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The Ruderman-Kittel-Kasuya-Yosida (RKKY) indirect-exchange interaction via free carriers is ana-
lyzed in the case of IV-VI semimagnetic semiconductors (diluted magnetic semiconductors). Carriers re-
sponsible for the RKKY interaction in these materials originate from the anisotropic band of heavy
holes located at the = point of the Brillouin zone (i.e., there are 12 equivalent valleys of this band). Both
intervalley and intravalley electron processes contribute to the exchange coupling. Calculations of the
RKKY exchange integral and the paramagnetic Curie temperature (®) are presented. The exchange in-
tegral is anisotropic, and its dependence on the interspin distance is significantly modified in such a way
that the role of antiferromagnetic couplings is increased. As a consequence, the value of ® is reduced.

I. INTRODUCTION

In this paper we will present an analysis of the
Ruderman-Kittel-Kasuya-Yosida! (RKKY) indirect-
exchange interaction via free carriers in IV-VI semimag-
netic semiconductors (diluted magnetic semiconduc-
tors).? These materials are substitutional solid solutions
of the well-known IV-VI semiconductors (such as, e.g.,
PbTe or SnTe) and MnTe. In the experimentally studied
samples we usually have a small amount (x <0.1) of Mn
ions. The results of magnetic measurements [electron
paramagnetic resonance® (EPR), magnetization, and mag-
netic susceptibility* " !°] provide experimental evidence
that Mn incorporates into the IV-VI semiconducting ma-
trix as a Mn?" ion with localized spin moment (§=3,
g=2.0).

From the point of view of electronic properties, IV-VI
diluted magnetic semiconductors (DMS) have a metallic
type of conductivity with a very large, temperature-
independent, concentration of carriers. Carriers are gen-
erated by metal sublattice vacancies, and their concentra-
tion may be controlled by thermal annealing. IV-VI ma-
terials are narrow-gap semiconductors. The band of elec-
trons and the band of light holes are separated by a direct
gap at the L point of the Brillouin zone. In p-type crys-
tals with a very large concentration of holes the second
valence band of heavy holes is also populated [Fig. 1(a)].
The top of this band is located at the 2 point of the Bril-
louin zone and therefore there are 12 equivalent energy
valleys of this band.

The IV-VI DMS present a broad spectrum of magnetic
properties. Crystals with relatively low concentration of
carriers (e.g., in Pb,_ Mn, Te usually n,p <10"° cm™?)
are paramagnets,'® and a spin-glass phase was observed
in Pb,_ Mn,Te at very low temperatures 7 <1 K.°
Magnetic moments in these crystals are weakly antifer-
romagnetically coupled via the superexchange interac-
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tion. Other interspin interaction mechanisms (e.g., direct
exchange or the RKKY interaction) are expected to be
negligible due to the large mean interspin distances and
low concentration of carriers. Crystals with very high
concentration of carriers (in Sn;_,Mn_ Te and
Ge,_ Mn, Te usually p=10?" cm™?) are ferromagnetic
at low temperatures.*~1° In this case it is believed that
the RKKY interaction via free holes is responsible for
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FIG. 1. A simple model of the band structure of the IV-VI
semimagnetic semiconductors (a). The band of heavy holes (2)
starts to be populated for concentration of carriers p >p,
defined as Ep(p.)=Es. Due to the very high effective mass of 2
carriers the RKKY mechanism is strongly enhanced, which re-
sults in a thresholdlike carrier concentration dependence of the
Curie temperature (b). The experimental data were obtained for
the samples of Pbyg ,5Sn, ,,Mng g3 Te (Ref. 7). The solid line is
the theoretical curve based on the calculations of the RKKY in-
teraction (Ref. 8).
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the coupling of the magnetic moments. The transition
from the first (paramagnetic) type of behavior to the
second (ferromagnetic) one has been observed for certain
compositions of Pb,_, ,Sn Mn,Te crystals including
Sn,_,Mn, Te.””®!12 Samples with a carrier concentra-
tion p <p,=3X10* cm™? are paramagnets, whereas
samples with carrier concentration p >p_. are ferromag-
nets. The Curie temperature of these crystals depends on
the carrier concentration in a thresholdlike way [Fig.
1(b)].7° The existence of such a threshold concentration
of carriers can be understood within the two-valence-
band model of the band structure of IV-VI semiconduc-
tors.” The threshold concentration (p.) equals the num-
ber of carriers necessary to start to fill the band of heavy
holes. Due to the very large density-of-states effective
mass of these carriers, the RKKY interaction is
significantly enhanced and strong enough to establish a
ferromagnetic phase at low temperatures. For samples
with p <p. only the light-hole band is populated, which
yields a strongly reduced RKKY mechanism.

The strong carrier concentration dependence of the
magnetic properties of Pb,_, ,Sn,Mn,Te crystals and
the existence of a ferromagnetic state for rather low con-
centration of magnetic moments (x > 0.5 at. %) strongly
suggests that the long-range RKKY indirect-exchange
interaction through carriers is the most likely physical
mechanism responsible for the exchange coupling of Mn
spins in IV-VI semimagnetic semiconductors with very
high concentrations of carriers. These carriers originate
from the band of heavy holes located at the = point of the
Brillouin zone. In the present paper we will analyze the
RKKY interaction due to these carriers with a special
emphasis on the role of anisotropy and many-valley
structure of this band. We will show that in addition to
the standard intravalley electronic transitions one has
also to take into account the intervalley transitions. It
will be shown that these transitions contribute about
30% of the total exchange interaction as measured by the
paramagnetic Curie temperature (®). An important
modification of the interspin distance dependence of the
RKKY exchange integral is also observed.

II. BAND STRUCTURE

A band-structure model based on the consistent inter-
pretation of transport, optical, and magnetic experimen-
tal data is presented in Fig. 1(a).®*!® The main energy
gap is located at the L point of the Brillouin zone. There
are four equivalent valleys of both the band of electrons
and the band of light holes. These bands are anisotropic
(A, =m;/m;=10 in IV-VI tellurides). 4 Due to the
narrow energy gap the energy dispersion relation is non-
parabolic and usually described within the Dimmock
model.'* Approximately E5=0.2 eV below the top of
the band of light holes there is a second valence band of
heavy holes, which is expected to be parabolic. 15
Significant anisotropy of the Fermi surface is theoretical-
ly predicted'> and experimentally observed.'®”!® The
value of the effective mass of carriers in the = band, es-
timated from the optical measurements,!® is very large,
ms=1.Tm,. In our calculations we will use the value of
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the effective mass anisotropy coefficient of heavy holes
A5 =10 with the Fermi surface in a form of an ellipsoid
of revolution.'®”!® From theoretical band-structure cal-
culations, ' it follows that the band of heavy holes is lo-
cated approximately halfway from the center of the zone
to the edge of the first Brillouin zone into the [110] direc-
tion, i.e., point K[37/2a;3m/2a;0]. Here a=6.33 A is
the typical value of the lattice constant of the rocksalt
crystal lattice of IV-VI semiconductors. The allocation
of these valleys in the Brillouin zone is presented in Fig.
2.1516 The dimensions of the Fermi ellipsoids are smaller
than the dimensions of the first Brillouin zone and all 12
ellipsoids are located within the first zone. For carrier
concentrations realized in the experimental studies
(p £10*' cm™3) they also are not connected. For each of
the 12 Fermi ellipsoids the energy dispersion relation has
the following form:

72 | k=K N (k,—K,, ) . (k,—K,,)?

2 m, m, m

’

(1)

where K, determines the position of the center of a given
valley (Fig. 2). The shape of the Fermi ellipsoids (kp,
kp, in Fig. 3) is determined by the concentration of car-
riers and the effective-mass anisotropy coefficient A4:

kF”=(37T2—p~)1/3A1/3’ kFl=(3‘ﬂ'2ﬁ)l/3A_1/6 . 2)

Here p=p /12 is the concentration of carriers in each
valley. In the case of an isotropic band (4=1), Eq. (2)
gives the standard result: kg = kp,=37%p)13

The carriers at these Fermi surfaces are almost entirely
responsible for the RKKY exchange mechanism in IV-VI
crystals. In the next section we will analyze the effect of
the many-valley structure and anisotropy of the Fermi
surface of carriers on the RKKY exchange mechanism.

J| 'ﬂ:\U

FIG. 2. The allocation of 12 Fermi ellipsoids of the band of
heavy holes. The ellipsoids are located at the = points of the
Brillouin zone and prolonged into the [100] directions. This
model was developed based on the experimental measurements
of magnetoresistance (Ref. 16) and the de Haas—van Alphen
effect (Ref. 18).
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FIG. 3. The Fermi surface of the 2 carriers has the shape of
the ellipsoid of revolution with the long axis along one of the
[100] directions. The dimensions of the Fermi ellipsoids are
determined by the concentration of carriers and the effective-
mass anisotropy coefficient [Eq. (2)].

III. RKKY INTERACTION

The general expression for the RKKY exchange in-
tegral I(R;;) can be derived based on the second-order

erturbation theory with the perturbing potential
H=J,S-6. This Hamiltonian describes the interaction
between localized magnetic moments S and free carriers
& by s-d exchange. As a result one obtains the spin-
dependent second-order correction to the energy of the
magnetic subsystem:"'!® E = —I;8;-S;, with the RKKY
exchange integral I;;:

ok —Fax

m Jszdexp(iq-Rij) )

IR)=13 3

a,a’ k, k'

(3)

Here a labels electron bands, k and k' are the wave
vectors of carriers, f,; is the Fermi-Dirac distribution
function, and E (k) the energy of the carrier in band a.
The vector R;; denotes the position of the spins in the
crystal lattice and vector q is defined as q=k —k'.

Microscopically, the RKKY exchange interaction can
be considered as a second-order scattering process,1
where the electron in the quantum state lak ) is scattered
by the magnetic moment into the intermediate state
la’k’) and subsequently scattered again by the other
magnetic moment to the initial state |ak). The s-d ex-
change integral J,,=J(ak,a’k’) (the matrix element
determining the coupling of electron states ak and a’k’)
depends generally on k and k’.?° In the spirit of standard
RKKY calculations' we will neglect this dependence and
treat the J; as a constant. Physically, it means that the
local character of the s-d exchange interaction is approxi-
mated by a 6 function.

In the case of IV-VI crystals there is no band summa-
tion in Eq. (3) since carriers from only one band dominate
the RKKY exchange mechanism. The sum over k,k’ is
restricted to the first Brillouin zone. Every possible
choice of the wave vectors k,k’ has to be taken into ac-
count. Direct inspection of Eq. (3) leads to the con-
clusion that there is no contribution to the exchange in-
tegral I(R;;) due to electron processes in which both k

T. STORY et al. 45

and k' are located inside (f,=f;-=1) or outside
(fx =F1=0) the Fermi ellipsoids. The largest contribu-
tion is expected in the situation where k is located just
below the Fermi surface and k' is just above this surface
(see Fig. 4). In this case one has f, —f, =1 and
E(k')—E (k)=0. These are standard intravalley electron
transitions responsible for the RKKY interaction. One
can see, however, that in the many-valley systems a large
contribution to the RKKY exchange integral may also be
generated by intervalley transitions. In this case vector k
is located just below the Fermi surface of the nth valley
whereas &’ is just above the Fermi surface of the other
n'th valley (Fig. 4). A difference between these two cases
may be caused by a (possibly) different value of the s-d ex-
change constant J; due to large g transitions in the case
of intervalley processes. However, as mentioned before,
within the frame of the standard RKKY calculations the
J,; exchange integral does not depend on the q=k—k’
and both types of transitions are weighted in the same
way.

Based on the above discussion we can conclude that
the problem of the summation over the whole first Bril-
louin zone reduces to the summation over the spectrum
of all possible pairs of valleys (both n =n’ and n¥#n’)
with kK <k, and k' 2 k. (and vice versa).

Below we will calculate the contribution to the RKKY
exchange integral due to the electron transitions between
two valleys (Fig. 5). To perform the summation (3) we
will introduce new k-space coordinates:

K=k, =K, Im 2,k =(k. =K, m ',
k,=(k,—K,)m'?, «,=(k;—K,,m '?, (@
Kz:(kz_an)m\Tl/z’ K;z(kZ’_K"'z)mlrl/z.

The energy dispersion relation now has the parabolic
form

En(k)=—12—ﬁ2K2 . (5)
We will also use the new R-space coordinates:
pij[Rxmi/z;Rymi/z;Rzm;l]/z]: Rij[Rx;Ry;Rz] . (6)

G

FIG. 4. The k,-k, cross section of the first Brillouin zone of
the IV-VI crystals. The pair of wave vectors (k,k’) represents
the standard electronic transitions responsible for the RKKY
interaction. The pair (k,k’’) represents the intervalley transi-
tions present in many-valley crystals.
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FIG. 5. The pair of two ellipsoids prolonged into the same
direction. In such a case the anisotropic problem of the RKKY
interaction calculations can be reduced to the isotropic one via
transformation (4)—(7). The energy of carriers in valley n is
given by E, (k)=(#/2)K’.

The old and new variables are related via Eq. (7):
qR;;=(k—k')R;=k—«")p; +(K,—K,)R; . (7

With these new variables and after transformation of
expression (3) into an integral form, the RKKY exchange
integral may be written as follows:

Vm im 1 3 33, Suw= e 2
I(R;)= Py fd Kkd’k 22 Jia
Xexp(iq'-p;;)exp(iG,, R;;) (8)

where q'=«x—«’, V is the volume of the crystal, and
G,, =K, —K,, is the separation vector of a pair of val-
leys.

The integral in Eq. (8) is the standard RKKY expres-

sion with an additional constant phase factor
exp(iG,,‘R;;). Integration of (8) yields
I(R;;) AFgg (z =2kpp)cos(G,,R;;) , 9)
where
J4am?m ”K} . (10

R

Here Fgry(z)=[sin(z)—zcos(z)]/z* is the Ruder-
man-Kittel function. The Fermi wave vector ky and the
interspin distance R;; present in the standard RKKY re-
sult are now replaced by reduced quantities kz and p
defined below:

2E; _ ki ki, ki,

2
# m, m

Kp= ,
(11
p*=R’m,+R}m +R}m, .

The reduced Fermi wave vector kp is related to the

half axes of the Fermi ellipsoids:

kFl . kF||

12" 172 "
1 m

(12)

KF=
m

Based on Egs. (11) and (12) the argument (z) of the
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Ruderman-Kittel function can be expressed as follows:
z=2kpp=2kpR 4, ,
where R ,,=(R2+R}+ AR} . (13)

Here kp, is given by Eq. (2).

One can see that the RKKY exchange integral [Eq. (9)]
is again described by the Ruderman-Kittel function
Frk(z). As a consequence of the anisotropic Fermi sur-
face the argument (z) of Fgx is now also anisotropic
causing the anisotropy of the exchange integral.

The result given by Egs. (9)-(13) was obtained assum-
ing that the main axes of the Fermi ellipsoids coincide
with the cubic cystallographic directions and the ellip-
soids are prolonged into the k,[001] direction. If this is
not the case one has to transform the result from the
coordinate system related to the main axes of the Fermi
ellipsoids to the cubic crystal axes within which the loca-
tion of spins is described. This can be done using a stan-
dard transformation matrix. As a result the expression
(13) for the argument of the Frg function will have a
modified form. In our case all the valleys prolonged into
the k, direction are in fact located as described above.
Due to the circular symmetry of the Fermi surface in the
k.-k, plane the specific choice of the k,,k, axes is not
important. In the case of ellipsoids prolonged into
k.[100] or k,[010] direction one can perform the trans-
formation with the following result:

2kpiR 4, R4 =(ARZ+R?+R)'? for case k,

z= (14a)
2kp\R 4y, R4, =(RI+ARI+R2)'* for case k, .

(14b)

The result (14a), (14b) has a simple interpretation. The
cases k, and k, are in fact equivalent to the k, one. The
role of “special” coordinate is played by x, y, or z de-
pending on the direction into which the ellipsoids are
prolonged. This very simple result is valid only in the
case of Fermi surfaces in the form of ellipsoids of revolu-
tion with the long axis prolonged along one of the [100]
directions.

The spectrum of different pairs of valleys (see Table I
and Fig. 2) also contains the pairs prolonged into two or-
thogonal directions. In this situation the expression (3)
cannot be reduced to the standard form [Egs. (8)—(10)]
via transformation of R and k space [Egs. (4)—(7)] and
calculations can only be performed numerically. We will
approximate these contributions by an arithmetic mean
value of two relevant parallel pairs [see Eq. (17b)].

In the simple case of one isotropic valley (n =n’) the
phase factor reduces to unity (G,,.=0) and the argument
z =2kpp=2krR, i.e., we have recovered the standard re-
sult of Ruderman and Kittel.

In the model case of one anisotropic valley the phase
factor is also not present (G,,.=0) but the result is gen-
erally anisotropic and equal to the results of model calcu-
lations of Baltensperger and de Graaf?! and Lara,
Moreira Xavier, and Taft.?2 The surface of equal interac-
tion [I(R;;)=const], which in the standard case is spher-
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ical, now has the form of an ellipsoid of revolution. The
prolonged axis of this ellipsoid coincides with the crystal
direction characterized by the small (i.e., m ) effective
mass.

In the case of one pair of isotropic valleys we have the
result obtained by Cullen, Callen, and Luther?® and Kit-
tel** for such a model situation:

I(R,-j)=2lo[1+COS(G12'RU)] 5 (15)

where I is the standard one-valley contribution given by
Egs. (9) and (10) in the isotropic case.

One can see that one pair of valleys generates 2° contri-
butions to the RKKY exchange integral: two (equal) in-
travalley terms I, and two (equal) intervalley terms
Iocos(Gyy R;;). The presence of the cosine factor in Eq.
(15) introduces additional short-range oscillations (usual-
ly kp <<G,) to the distance dependence of I(R ;).

Based on the analysis presented above one can con-
clude that in order to calculate the RKKY exchange in-
tegral in an N-valley system one has to take into account
N? terms, N of which are standard intravalley terms and
the rest originating from intervalley transitions. To per-
form actual calculations one has to analyze the location
of valleys in the Brillouin zone (i.e., the spectrum of sepa-
ration vectors G,,-) and the direction into which they are
prolonged.

The spectrum of all possible pairs of valleys in the case
of the = band of IV-VI semiconductors is presented in
Table I and Fig. 2. Due to the cubic symmetry of alloca-
tion the total number of different types of pairs is reduced
to five. There are 12 intravalley terms (/,). There are
two types of intervalley terms (I, and 7,) in which both
Fermi ellipsoids of the pair are parallel. They differ only
by different separation vectors (G). There are also two
types of intervalley terms of orthogonal pairs (75 and 1,).
The representative separation vectors of each term are
presented in Table I. Generally, every pair has its own
separation vector. Due to the highly symmetrical alloca-
tion of the valleys many of the separation vectors are the
same.

Using the equations derived above we can calculate the
interspin distance dependence of the RKKY exchange in-

TABLE I. The spectrum of pairs of energy valleys in the case
of the = band of IV-VI semiconductors.

Number of Representative

Term Type terms separation vector
Iy intravalley 12 G=0
=37
I intervalley 12 G= 2a (110}
parallel
=37
I intervalley 24 G= 2a [100]
parallel
=37
1 intervalley 48 G= yy [110]
orthogonal
_ 37
1y intervalley 48 " 4q (211]
orthogonal
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tegral both with and without the intervalley contribu-
tions. For the contribution of the pair n-n’ of I, type
(g=0,1,...,4) we have the following expression:

I'(R;;)= AI,cos(G,,R;;)exp(—R;; /A) . (16)

The factor exp(—R;; /) included in formula (16) takes
into account the effect of the reduction of the magnitude
of the RKKY interaction due to the short mean free path
of carriers (A).%

For all pairs of valleys in which both valleys are pro-
longed into the same direction (i) (i.e., in the case of
¢=0,1,2)

I,=Fggx(2kp R 4;), wherei=x, y, orz . (17a)

For all pairs of valleys in which the valleys are prolonged
into the two orthogonal directions (i) and (j) (i.e., for
g=3 and 4)

1, =3[ Fri (2kp R 4)+ Fri (2kp R ;)]

Lj=x,y,z; i7j . (17b)

The total exchange integral is given by the following
expression:

Itotal(Rij):Iintra(Rij)+Iimer(Rij) 4 (18)

where I;,,..(R;;) is the sum of all intravalley contribu-
tions and I, (R;;) is the sum of all intervalley terms.

In the next section we will also calculate the paramag-
netic Curie temperature (®) of a model IV-VI semimag-
netic crystal. For a randomly diluted magnetic system

the paramagnetic Curie temperature can be expressed as

ky®=2S(S+1)x 3 z,I(R,) , (19)

where z, is the number of neighbors on the nth crystal
shell and R, =a(n /2)'/? is the distance (in the fcc lattice)
to the spin located on the nth shell, x is the concentration
of magnetic ions, and S is the spin magnetic moment of
the magnetic impurities (S = for Mn?"). Equation (19)
includes the exchange interaction between the reference
spin and all the neighbors for which the coupling is not
negligible. Implementing (18) in (19) the paramagnetic
Curie temperature can also be expressed as a sum of two
parts: ®tota1=®intra+®inter'

IV. DISCUSSION AND CONCLUSIONS

The results of calculations of the interspin distance
dependence of the RKKY exchange integral according to
Eqgs. (16)-(18) are presented in Fig. 6. One can compare
the standard result [Fig. 6(a)] with the modification
caused by the anisotropy of the effective mass of carriers
[Fig. 6(b)] and the changes due to the intervalley terms
[Fig. 6(c)]. The numerical values presented in Figs. 6 and
7 were obtained for the Pbg,sSny,,Mng;Te alloy
(@a=6.33 A, m =1.7m, J,; =100 meV).® The mean free
path of carriers was assumed to be carrier concentration
independent and equal to A=10 A.% Calculating the ex-
change integral in the case of iso- and anisotropic bands
the effective mass of the density of states was kept the
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FIG. 6. The interspin distance dependence of the RKKY ex-
change integral in a model IV-VI semimagnetic alloy. (a) The
standard result (isotropic Fermi surface, intravalley electronic
transitions). (b) The modification caused by the anisotropy of
the Fermi surface (4 =m /m;=10). The total exchange in-
tegral (intra- plus intervalley processes, 4= 10).

same. The effect of the anisotropy of the Fermi surface
appears to be relatively small [Fig. 6(b)]. The exchange
integral, however, is anisotropic now and the spins
separated by the same distance but located along the
different crystallographic directions are coupled with
different strength. For all the equidistant spins located
on the cubically equivalent directions (e.g., 12 nearest
neighbors) the exchange interaction is the same. Because
the (N+ 1)th neighbors are located on a different direc-
tion than the Nth neighbors, the directional dependence
of the exchange integral may cause a nonmonotonic
dependence of the RKKY exchange interaction as a func-
tion of distance [Fig. 6(b)].

The effect of the intervalley terms is more significant.
Most of the magnetic neighbors are still ferromagnetical-
ly coupled to the reference spin. The role of antiferro-
magnetic couplings is, however, enhanced. For example,
the first antiferromagnetic coupling is observed for the
fourth neighbor instead of the ninth, as in the standard
case. Due to the presence of cos(G-R;;) factors the total
integral is anisotropic even in the case of an isotropic
E (k) relation.

The results of calculations of the paramagnetic Curie
temperature are presented in Fig. 7. In agreement with
the I(R) calculations the effect of anisotropic E (k) is
rather small. The effect of the intervalley terms is quite
large and it roughly amounts to about 30% reduction of
the value of ®. The bars presented on the plots in Fig. 7
present the effect caused by a shift of the top of the =
band by £10% from the assumed position (halfway from
the center of the zone to the K point). The position of the
top of the = band in the Brillouin zone determines the
separation vectors of the pairs of valleys and the period
of short-range oscillations. It influences, therefore, the
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FIG. 7. The carrier concentration dependence of the
paramagnetic Curie temperature of a model IV-VI semimagnet-
ic semiconductor (x=0.03). Line a, the standard result (isotro-
pic, intravalley). Line b, anisotropic Fermi surface, only intra-
valley electronic transitions. Line ¢, the total paramagnetic Cu-
rie temperature (anisotropic Fermi surface, intra- plus interval-
ley processes).

intervalley part of the paramagnetic Curie temperature
(®;ner) but has no effect on the main intravalley part of
0.

One can see that, despite the fact that the number of
intervalley terms contributing to the total exchange in-
tegral is about N=12 times larger than the number of in-
travalley contributions, the latter dominates the total in-
tegral. The physical reason of this effect is related to the
cos(G-R) factors multiplying every intervalley contribu-
tion. The resulting coupling between two spins is a sum
of a large number of different cosine terms partially can-
celing each other. In the case of calculations of the
paramagnetic Curie temperature an additional cancella-
tion effect is effective. Due to the small period of the
oscillations caused by the intervalley transitions
(T¢~1/G), the intervalley contributions have different
signs for different neighbors. One can expect the inter-
valley contribution to the paramagnetic Curie tempera-
ture to be very small if the period of RKKY oscillations
(Txp~1/kg) is much larger as compared to the period
related to the intervalley processes (Tg), i.e., kp <<G.
The additional condition is that the magnitude of the ex-
change interaction should decrease relatively slowly with
increasing distance providing an efficient cancellation of
the intervalley terms.

Finally, a few comments regarding some basic assump-
tions made in the present analysis must be made. We
have already mentioned the assumption that the s-d ex-
change integral is not dependent on the wave vectors
k,k’. The solution of this problem requires the theoreti-
cal analysis of the RKKY mechanism taking into ac-
count the realistic wave functions of the carriers and 3d°
electrons of Mn ions. One can expect a modification of
the model picture of the RKKY mechanism.?® To our
knowledge such calculations have not been performed
yet. There are two other effects expected to influence the
RKKY exchange integral. The first is an electron-
electron interaction influencing the susceptibility of the
electron gas and consequently the RKKY exchange in-
teraction.?* This effect was found to be very important
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in, e.g., diluted magnetic systems based on Pd.?’” This
system has an intermediate electron density; i.e., the
mean kinetic energy of electrons compares to the mean
potential energy. In our system the mean kinetic energy
is much larger than the mean potential energy of elec-
trons. This is due to the high dielectric constant which
shields the electron-electron interaction, leading to an
effective high density system for electronic response. The
characteristic r, value, i.e., the Wigner-Seitz volume ex-
pressed in units of effective Bohr radius, will be smaller
than unity for electron densities above p=10" cm>.
Therefore we expect that the exchange contribution to
the electronic susceptibility will be small.?®

The second effect is related to the rather small mean
free path of the carriers. The phenomenological ex-
ponential factor exp(—R /A) takes into account the de-
crease of the magnitude of the RKKY interaction. One
can also expect the range of the interaction to be re-
duced.?® However, even in the case of small mean free
path of carriers observed in IV-VI alloys, this effect is
also expected to be rather small.?*?°

In conclusion, we have investigated the RKKY ex-
change integral in the case of a model IV-VI semimagnet-
ic semiconductor with anisotropic many-valley structure
of the Fermi surface. The anisotropy of the Fermi sur-
face of these semiconductors induces an anisotropy of the
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RKKY exchange interaction. The exchange integral de-
pends not only on the interspin distance but also on the
crystallographic direction of the vector connecting the in-
teracting spins. The quantitative effect is, however, rath-
er small. In addition to the standard intravalley electron-
ic transitions we also found the intervalley processes to be
responsible for the indirect-exchange interaction. The
overall contribution, as measured by the paramagnetic
Curie temperature, is negative and equal to about 30% of
the total value of ®. The interspin distance dependence
of the exchange integral is significantly modified due to
the intervalley transitions in such a way that the role of
antiferromagnetic couplings is enhanced. It may have
important consequences for the low-temperature magnet-
ic properties of diluted magnetic alloys causing, e.g., the
existence of the spin-glass phase to be more likely.*
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