
PHYSICAL REVIEW B VOLUME 45, NUMBER 4 15 JANUARY 1992-II

Analytic dispersion relations near the I' point in strained zinc-blende crystals

Thomas B.Bahder
U.S. Army Laboratory Command, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783

(Received 28 May 1991)

An eight-band k-p model of the electronic states near the I point of a strained zinc-blende semicon-
ductor is renormalized using Lowdin perturbation theory. The renormalization leads to matrices of re-
duced dimensionality, 2X2, 4X4, and 2X2, for the conduction, light- and heavy-hole, and spin-orbit
split-off bands, respectively. The reduced dimensionality of these matrices allows us to obtain analytic
dispersion relations in the presence of small but arbitrary strains. Comparison of the analytic dispersion
relations is made to those obtained by numerically diagonalizing the eight-band model for the case of bi-
axially strained and unstrained GaAs.

I. INTRODUCTION

Energy bands in strained semiconductors, such as Si
and Ge, have been the subject of several theoretical inves-
tigations. ' More recently, the direct-gap semiconduc-
tors with zinc-blende structure, such as GaAs and GaP,
are attracting considerable attention because of their ap-
plications in the area of optoelectronic devices. Ener-
gy bands in strained semiconductors are frequently treat-
ed by k-p-type models, leading to matrices whose dimen-
sionality depends on the small point group of k (the ap-
propriate symmetry group at the critical point in the
Brillouin zone) and the number of bands that are includ-
ed in the model. ' For example, near the I point in the
Brillouin zone of a direct-gap zinc-blende semiconductor,
the band structure in the vicinity of the fundamental gap
is accurately described by an eight-band k p model,
whose basis states form basis functions for the Td double
group. "' This formulation includes effects resulting
from the lack of inversion symmetry but leads to 8X8
matrices which must be diagonalized numerically.

In this work we formulate a renormalization procedure
based on Lowdin perturbation theory' which allows one
to derive analytic dispersion relations in terms of the pa-
rameters in the original model. As a concrete example
we demonstrate this renormalization procedure using an
eight-band k.p model of the energy bands near the I
point of strained zinc-blende crystals. The model in-
cludes the conduction band, the (light- and heavy-hole)
valence bands, and spin-orbit split-off bands. Lowdin
perturbation theory is used to derive the 8X8 renormal-
ized interaction matrix, U=H+D, which describes the
band structure near the I point. The matrix H is essen-
tially the eight-band Kane model" and is independent of
strain, and D contains the strain interactions to first or-
der. We use Lowdin perturbation theory to perform a
second renormalization on the matrix U, leading to rna-
trices of smaller dimensions, 2X2, 4X4, and 2X2, for
the conduction, light- and heavy-hole, and spin-orbit
bands, respectively. These second-renormalized matrices
describe the band structure near the I point and are
functions of the material parameters that appear in the
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original eight-band model. The reduced dimensionality
of these matrices allows us to obtain analytic results for
electron dispersion relations near k=0, in the presence of
arbitrary strain. In what follows, we calculate these
second-renormalized matrices and the resulting disper-
sion relations for the conduction, light- and heavy-hole,
and spin-orbit bands. We then compare the accuracy of
the analytic results with that obtained by numerically di-
agonalizing the eight-band model for the case of a specific
material system.

II. SECOND RENORMALIZATION

1629

In the strained eight-band model the conduction-band
states at k=O form a basis for the I 6 irreducible repre-
sentation of the Tz double group. ' The states at k=O
for the light and heavy holes, and for the spin-orbit split-
off states, form a basis for the I 8 and I 7 irreducible rep-
resentations, respectively. See Ref. 9 for definitions of
these basis states. In this basis, the total Hamiltonian
matrix of the eight-band model is given by U=H+D,
where H is essentially the eight-band Kane model (in-
dependent of strain) and D is the strain interaction matrix
whose elements are linear in strain. The 8 X 8 matrices H
and D are given in Eqs. (Al) and (A6), respectively. The
matrix H depends on the modified Luttinger parameters,
y„y2, and y3 [which are functions of the Luttinger pa-
rameters' y, , y2, and y3; see Eq. (A3)j, the valence-
band —conduction-band mixing parameter Po, the mixing
with higher bands A ', and the energy gaps at k=Q (be-
tween the conduction and valence band, Eg=E, —E„,
and between the valence and spin-orbit band, b,). The
strain interaction matrix D depends on the deformation-
potential constants a', b', a, b, and d. The deformation-
potential constants a' and b' describe the coupling of the
conduction band to strain and a, b, and d are the Pikus
and Bir' ' deformation-potential constants describing
the coupling of the valence band to strain. See Ref. 9 for
precise definitions of these deformation-potential con-
stants.

We now perform a second Lowdin renormalization on
the matrix U. For the conduction band, we treat the I 6
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conduction-band states as class-A states and the I 8 and

r, basis states as class-B states. ' The second-
renormalized conduction-band matrix U,"," can then be
written as a sum of two 2 X 2 matrices,

Ucond U(o) + U
CC CC CC

where U,', .' describes the conduction band in the absence

of strain and U,",.' describes the renormalized strain in-

teractions, with matrix elements linear in strain com-
ponents. Third-order Lowdin renormalization leads to

U„=H„.+ +(0) Cn llC Cn &ill fl C

E K„„—„„(EH„„)(—E H„,„—, )

(2)

where the elements of U,', .' are correct to fourth order in

wave vector. ' The indices c and n refer to class- A and -B
states, respectively. Matrix elements H„and H„„are
second order in wave vector, while matrix elements that
connect class-A and -B states, H„„are linear in wave

vector. The second-renormalized strain interaction ma-
trix is given by

8
U,",.' =D„+g E—H„„E—H„„

strain. The above renormalization procedure is reason-
able for wide-gap semiconductors such as GaAs since, for
small wave vectors and small strain, the off-diagonal ele-
ments are small compared to the band gaps at' k=0,
~H, „~ &(~H„H—„„~. We linearize the eigenvalue prob-
lem for the conduction band by taking
E=(H»+H22)/2. Since the wave vector k and strain
e, are both small quantities, the matrix elements of U,","
are expanded in a power series in wave vector and strain
components. The conduction-band dispersion relations
are then found from the eigenvalues of the resulting 2 X 2
matrix. In order to carry out this renormalization pro-
cedure, a substantial amount of computation was re-
quired. A symbolic manipulation program known as
MATHEMATICA was used for much of the computation. '

For the light- and heavy-hole valence bands the
second-renormalized matrix is defined the same way as in
Eqs. (1)—(3) except that the I g states are taken as class-A
states and the I 6 and I 7 states are taken as class-B states.
In this latter case we take E =(H»+H44+H55
+Hs6)/4. The spin-orbit band is treated in an analogous
fashion.

III. CONDUCTION BAND

+
E —H„„

(3)

The dispersion relations for the conduction bands are
found from the eigenvalues of U,',,'" which can be written

as

where the elements of U,'," are correct to linear order in

strain and quadratic order in wave vector. The first term
in Eq. (3) represents the direct strain interactions among
the I 6 states and the second term represents the renor-
malization of the effective mass due to the presence of

E, =(E,' '+E,"')[1+(5e', '+5e', ")' ], (4)

where the quantities E,' ' and 5c', ' are independent of
strain and E,'" and 5c',"are linear in strain. These quan-

tities are given by' '

E+—', 6
E(0) E +k2 —'+ A +P2

—
—,'(k„+k ~k+„)P 0 (1+2y2+yi+2A ')+ I+yi+2A '+ Syq 1+

E ' 2(Eg+ 6) '
Eg

2PO 4PO
+(k,'k'+k'k, '+k,'k„'), (y2 y) 3y—3

2—A' —1)+ —
E E +Z (r —3r }

p2 E +—26
(y i+2 A '+ 1)+B

3(E +b, )

3E +2(b, b)—
E,'"=a'tr(e) ——', Pok tr(e) 2

+ +

p2
[k (e +e„)+k (e„+e }+k,(e„+e )] + +

+(k„k e„+k k,e, +k„k,e„, ) (b'B —2PO)(3E +26}+&3dPo 3+2 ~ 2

g g

'2

[k(kk+kk+kk ) —9kkk ]
BhP()

E (E +b)
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[e k„k (k„+k )+e„k„k (k„+k )+e& krak, (ky+k,')

—2k„k k, (e„k,+e,k„+e„,k» ) ] .

In Eq. (4} we have dropped second-order strain terms
under the square root. The signs + give the dispersion
for each of the two conduction bands. The coefficient of
k in E,' ' gives the conduction-band effective mass in the
absence of strain in terms of the material parameters in
the eight-band model and agrees with the result given by
Smith and Mailhiot. ' The bare-electron mass is modified
by terms proportional to Po, due to direct mixing with
valence bands, and is proportional to A' due to the cou-
pling of the conduction band to higher bands outside the
initial eight-dimensional manifold. Terms containing
quartic powers of wave vector are band nonparabolicity
terms resulting from band mixing with the valence band.
This mixing is of two types, direct mixing of conduction
and valence bands (the terms proportional to Po) and
mixing via intermediate states outside the original eight-
dimensional manifold (the terms proportional to POA').
The term in Eo ' containing k„k is a band warping term.
Just as the light- and heavy-hole bands are warped, so are
the conduction bands. However, here the conduction-
band warping is not due to degeneracy, as is the case with
the valence band. Instead, the warping results from mix-
ing with the valence band (terms proportional to Po) and
also from the lack of inversion symmetry (terms propor-
tional to 8). If inversion symmetry were present, the
terms proportional to 8 would be identically zero, i.e.,
5c.', '=0 and 5c,"'=0, and consequently the conduction-
band dispersion would be doubly degenerate and given by
E,' '+E,'". For the case of zero strain, Eq. (4) gives

2(5s', ')' for the splitting of the conduction bands which
is in agreement with the result obtained by Kane. " Note
that to the order of this calculation, the bands are doubly
degenerate along the k„, k, and k, directions. At finite
strain, the cubic symmetry of the crystal is generally bro-
ken and the conduction-band dispersions are modified by
a direct term proportional to a'tr(e) and by terms pro-
portional to Po which result from mixing with the
valence band.

In order to ascertain the effect and accuracy of the re-
normalization procedure, we compare the GaAs
conduction-band dispersion, obtained by numerical diag-
onalization of the eight-band model, with the analytic ex-
pression given in Eq. (4), for the cases of zero and finite
biaxial strain. Figure 1 shows a plot of the unstrained
and strained conduction band calculated by numerically
diagonalizing the eight-band model. We have introduced
the convenient length l0 =2.760 A, which renders
fi /nolo = 1 eV. (The X point in the Brillouin zone is ap-
proximately at k„lo =3.07.} Figure 2 shows the compar-
ison between the analytic dispersions in Eq. (4) and those
obtained numerically from the eight-band model. The
curve labeled H» shows a plot of the (1,1) element of H
(at zero strain) and represents the bare-electron disper-
sion. The curve labeled H»+D11 is a plot of the sum of
the (1,1) elements of H and D and takes into account the
energy shift due to the diagonal strain interaction. The
numerically calculated dispersion relations from the
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FIG. 1. The conduction band of GaAs, as calculated by nu-
merically diagonalizing the eight-band model, is shown for the
case of zero strain (solid line) and biaxial strain (dashed line)
(see Table I), along the (1,0,0) and (0,0,1) k-space directions.
The convenient length Io =2.760 A.

(1,0,0) Ik( 1.
FIG. 2. The analytic conduction-band dispersion relations

for GaAs (curves a and c) are compared with those calculated
by numerically diagonalizing the eight-band model (curves b
and d), for the unstrained (curves a and b) and biaxially strained
(curves c and d) cases. The curves labeled Hl& and Hl]+Dl]
show plots of the (1,1) matrix elements of H and H+D.
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eight-band model for the case of zero and finite biaxial
strain are given by curves b and d, respectively. Curves
a and c are plots of the analytic dispersion relations given
in Eq. (4} for the case of zero strain and finite biaxial
strain, respectively. The analytic expressions give a good
representation of the dispersion for the conduction band.

Note that the effective masses in curves a, b, c, and d are
significantly smaller than the bare-electron mass. Mixing
with the valence band is responsible for the reduced value
of the conduction-band effective mass. The parameter
values used for GaAs in the above plots are given in
Table I.

IV. VALENCE BAND

The above renormalization procedure leads to a renormalized valence-band matrix U„,&,„„=U'„,&,„„+U„",&,„„,where
the elements of U'„,~,„„are independent of strain and the elements of U„"„',„„are linear in strain. Both matrices have
the form

Uvalence

P Q+b-,
S+s

S*+s*
P+Q+b~

P+Q+b3 —S' —s',

—S—s, P —Q+b4

where the matrix elements s, s„ t, b„b2, b3, and b4 are linear in the parameter B (in the case of U'„,I,„„)and b' (in
the case of O'„',I,„„).If inversion symmetry were present in the unstrained crystal, the band parameter B and deforma-
tion potential b would both be identically zero. The renormalized Hamiltonian matrix U„,&,„„would then have 0&
symmetry, appropriate for Ge or Si. In most instances the splitting due to inversion symmetry is believed to be small.
For the case when B=b'=0, the renormalized valence-band matrix has the same symmetry as the Luttinger model and
leads to doubly degenerate bands. For this case the renormalized valence-band matrix leads to dispersion relations that
are given by

E„,=E„' '+E„"'+(Ek+Ek,+E, )'

where

(9)

+(kk+kk+kk ) + + + +
3E E E E

g g g g

(10}

TABLE l. Eight-band model parameters used for plots of GaAs band structure.

Band Parameters

3 1

6.98'
y2

2.25'
yL

2.88'
Ep (eV)

22.7'
Eg (eV)
1.5177

6 (eV)
0.341'

B
Qd

Deformation-Potential Constants (eV)

a'
—18.3'

b'
Qd 10'

b
—1.66'

d
—4.52

Strain (see Ref. 21)

exx

3.5X10
yy

3.5 X 10
ezz—3.2X 10

exy ex, eyz

'M. S. Skolnick, A. K. Jain, R. A. Stradling, J. Leotin, J. C. Ousset, and S. Askenazy, J. Phys. C 9, 2809

(1976).
L. R. Ram-Mohan, K. H. Yoo, and R. L. Aggarwal, Phys. Rev. B 38, 6151 (1988).

'Semiconductors, edited by O. Madelung, M. Schilz, and H. %eiss, Landolt-Bornstein, Numerical Data

and Functional Relations in Science and Technology Vol. 17 (Springer-Verlag, New York, 1982).
"Doubly degenerate case chosen.
'A. Blacha, H. Presting, and M. Cardona, Phys. Status Solidi B 126, 11 (1984).
Fit to data of M. Chandrasekar and F. Pollak, Phys Rev. B 15, 2127 (1977), assuming the value for
a'= —l8. 3 eV, as given in footnote e.



45 ANALYTIC DISPERSION RELATIONS NEAR THE I POINT. . . 1633

p2
E„'"=—a(e„„+e„+e„)+(e„k„+ek +e k ) 2+xx x fg g zz z 3E'g

r

+[(eyy+e )k +(e +e )k +(e +e )k ] +
3E,'

I 4PO 2&3dy3+(e,k k, +e k„k +e„,k„k, ) 3E

2by2

2I' 2 4

Ek=(k„ky+k, k, +kyk, )(y3 —y2) 3(y3+y2)+ +(k„+k +k, ) y2+ + (12)

b(3y2E +Po)
E„,= [lt tr(™e)—3(k„e„„+k~e~~+k,e„)]3E

—2 3d y3+ (e„k,k +e„,k„k, +e~,k~k, ),3E
(13)

and

Q2
E, = [(e„,—e~~) +(e„,—e„) +(e~~ —e„) ]S

a comparison of the analytic and numerical results for
the biaxially strained case, along (1,0,0) and {0,0,1) k-
space directions. Finally, Fig. 6 shows the same compar-
ison along the (1,1,1) direction.

(14} U. SPIN-ORBIT BAND

In Eq. (9), the term Ek depends only on wave vectors and

E, depends only on strain. The cross terms are contained
in Ek, and we have dropped terms in Ek, higher than erst
order in strain and second order in wave vector. In the
absence of strain the plus (minus) sign corresponds to the
heavy (light) hole.

En the limit of large valence —to-conduction-band gap,
E +&n, and la—rge spin-orbit band gap b~~, Eq. (9)
reproduces the results of Pikus and Sir, ' who used a Lut-
tinger model which does not include mixing with the con-
duction and spin-orbit bands (see Appendix B). Their ex-

pression does not contain the quartic wave vector and
band warping terins contained in Eq. (10). The Pikus-
Bir (PB) result contains only the coupling to hydrostatic
deformations, corresponding to the first term in Eq. {11).
When band mixing is included, the Pikus-Bir band con-
stants A p&, 8p&, and CpB are renormalized by terms pro-
portional to Po, 1/E, and 1/6, that result from band

mixing. Note, however, that the deformation-potential
constants a, b, and d are not renormalized when band
mixing is included.

Figure 3 shows the strained and unstrained hole bands
as calculated by numerically diagonalizing the eight-band
model. The characteristic effect of light mass along the
(1,0,0) direction and heavy mass along the (0,0, 1) direc-
tion can be seen in the strained (dashed) curves. Figure 4
shows a comparison of the analytic results (dashed
curves), given by Eq. (9), with those obtained by numeri-
cal diagonalization of the eight-band model (solid curves}
for the case of zero strain, along the (1,0,0) and (1,1,1) k-
space directions. The analytic results give a good ap-
proximation along the (1,0,0) direction for both the light
and heavy hole but the approximation is not as good
along the (1,1,1) direction for heavy hole. Figure 5 shows

where

(0,0,1)

0.2 0.1

E(k)
(eV)

0.1

(1,0,0)

-0.2

FIG. 3. The valence band of GaAs, as calculated by di-

agonalizing the eight-band model, is shown for the case of zero
strain (solid curves) and biaxial strain (dashed curves) along the

(1,0,0) and (0,0,1) k-space directions.

Using the above renormalization procedure, we calcu-
late the second-renormalized matrix for the spin-orbit
split-off band, U, , = U,',' + U,",', where the elements of
U,',' are correct to quadratic order in wave-vector com-
ponents and elements of U,",' are correct to linear terms
in strain and quadratic terms in wave vector. This leads
to dispersion relations given by

(15)
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(l, l, l)
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analytic
numerical

FIG. 4. The analytic dispersion relations (dotted curves) for
the valence band of unstrained GaAs are compared with those
calculated from the eight-band model by numerical diagonaliza-
tion (solid curves).

FIG. 6. The analytic dispersion relations for the valence
band of biaxially strained GaAs (dotted curves) are compared
with those calculated from the eight-band model by numerical
diagonalization (solid curves) along the (1,1,1) k-space direction.

E(0)
S.O.

71 0
P2

2 3(Eg+6)

2by2

+(e„~k„k +e,k~k, +e,k„k, )

g'P0
2 6I»2 2P0k' tr(e)+ + (e~„k„'+eye y+ z,"
4&3d y, 4P0 —28b '

3(Eg +5)

(16)

(17)

2 ~ 0 I(e„+e,)k +(e +e, )k +(e„,+e, )k, —2e„,e,k„k 2e„e,k„k,—2e„e„—,k k, ]' . (18)

(0,0,1)

0.2 0.1

E(k)

(ev)
0.1

(1,0,0)

0.2
Ikl I.

In the absence of strain, the mass of the spin-orbit
band is isotropic. When strain is present (e.g. , biaxial
strain), an asymmetry in the masses is introduced as a re-
sult of the strain, coming from E,",'. Figure 7 shows the
comparison of the dispersion relations given by the ana-
lytic expression in Eq. (15) and that observed by numeri-
cal diagonalization of the eight-band model, for the biaxi-
ally strained and unstrained cases.

VI. CONCLUSION

analytic
numerical

-0.25

\

1

l
l

FIG. 5. The analytic dispersions (dotted curves) for the

valence band of biaxially strained GaAs are compared with

those calculated from the eight-band model by numerical diago-

nalization (solid curves).

An eight-band model of energy bands in the vicinity of
k=0 is believed to give accurate dispersion relations in
the presence of small (but arbitrary) strain. Due to the
size of the SX8 matrix U=H+D, in general these rela-
tions must be calculated numerically. We have obtained
analytic approximations to the dispersion relations of the
eight-band model by performing a second Lowdin renor-
malization on the matrix U, to obtain "second-
renormalized matrices" of smaller dimensions, 2 X 2,
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E(k)

(eV) analytic
numerical

rained

unstrained

-0.15 -0.1 -0.05 0.05 0.1 0.15

(0,0,1)

+4

FIG. 7. The analytic spin-orbit split-off band dispersions for
GaAs (dotted curves) are compared with those calculated by nu-

merically diagonalizing the eight-band model for the unstrained
and biaxially strained cases.

I

I ~~ I+~ g o

o
4X4, and 2X2, for the conduction, light- and heavy-
hole, and spin-orbit bands, respectively. The reduced
dimensionality of these matrices allows us to obtain ana-
lytic dispersion relations for the conduction, light- and
heavy-hole, and spin-orbit bands, in the presence of a
small but arbitrary strain. Our primary results are given
by Eqs. (4)—(18). Comparison of the analytic dispersions
to those obtained by numerically diagonalizing the eight-
band model shows that the analytic dispersions give a
reasonable approximation near k =0.

Our results are appropriate for the zinc-blende group
of semiconductors which have a direct energy gap at
k=0 for which the small point group of k at k=0 is Td
(which lacks inversion symmetry). Our results in Eq.
(9)—(18) for the light- and heavy-hole and spin-orbit
bands apply equally well to the case of Si and Ge which
have 0& symmetry (and have inversion symmetry), if we
take 8 =b'=0 and PO=O. In the eight-band model we
simply neglect the conduction-band block. This leads to
a six-band model without a conduction band.

The renormalization scheme we have used is quite gen-
eral and consequently can be applied to other many-band
k-p models to derive analytic dispersion relations.

I

4" [ o gc,
(~

I

+
I

o 8
I
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+
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where

3 =E,+ A'+
2mo

(k„+k +k, ),

g2P= E„—+ —,'y, (k„+k +k, ),
Pl o

$2
P,k, , g =,'y, (k,'+ k,'—2k,'),

V= —Po(k, ik—
y ),1

6

3
R = — [y ~( k„k)—2i y

—~k„k j,
(A2) I4

W=i —Bk„k +, S=&3y, k, (k„ik—),

—Bk,(k„+ik ),1

6

Z =E„b ,'y i
—(k„—+—k +k, ) .

mo

+
~[CV

+ +

o
I

The constants y„y2, and y& are the modified Luttinger
parameters, and are the related to the parameters used by
Luttinger, ' y1, yz, and y&, by

+
oo 8 vag

EJ
y1 y1

y 2 3E +Q (A3)

1 E
y y 23E+Q

where the conduction- to valence-band gap
+

E =E,—E, (A4)

and the conduction-valence mixing parameter Ep is relat-
ed to the valence-band —conduction-band momentum ma-
trix element Po by

2mo
Ep — Po .

$2
(A5}

CO
c )

-~ O

In Eq. (16},the constant A' results from the interaction
of the I z conduction band with class-8 states (outside the
eight-dimensional manifold of class-A states). The ma-
trix H does not include the linear-k terms which have
been shown to be negligible for most purposes. "'

The matrix D is given by
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where

= ~ 1w=i b'e„, p=a(e„„+e +e„),
3

Et z
= —A pBk —a tr(e)+(ok +e„,+ c,, )'/2,

where

(k +k+k )+Cp (kk+kk+kk~),

(Bl)

t = —b'(e„, +ieY, ),1

6

1u= —Pope, k. ,
3

q=b[e„——,'(e„„+er )],
V3

r = b(e„„—e ) i—de„„, (A7)

b [(e„„—e~~) +(e„„—e„) +(e —e„)2]
(B2)

(B3)

v = —Pc g (e„i ie~/—)ki, s= d—(e„, ie,—),1

6

e =e„„+e„+E
The Pikus and Bir' deformation-potential constants a,

b, and d describe the coupling of the valence band to
strain while the constants a' and b' describe the coupling
of the conduction band to strain.

and

APB
L +2M fi fi

3 2' p 2mp

b&pa[3(k e +kyeyy+k e ) k tr(e)]

+2dDpa(e„k„k +e,k k, +e„,k„k, ) (B4)

(BS)

APPENDIX B: COMPARISON WITH PIKUS AND BIR
L —M~»

3 p

(B6)

Pikus and Bir have derived dispersion relations for the
valence band appropriate for Os group symmetry (the
case of Si and Ge). ' They used a Luttinger model with
strain interactions, and assumed that the spin-orbit split-
ting 5 and the conduction-band —valence-band gap E
were arbitrarily large, so that there is no mixing of the
valence bands with the conduction or spin-orbit bands.
They found that the two doubly degenerate bands can be
given as (with energy taken to be negative)

NDpa-
v 3 PPlp

B7)

2 2 2 ~ L2 L2
Cpa =DpB 3Bpa =3 [(7 3 ) (y2 ) ] . (B8)

mp

The parameters y&, yz, and y3 are the Luttinger parame-
ters and A», 8PB, D», and C» are the Pikus-Bir band
parameters. '
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