupling between the I 6, I 7, and I 8 bands. As usual, the
lower-dimensional electronic states are built on these
bulk bands in the envelope-function approximation. '

The conduction-band (1 6} wave functions are written
as

c HIh
+

b 0 3
2

1

2

H~ =
b 0 H)h c

0 —b+ c+ Hhh
—3

2

where

f2
~hh = [(r

i+re�)(B„—

k ) +B,(r, —2r)B, ]
2mp

+ V„(x}+V, (z),

~lh [(3 I r2)(a„' —k,')+a, (ri+2rz)B, ]
2mp

+ V„(x)+V, (z),

(d. +k, )(r,a, +a.r3},
2mp

m '(z) is the (z-dependent) effective mass at the bottom of
the I 6 band and k is the carrier wave vector of the in-
wire motion.

The calculation of the I 8 valence band starts from the
Hamiltonian:
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a'3/3 r2+r3.
2mp 2

(9)

u3/2 =2 '
~(x +iy)1 &,

' '~(x —iy)1'& —(-,')'/'~zl &,

uU1/2=6 ~(x+iy)g& —( —')'/ ~zl &,

u' 3/2= —2 '
~(x iy—)g &,

u 1/2 =i~s 1' &,

1/2 =ils 1 & .

(10)

The Luttinger parameters y&
—y3 describe the coupling

between the I 8 and the edges of all the other host bands
and are in principle z dependent. In Eq. (9) the matrix
element c is given in the axial approximation.

If V, (z) and the y's are even functions of z, the en-
velope functions can be chosen to have a definite parity in
the z direction. The off-diagonal elements of Hz couple

functions of either opposite (b, b+) or equal (c,c+) pari-
ty. This implies that there are two decoupled types of I 8

wave functions: %1' and lpga. The first (second) exhibit

Equation (5) has been derived from the original work of
Luttinger and Kohn (Eq. V.13 of Ref. 22) by replacing k„
by —i B„k, by —i B„and by symmetrizing any product
of noncommuting factors. The phases of the periodic
wave functions u' (r) are changed with respect to Ref.

J
22 in order to obtain a real Hz . We use

8

[Phhl( )Xhhl(z)(z)Q 3/2 +0'lhl(x )Xlhl(z)Q

U
—1/2 ' y&

+phh2(x)Xhh2( )~ —3/2 X (1 la)

4 t
—[0hh1(x )Xhh1(z)Q 3/2 +0 lh1(x )Xlhl(z)Q 1/2

U
—1/2 ' y&+ Phh2( )Xhh2( ) 3/2 +y (1 lb)

By applying Hr on Eq. (11a) we obtain a system of three
8

coupled eigenvalue equations for the envelope functions
ph», y»„and tp»2 and the eigenenergy E:

) ['Phh 1 (x )~ 'Plh 1 (x )~ 9 hh2( x ) ] (12)

where

even, even, odd, odd (odd, odd, even, even) z parity of
their envelope functions f3/2 f 1/2 fl/2 f 3/2 respec
tively. The notations %f and %J, point out that the cor-
responding energy levels are degenerate at zero magnetic
field B, while they split for nonzero B.

Our calculations presented in Secs. III and IV suppose
a symmetric GaAs-Gap 7Alp 3As quantum well in the z
direction that gives rise to a relatively large subband sep-
aration with respect to the energy range of interest
(stronger confinement in z than in x). Then we can re-
strict the expansion to the three lower band edge eigen-
states of that quantum well: the first hh, the first lh, and
the second hh states (Xhh„Xlh„and Xhh2), respectively.
This approximation leads to the following I 8 wave func-
tions:

g2
Ehhl ( 8 +ky )+ V (x)

2mhh

f2
( —8„+k )

2p

V'3 r2+r3
p & Xlh1 ~Xhh 1 &

mp 2

v'3
&X,„,~l,a, +a,),~X„„,&,

2

$2" (a, +k )'
2p

fi
Elhi ( 8 +ky )+ V (x)

2m 1h

( —8„+k )
mplp

, (a„+k, )
mpIp

$2
E„„2— ( —8„+ky )+ V„(x)

2m) h

mp
mhh =

hh

mp
m»

Vl V2

Ehh„E)h, , and Ehh2 are the edge energies of the first hh,
first lh, and second hh subbands of the quantum well in
the z direction [solutions of the hh and lh equivalent of
Eq. (4b)]. The equation that determines %$ rather than
4'1 is obtained by reversing the signs of all terms propor-
tional to B„and by replacing 1' by 1 in Eq. (12). Finally,
we expand Eq. (12) in an appropriate set of basis func-
tions (the explicit choice depends on the form of V„) and
diagonalize the resulting eigenvalue matrix numerically.

&q' ~a.p~ql" &= g J &u' ~e-p~u„" &,
J

=&f'(r)lf" (r) &
(13)

C. Polarization dependence of the interband
matrix element

Since the periodic part u', u' varies rapidly over the
characteristic length of variation of the envelope function
f',f", the dipole matrix element of a transition between a
I 6 [Eq. (2)] and a I s [Eq. (3)] state can be written as
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The atomiclike dipole matrix elements give rise to the
dependence on the polarization vector c of the light
wave. They are weighed by the quantum numbers of the
initial and final states via the overlap integrals J

J
The symmetry of the host functions that define the

u', u "
by means of Eq. (10) gives rise to the selection rule

&sip„lv'& =fi .imoP/fi, v, v'E Ix,y, z] . (14)

For the Kane Inatrix element P, the GaAs value
2moP =22.71 eV is used. We express the
polarization vector in spherical coordinates
E=(cosy&sinB, sinpsin8, cos8) and evaluate Eq. (13) us-
ing Eqs. (10) and (14). We obtain

m p
' —', ( f/2+ &/3) for 8=0

mo
1

Y~(J3/3 —3/2) 6(J1/2 J—1/2) (J3/2J —I/2+Jl/2J —3/2)cos(2P) ~

3

(15)

Equation (15) is very general. In particular, we have
made no assumptions concerning the confining potential.
Neglecting the internal anisotropy of the lattice unit cell,
the absorption is independent of e, in a cubic 3D lattice.
In 2D systems ( V,AO) the absorption depends on the an-

gle 8. The summation over the in-plane wave vector
eliminates the term proportional to cos(2qr) of Eq. (15).
This term survives the integration over the in-wire
momentum in 1D systems. The magnitude of the result-
ing anisotropy of the transition probability in the xy
plane increases in proportion to (J3/2J —f/2+ J]/2J —3/2)
with increasing hh-lh mixing in the valence band. Let us
stress that the use of decoupled hh and lh valence-band
states would result in a zero xy anisotropy.

For the systems described by Eqs. (11) and (12), the
polarization-dependent interband matrix element [Eq.
(15)] is simply given by

A. Infinitely deep square-well model

In a first approach we model the lateral confinement by
a rectangular well of width L with infinite barriers for
both electrons and holes. The lateral wave functions are
written as

p(x)= g c„sin(n„n.x/L„) .
n =1

(17)

GaAs quantum well embedded in Gao 7A10 3As. We sup-
pose that the offset of the conduction (hh and lh valence)
band equals —,

'
( —,') of the band-gap difference between

Gao 7A10 3As and GaAs of 0.354 eV. The effective mass
m'=0 067m.o (0.083mo) and the Luttinger parameters
y~=6. 85 (5.83), ye=2. 10 (1.67), y3=2. 90 (2.42) are used
for the well (barriers) throughout the calculations.

m,

moP
Jhh) +—J~t„— Jhht J&h&cos(2y)2 i 2

3

Xsin (8)+—', J,„,cos (8)

where
Jhq, = fdx thh, (x)V', (x)f dzyhh, (z)y, (z),

Ju„=fdx 0')h, (x)f, (x)f dx yn„(z)y, (z) .

(16)

III. RESULTS FOR SOME 1D STRUCTURES
AT ZERO MAGNETIC FIELD

In all the following 1D model systems the electrons
and holes are confined in the z direction by a symmetric

In Eq. (16) we have added the equal contributions of the
two parity degenerate solutions %f and %l. By y, we
mean the ground-state wave function of Eq. (4b). g, and

y„h2 have opposite parity, hence Jhh2 equals zero and
does not appear in Eq. (16). The overlap integrals J in
Eqs. (13)—(16) are supposed to be real, which is no re-
striction, since it is always possible to choose real solu-
tions of the Schrodinger equation.

The basis functions si (nn„~ /xL„) of this expansion are
the eigenfunctions in the conduction band [Eq. (4a)]. Fig-
ure 1 demonstrates how the lateral confinement trans-
forms the 2D valence-band dispersions of a 5-nm- (a) and
a 10-nm- (b) wide quantum well into 1D subbands. The
2D branches (dashed lines) correspond at k=0 to the first
hh, first lh, and second hh eigenstates [at —7, —20. 5,
and —27. 7 meV in Fig. 1(b)]. A finite in-plane momen-
tum k couples these states. In 1D systems the kinetic en-
ergy that is introduced by the lateral confinement [8,
terms in Eqs. (8) and (9)] mixes the 2D band-edge eigen-
states, even for zero in-mire wave vector k„. Thus, any
1D valence band state has both hh and lh contributions.
Nevertheless, a state with an energy in the vicinity of a
2D subband edge can display a dominant heavy- or
light-hole character. Therefore the 1D and the 2D sub-
band dispersions exhibit a similar shape in the vicinity of
the 2D subband edges.

In Fig. 2 the energies at the edge of the 1D valence
subbands (k„=O) are plotted against the lateral width L
of the wire. Near the 2D lh edge E&h& [at —47. 5 in (a)
and —20. 5 in (b)] the curves show a weak dependence on
L„. This is due to the flatness of the 2D lh dispersion
(Fig. 1) and indicates the existence of 1D states with a
strong lh contribution over the whole range of L . The
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FIG. 1. Valence subbands of a quantum wire (solid lines) as a
function of the in-wire wave vector and of the corresponding
quantum well (dashed lines) as a function of the in-plane wave

vector. The lateral wire width L„equals 50 nm, while the well

width L, is given by (a) 5 nm or (b) 10 nm. The top of the bulk
GaAs valence band corresponds to zero energy.

curves corresponding to states of opposite parity on x
cross, while the anticrossing occurring between the sub-
bands of equal parity increases with decreasing I . For
nonzero k all branches anticross.

Figure 3 shows the absorption spectra of the quantum
wire of Fig. 1(b) for polarization vectors parallel to the x,
y, and z axes (labeled x, y, and z, respectively). Broaden-
ing effects caused by sample imperfections are modeled
by replacing the 5 function of Eq. (1) by a Lorentzian
with a full width of 2 meV at half maximum. For a po-
larization in the z direction only the lh parts of the I 8

state contribute to the absorption [Eqs. (15) or (16)]. The
peak of the spectrum labeled z in Fig. 3 is mainly due to
the transition h6e1 (from the sixth valence to the first
conduction 1D subband) and partly due to nonzero k»
contribution of the transitions exhibiting lower-edge en-
ergies. For lower photon energies fico the lh contribution

FIG. 2. Edge energies of the 1D valence subbands as a func-
tion of the lateral wire width L„ for a Axed dimension L, of
(a) 5 nm or (b) 10 nm.

to the corresponding I 8 state is much smaller, and there-
fore the structures of the lower 1D absorption edges are
masked by the broadening of the h 6e 1 peak.

The dependence of the absorption on the polarization
in the xy plane is described by the product
J„„,J,„,cos(2q&) of Eq. (16). The xy anisotropy is ex-
pressed by (a„—a )/(a„+a ), where a„and a are the
absorption coe%cients for a polarization parallel to the x
and y axes, respectively. If the overlap integrals Jhh, and

Jih& are of equal (opposite) sign, the absorption is weaker
for x (y) polarization and the xy anisotropy is negative
(positive). The magnitude of the anisotropy increases
proportionally to Jhh, JIh, with increasing hh-lh mixing.
In Fig. 3, the h lel and h2e2 peaks are stronger for y
than for x polarization. The larger xy anisotropy at the
h2e2 edge reflects the stronger hh-lh mixing in the
second valence subband. The edge of the Ii 6e l transition
located at about 53 meV exhibits the opposite polariza-
tion dependence.
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FIG. 3. Absorption of the quantum wire plotted vs photon
energy Ace for the three orthogonal light polarizations. Eg p is
the band gap of bulk GaAs.

In Fig. 4 the effect of a polarization in the xy plane on
the peaks of the absorption spectrum (fico equals the tran-
sition energies at k =0) is presented as a function
of the wire width L . We have plotted the xy anisotropy
for any transition that contributes substantially
(nE„X,)0.03 nm) to the absorption in the energy range
of the lowest 1D subband edges. Over the whole range of
L„noly the h le 1, the h 2e2, and the transitions involving
strongly lh-like valence subbands [tlat curves near the 2D
lh energy Eihi in Fig. 2(b)] are important. The anisotropy
increases with decreasing L„due to the increasing hh-lh
mixing. At a fixed L„, the transitions that originate from
different valence subbands exhibit different magnitudes of
the anisotropy. A positive (negative) xy anisotropy
identifies a transition that involves a valence subband of

dominant lh (hh) character.
The qualitative properties of the polarization-

dependent absorption are independent of the model used
for the lateral confinement. In Appendix B we show by
an analytical perturbative treatment of the hh-lh coupling
that the lateral anisotropy characterizes the hh- or lh-like
character of the 1D valence subbands in the same way for
any symmetric confinement potential that gives rise to
spatially direct transitions.

An electric field breaks down the inversion symmetry
in the direction of its application. Pointing in the z direc-
tion, it lifts the parity degeneracy in the valence band,
and Eqs. (11)and (12) are no longer sufficient.

On the other hand, an electric field F in the x direction
can be described by simply adding eFx to the potential
V„ in Eqs. (4a) and (12). Its influence is of particular in-
terest for real systems where charged impurities at the la-
teral boundaries of the quantum wire produce an electric
field F along the x axis, whose magnitude may vary along
the wire axis y. A simple estimate for the order of magni-
tude of F is the electric field in a capacitor consisting of
two oppositely charged 2D sheets separated by an un-
doped GaAs layer of width L„. There, a density of 10'
cm of singly charged impurities results in F=—1.5
kV/cm.

The field F influences the polarization-dependent ab-
sorption in two ways. First, it shifts the edge energies of
the conduction and valence subbands (Fig. 5), and with it
the spectral position of the absorption peaks (Stark shift).
Second, the lateral wave functions deform and separate
increasingly with F. The latter effects give rise to the
electric-field dependence of the xy anisotropy and to the
variations of the strength of the 1D transitions plotted in
Fig. 6. In the electric-field range where a given transition
exhibits a sizeable strength, its transition energy and an-
isotropy do not change significantly. The influence of

1

L»e~

0.5—
hse1

I

Ga As —Gao7 AL As

L~ =10 nrem

h7e1 h9el

20

C9
lX
uJ 0

0.5 -20

20 40 60

Lz (nm )
80

FIG. 4. xy anisotropy of the dominant 10 absorption edges
as a function of the lateral wire width L . a„and a~ are the ab-

sorption coefficients of the indicated transitions for a polariza-
tion parallel to the x and y axes, respectively.

5 10

F (kV/cm )

15 20

FIG. 5. Edge energies of the conduction (three topmost
branches) and valence subbands of a (50X 10 nm cross section)
quantum wire as a function of the electric field in the x direction
F. The energy zero corresponds to the bottom of the conduc-
tion (top of the valence) band of bulk GaAs for the conduction
(valence) subbands.
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FIG. 7. The two different types of lateral confinement.

2 3
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FIG. 6. Normalized xy anisotropy of the dominant
(aE„X,)0.03 nm) absorption peaks as a function of F. The
diameters of the circles indicate the strength of the peaks of the
different transitions averaged over the in-plane polarization

[{a„+ay )X„X,/2].

spatial variations of F caused by defects in real structures
can be estimated by taking the average over different
spectra calculated for different F. However, for a varia-
tion of F smaller than about 2 kV/cm, the dominant
spectra in this average exhibit similar polarization depen-
dence. This indicates that the xy anisotropy is relatively
stable with respect to this kind of sample imperfections.
In Sec. IV the inhuence of randomness on the polariza-
tion spectra is studied more quantitatively.

B.Periodic lateral confinement

In a second approach we suppose a lateral confinement
given by

2m
V„(x)=+V, cos x

L

the type-II configuration (lateral surface superlattice; see,
e.g. , Ref. 10). It is characterized by the spatial separation
of the electrons and holes into adjacent wires in the limit
of a large V&. The type-I or type-II character of 1D sys-
tems defined by etching through a 2D layer depends on
the density of the charged impurities introduced at the la-
teral boundaries.

The lateral wave functions are written in the Bloch
form

y(x)=e " gcxe' " .
E

(19)

The plane-wave expansion of the periodic part extends
over the vectors E of the reciprocal lattice
(K =n2m. /L„; n =+I,+2, . . . ).

Due to the translation and inversion symmetries of Eq.
(19), the whole energy dispersion can be folded in the re-
duced zone scheme 0~ k„~n. /L„. The solid lines of Fig.
8 show the energies of the I 6 band for either k =0 or
k„=n/L„. The dashed areas indicate the allowed mini-
bands.

With the exception of the ground level (k„=O,K =0),
the energies at the edge of the reduced zone scheme are

for the conduction band, and

V„(x)=V, cos x2'
X

(18)

for the valence band. We discuss the two different types
of confinement, shown in Fig. 7. The conduction- and
the valence-band edges exhibit the same absolute value of
the modulation V& and the same periodicity I. . The
negative and positive signs in Eq. (18) correspond to the
type-I and the type-II configurations, respectively. In the
type-I configuration the electron and hole envelope func-
tions are concentrated at the same positions in the x
direction. This is a model for systems with a lateral
modulation of the composition. For instance, the wires
directly grown on a tilted GaAs substrate ' exhibit a la-
teral modulation of the aluminum content x of the
Ga& Al„As alloy. A confinement induced by a lateral
gate pattern or modulation of the doping corresponds to

)
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.7 03
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FIG. 8. Energy range covered by the miniband dispersion in

k„as a function of the strength of the periodic potential for the
I 6 conduction band. The in-wire wave vector k~ equals zero.
The energy zero is set at the bottom of the bulk GaAs conduc-
tion band.
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V, (x)= V, [(2~ /xL„) —I] . (20)

This leads to the constant spacing of the energy levels at
large V& in Fig. 8.

Figure 9 shows the corresponding results for the
valence band. The uppermost hh-like branches show
quaiitative y e sami' '

1 th same behavior as the lowest electron
branches. The holes localize more strongly in the lateral
potential than the electrons and the bandwidths are
smaiier at a givenii

'
V since the hole effective masses in

the layer plane are larger than that of the electron. The
hh-lh mixing is responsible for the nonconstant spacing
of the energy levels at large V, as well as for the intricate
structure deeper in the valence band.

For the absorption we have to distinguish between
type- an ype--I d t -II systems (Fig. 7). The selection rules on
the envelope-function overlap are different. In type-

d nerate (K =+sr/L, E=+2m/L„, E =+3m IL„,
. . . ) at zero V, . A periodic potential lifts these degenera-
cies and creates the forbidden energy regions called mini-

a s. The potential Eq. (18) being the first component of
the Fourier expansion of a general perio p
directly couples only the parts of Eq. &&19& that differ in E
b 2m/L . First-order perturbation theory predicts a
wit o

&
o'd h f V f r the first and zero for the higher minigaps.

The first minigap of Figs. 6 and 7 opens linear y in
and its width equals V&. The widths of the minigaps e-
crease with increasing index because an increasing order
of perturbation is necessary to couple the two degenerate
levels.

For large V„ the wave functions of the lowest-energy
states become strongly localized in the minima of the po-
tential Eq. (18). The overlap of the wave functions of ad-
jacent wires is small, as are the band widths, and the sys-
tem effectively corresponds to an array of indepen ent
wires. In this limit, the relevant confinement potentials
of the individual wires are nearly parabolic. For instance,
the conduction-band minimum at x =0 can be approxi-
mated by

0.2—
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FIG. 10. Polarization-dependent absorption (lower curves)
and normalized xy anisotropy (upper curves) of type-I wire ar-
rays for different modulation V& of the lateral potential.
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systems, transitions between electron and hole states ex-
hibiting the same parity on x are allowed for all k„. In
type- sys e-II tems the parity-conserving transitions eing

Inallowed at k„=O become forbidden at k„=En/L„. n
addition, transitions between states of different parity are
allowed at k„=krrIL„(forbidden at k„=O). We replace
the 5 function of Eq. (1) by a Gaussian function with a
full width of 2 meV at 1/e maximum.

Figure 10 shows the results for the lowest-energy tran-
sitions of the type-I system for different strengths of the
lateral potential. In the lower part, the absorption for a
polarization parallel to the x, y, and z axes is plotted as a
function of the photon energy, while the upper part
shows the normalized xy anisotropy. For V& =20 meV,
the peaks in the x and y absorption spectra correspond to
the h lel (7 meV), h3e1 (14 rneV), h5e1 (18 meV), and
h2e2 (20 meV) transitions, respectively. The absorption
spectrum shifts to higher photon energies with decreasing
V&. For small Vi, the spectra resemble the staircase
shape of the 2D band-to-band absorption. In the same
way as for the confinement by infinite barriers, the anisot-
ropy of the transitions is a measure of the hh or lh char-
acter of the participating valence subband, and its
amount increases with increasing lateral potential.

Figure 11 shows the results for the type-II system. The
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FIG. 9. Same as Fig. 8 for the I 8 valence band. The energy
zero is set at the top of the bulk GaAs valence band. FIG. 11. Same as Fig. 10 for type-II wire arrays.
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wave functions of the lowest conduction- and the topmost
valence-band states are increasingly separated in space
with increasing V, . The electron-hole overlap integrals
and thus the strength of the transitions increase with the
photon energy fico.

For type-II systems the product J„h,J,h„which deter-
rnines the effect of a polarization in the xy plane [Eq.
(16)], depends crucially on the relative sign of the elec-
tron and hole wave function in their respective barriers.
The normalized xy anisotropy increases with V„but
there is no general connection between its sign and the
hh-lh coupling, in contrast to the type-I systems.

6X 10

6x 10

=0.4

IV. INFLUENCE OF SPATIAL FLUCTUATIONS
OF THE CONFINING POTENTIAL

In the previous section, we have discussed the optical
properties of different 1D systems assuming a constant
shape of the lateral potential V over the whole structure.
In practice, the shape of V varies from one wire to
another as well as along a given one due to imperfections
in the samples. The present section treats the effects of
these fluctuations that are of particular importance for
the comparison of the theoretical results with experi-
ments.

We consider again the type-I wire array of Sec. III B.
The lateral potential V„ is written as a sum of a target po-
tential V given by Eq. (18) and a fluctuating potential
vf.

v. = v'+ vI,
2'ITX= V&cos
L

(21)

( [ V„(x)—V (x)] ) =V g(a+b )
( V'(x)')

(22)

where the mean value is defined by
L /2

( f(x)) =L„'f f (x) dx .
x

The random variables a„and b„are initially drawn from
the interval ( —1, 1). In order to represent a random po-
tential of given 6, they are multiplied by a common fac-
tor c before being introduced into Eq. (21):

—1/2
max

c =b, V, g (a„+b„)
n =2

The absorption spectrum of a 1D structure of deviation
parameter 6 is then defined as the average over a
sufficient number of spectra belonging to a different ran-
dom V but the same h.

~max
27TX . 2VTXVI= g a„cos n +b„sin n

a=2
"

X

The Fourier expansion of V involving several higher
components conserves the periodicity of V„and describes
a large variety of fluctuations. We define a parameter 6
for the magnitude of the deviation of V from V

20 25 30 35 25 30 35 40

Ku)- E a (meV}

FIG. 12. Absorption spectra of a periodic type-I wire array
(L„=100 nm, Vl = 10 meV) for different randomness parameter
h. The curve shown in the upper left corner of each spectrum is

one example of the ensemble of random potentials correspond-
ing to the respective h.

Figure 12 shows how an increasing fluctuation of V„
influences the absorption spectrum. The random poten-
tial plotted in the upper left corner of each spectrum
visualizes the magnitude of the deviation corresponding
to the different A. We use n,„=6. The 6=0 spectrum
of Fig. 12 describes the same physical system as the
V, =10 meV spectrum of Fig. 10, except that the width
of the Gaussian function replacing the 5 function of Eq.
(1) is reduced by a factor of 2. With b, increasing from 0
to 0.6 the spectrum broadens significantly. However, the
broadening is similar for a polarization parallel to the x
and y axes leading to a weak 6 dependence of the xy an-
isotropy.

Let us now look in more detail at the three dominant
peaks of the spectra corresponding to the h lel, h2e2,
and h6el transitions (at 23.2, 33.7, and 35.3 meV for
b =0), respectively. In Fig. 13 the height (solid lines) and
the xy anisotropy (dashed lines) are plotted versus b.
The peak absorption of the three transitions decreases
continuously with increasing A. The anisotropy of the
h le 1 transition (labeled 1) is constant in the range of the
statistical uncertainty of the calculations ( ~ +0.01 for an
average from 80 random spectra). This is a remarkable
result in view of the strong fluctuations of V„ for large h.

The second hole subband is closer in energy to the 2D
light hole branch and therefore exhibits a stronger hh-lh
mixing than the first hole subband. This leads to the
stronger xy anisotropy of the h2e2 (labeled 2) compared
to the h lel transition at small h. With increasing 6,
however, the anisotropy of the h 2e2 transition decreases,
since the neighboring 1h-like transitions exhibiting an op-
posite polarization dependence contribute increasingly to
the absorption in the energy region of the h2e2 transi-
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FIG. 13. Peak absorption (solid lines, left scale) and xy an-

isotropy (dashed lines, right scale) of the wire array of Fig. 12 as
a function of h. The curves labeled 1, 2, and 3 correspond to
h le1, h2e2, and h6e1 transition peaks at 23.2, 33.7, and 35.3
meV (for 5=0), respectively.

tion. In order to prevent this decrease of the anisotropy,
the separation of the transition of interest and other
strong transitions exhibiting a weaker or even opposite xy
anisotropy should be greater than the energy broadening.
In the present case, this condition is more demanding for
the h2e2 than for the h lel transition. The h2e2 transi-
tion contributes substantially to the absorption at the en-

ergy of the h6e 1 (lh-like, labeled 3) peak. There the xy
anisotropy is small even for zero 6, since the high-energy
tail is an intrinsic property of the 1D joint density of
states and is not caused by broadening. A stronger la-
teral confinement (larger V& and/or smaller L„) is needed
to prevent this overlap.

V. DISCUSSION

First of all, we discuss the influence of excitonic effects
neglected in the calculations. In the presence of the
electron-hole Coulomb interaction the states 4' and 4' of
Eqs. (2) and (3) are no longer the valid eigenstates. An
excitonic state can be described approximately by a linear
combination of direct products of 4' and 4". In 2D sys-
tems this expansion can often be restricted to a sum over
the electron and hole in-plane wave vectors (intrasubband
couplings) because the subband separations are usually
large with respect to the excitonic binding energy. In a
typical 1D excitonic state the intersubband coupling
(mixing of the energetically less-separated lateral sub-
bands) has to be taken into account. A 1D excitonic
transition involves an average of the band-to-band matrix
elements weighed over several in-wire wave vectors It..
and lateral subband indices n . The singular shape of the
1D joint density of states suggests that the contributions
of small k dominate the strength of an excitonic transi-
tion. The polarization dependence of an excitonic peak is
therefore some mean value of the peak(s) of the band to
band transition(s) in its energy region. In the limit of
weak intersubband coupling the excitonic and the band-
to-band absorption peaks should exhibit similar polariza-

tion dependence. The relative stability of the xy anisotro-

py (in particular of the h le 1 transition) with respect to
variations in the confining potential demonstrated in Sec.
IV supports this interpretation. Notice also that the
Coulomb interaction does not alter the spatial symmetry
of the problem in question.

A quantitative determination of excitonic effects on the
interband absorption requires a calculation of the 1D ex-
citonic state that includes the hh-lh mixing in the valence
band. Up to now all calculations of 1D excitonic states
assume simple parabolic valence subbands. ' ' ' As al-
ready shown in Sec. II, this approximation leads to a zero
xy anisotropy. The importance of excitonic effects in 1D
systems is still an open question, and the experiments
have to decide in which cases the band-to-band calcula-
tions describe well the physical features.

Let us finally compare our theoretical results with re-
cent experimental findings. Tsuchiya et al. and more re-
cently Tanaka, Motohisa, and Sakaki have measured the
xy anisotropy by photoluminescence excitation spectros-
copy in narrow GaAs-A1As quantum wires directly
grown on a tilted substrat. The two transitions that they
observe show opposite polarization dependences that are
very similar to what we calculate for the h lel and the
first lh-like transitions. Both groups have explained their
experimental results in the following simple approach.
They evaluate the interband matrix element of the bulk
semiconductor for a single wave vector k that is fixed in
two directions by the quantum confinement and set to
zero in the wire direction. However, a quantum-wire
state clearly cannot be described by a single k. At least
two different (opposite) wave vectors are needed per
confined direction in order to construct a standing wave.

In a quantum wire of large width ratio L„/L„ the
dependence of the absorption on the polarization in the
xy plane caused by intrinsic 1D properties is small (Fig.
4). The strong xy anisotropy observed by Kohl et al. s in
etched (70X14 nm ) GaAs-GaA1As wires corresponds
neither in sign nor in magnitude to our calculations. This
may indicate that the surface corrugation of free-standing
etched structures gives rise to additional electrodynamic
(grating coupler, local field) effects that substantially
modify the optical anisotropy, as already pointed out by
the authors.

VI. CONCLUSION

In conclusion, we have presented calculations of the in-
terb and absorption in 1D structures based on an
efFective-mass approximation that takes the degeneracy
of the valence band into account. Single wires with a la-
teral confinement modeled by infinite barriers and arrays
of wires described by a periodic lateral potential have
been studied. We have investigated two different types of
the latter configuration: the spatially direct (type I) and
the spatially indirect (type II) systems. While in the
type-I system the absorption spectra directly reflect the
change of the joint density of states from a 2D to a 1D
shape, the absorption in the type-II configuration de-
creases strongly due to the increasing spatial separation
of the electron and hole wave functions with increasing
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lateral potential. In type-I systems the dependence of the
absorption on the polarization in the xy plane character-
izes the hh-lh mixing in the contributing valence sub-
band. A strong xy anisotropy requires a large mixing,
which can be achieved if the characteristic lengths of the
confinement in the x and z directions are not too
different.

We believe that our calculate polarization dependences
and the underlying formalism could be a useful frame-
work for detailed optical studies of the 1D valence-
subband structures in the future. They already explain
some recent experimental data.

Note added. Very recently, an effective bond-orbital
model has been implemented to calculate the optical an-
isotropy of quantum wires and applied to the special case
of the structure of Ref. 6. ' This approach has led to a
rough qualitative agreement with the experimental
findings of Ref. 6.
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APPENDIX A

where Io stands for the intensity in the interior of the ac-
tive structure. For the attenuation of the beam we obtain

I (y) =I (0)e (A3)

In the following we will treat the 1D structure (wire
axis in the y direction) in a very similar way. For a beam
that penetrates perpendicular through the wire (propaga-
tion parallel to x) we get

I, /I; = ( 1 —aX X, /L, ) . (A4)

For a propagation parallel to z, the parameter L, has to
be replaced by L [defined by the equivalent of Eq. (A2)
for the x direction].

A light beam that propagates parallel to the wire axis

In this appendix the attenuation of a light beam in 1D
and 2D structures is discussed in terms of the absorption
quantities defined in Sec. II A. The simplest
configuration is the perpendicular penetration through a
2D (x-y) layer. The ratio of the transmitted to the in-

cident intensities is given by

I, /I; = ( 1 —isa, ) .

For a propagation parallel to the 2D plane (for instance,
in the y direction), the intensity profile of the light beam
I (z) is of importance. We define an effective beam width

in the z direction by

L, = dz I z Io, (A2)

is described by

I (y) =I (0)e (A5)

where S, , is related to the intensity profile I(x,z) of the
beam by

S„=f dx f dz I(x,z)/I, . (A6)

In all these configurations the attenuation is described by
two well-defined, independent quantities that represents
the absorption properties (~, for 2D and nL„X, for
1D structures) on the one hand, and the respective inten-
sity profiles of the light wave (L„,L„S„,) on the other
hand.

APPENDIX B

+hh &0 (B1)

or lh states

I+n &o (B2)

The two-component vectors in Eqs. (Bl) and (B2)
operate on the basis [yhhi(z)u 3/2 gp)i(z)u' i/2] and

[Xhhl(z)u —3/2 Xlhl(z)u i/2 ] f« the solutions +1 and q J,

[Eq. (11)],respectively.
To first order in the off-diagonal terms of H of Eq. (12),

the pure hh state [Eq. (Bl)] gets a lh contribution [from
Eq. (B2)] and vice versa:

+hh & i
—I+hh &0+c I +1h &0 ~

I+n &i
—I+a&o &I+hh&o

fd y( )( —8 )y„„( )
C=

2p Ehh E lh

~2 f«q, h(x)qhh(x) )0.
2P Ehh E&h

(B3)

(B4)

(85)

For a stronger confinement in the z than in the x direc-

In this appendix we treat the hh-lh coupling by pertur-
bation theory and derive analytically the sign of the fac-
tor Jhh, J~h, that determines the effect of a lateral polar-
ization via Eq. (16). Since we are interested in the peaks
of the 1D joint density of states, we set k to zero.

Let us now look at interband transitions to a given 1D
conduction-band state. When the confinement potential
in the x direction has a similar shape for the holes as for
the electrons (type-I systems, see Fig. 7), only the lateral
valence-band wave functions with the same subband in-
dex as the final conduction-band state in question con-
tribute significantly to the electron-hole overlap integrals.
These lateral functions are labeled yhh(x) for the heavy
and y,h(x) for the light hole.

To zeroth order of perturbation (in the absence of hh-
lh coupling), the valence-band eigenfunctions are either
hh states
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tion, the difference between the zeroth-order hh and lh
energies (E„z—Elb } is positive for the uppermost valence
subbands. The integral in the numerator of Eq. (B5) is
positive as well, since pz„(x } and qr|„(x} have similar

shape. The resulting positive sign of c implies a positive
(negative) factor Jbz& J|z& for an interband transition in-

volving the state ~y„„), (~qr,„),). Together with Eq. (16)

it follows that

Q~ Qy )0 for ~%,„&, ,
Q +Q„
Q Qy

Q +Qy

(B6)
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