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Nonlinear lattice-relaxation process of excitons in quasi-one-dimensional
halogen-bridged mixed-valence metal complexes: Self-trapping, solitons, and polarons
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Self-trapped excitons, solitons, and polarons of a one-dimensional extended Peierls-Hubbard model
are investigated, in order to clarify the lattice-relaxation paths of photogenerated excitons in halogen-
bridged mixed-valence metal complexes. This theory takes into account the lattice distortion of halogen
ions in a direction perpendicular to the chain, as well as in a parallel direction. It is mainly based on the
adiabatic approximation for phonons and the mean-field theory for interelectronic interactions, but is

also reinforced by taking into account the electron-hole correlation to obtain the exciton. Potential sur-

faces relevant to the relaxation of the exciton are clarified in terms of various nonlinear excitations. This
result can explain rather diverse experiments from a unified point of view, such as photoabsorption and
luminescence spectra, the Stark e8'ect, and electron-spin-resonance data. The origin of the photoinduced
absorption is concluded to be polarons.

ethylamine (etn), or cyclohexanediamine. These AA's
are bound together through the counterions (=1"s),
where Yis C104 or BF4 . The 7's bring about a weak
interchain interaction, and contribute to the stability of
the HMMC chain. The essential factor that determines
the electronic properties of the HMMC is the strong cou-
pling between an unpaired electron in the d ~ orbital of
M + and the vibrational modes (or phonon) of the X
(the z axis is parallel to the chain). This strong coupling
brings about various nonlinear phenomena in the lattice-
relaxation process of the exciton.

Let us briefly consider the photogeneration of an exci-
ton and its associated relaxation processes. As is well
known, the one-dimensional metallic state for the elec-
trons is unstable against the strong electron-phonon (e-
ph) interaction, and it results in the Peierls transition. '

In case of HMMC, it has been confirmed by various ex-
periments that the charge transfer occurs between two
neighboring M's so as to give the following mixed-valence
state:

I. INTRODUCTION

M+(3+5)M+(3+v) R \ % 'R RJm ~ w w m m J w m n w w J

Theoretical" ' and experimental ' problems re-
lated to the nonlinear lattice-relaxation process of an ex-
citon in quasi-one-dimensional charge-density-wave
(CDW) states have been subjects of considerable interest
in recent years. The CDW is quite an exotic insulating
state, because photogenerated excitons proliferate during
lattice relaxation. The word "nonlinear" is introduced so
as to emphasize this characteristic feature, as compared
with the ordinary insulators. In this paper, we will be
concerned with the nonlinear lattice relaxation of an exci-
ton in halogen-bridged mixed-valence metal complexes
(HMMC's), as typical examples for quasi-one-
dimensional CDW states.

The HMMC is composed of transition-metal ions
M +( —=Pt +, Pd +, Ni +) bridged by halogen ions
X (=Cl,Br,I ), as schematically shown in Fig. l.
M + is coordinated by a ligand ( = A A ), where A A is a
planer organic molecule such as ethylenediamine (en),

I
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where the J 's have been distorted with a periodicity
which is twice the period of the original lattice. 6
denotes the degree of charge transfer.

This is nothing but the CDW state, which is doubly de-
generate according to the two possible phases of the
Peierls distortion, as seen above. In this CDW state, the
d 2 electrons are influenced by the potential energy as
schematically shown in Fig. 2(a). Because of the electro-
static repulsion ofX, the d 2 orbitals become alternately
higher and lower as the X approaches or leaves the
neighboring M +.

The HMMC has a strong light absorption band in the
visible region, corresponding to the charge-transfer (CT)
excitation of an electron from the occupied d 2 orbital to
vacant ones, as shown in Fig. 2(b). Thus an electron and
a hole are created, and they attract each other through
the interorbital Coulombic force. Such a state is usually
called a CT exciton.

Because of this backward charge transfer, however, the
electron number per orbital becomes almost equal in this
region, and the Peierls distortion has lost the reason for
its presence. Hence, it therefore tends to disappear, as
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seen from Fig. 2(c). Thus the exciton self-induces a local
lattice distortion, and is trapped in it. This is usually
called a self-trapped exciton (STE).

Even in the case of ordinary insulators. The STE ap-
pears after the lattice relaxation, provided that the exci-
ton couples strongly with the phonons. In that case,
however, the STE is the end result of the lattice relaxa-
tion. In the case of the CDW considered here, the STE is
not the lowest excited state, and will undergo further re-
laxations, which come from the twofold degeneracy of
the ground state. In the CDW, as is well known, we have
a low-lying excited state with a collective nature. That is,
one phase of the ground state can appear locally in the
other phase of the ground state at the expense of creating
boundaries between the two phases. This boundary is
usually called a soliton, and the exciton is expected to
finally relax down to the state with a pair of solitons, as
shown in Fig. 2(d). In contrast to the case of single
charge transfer, a great number of charges have been
transferred to cause this pair state to appear, and this is
nothing but a nonlinear lattice relaxation of the exciton.

(a) GROUND STATE OF CDW

r i r

(b) CT EXCITON

r ~ ~ ~ r
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I I

FIG. 2. Schematical potential energy for the d 2 electrons:
L

(a) the ground state of CDW, (b) the CT exciton, (c) the STE, (d)
the solitons. Small arrows correspond to the electron with each
spin.

AA AA AA AAW YM WYW WYW

FIG. 1. Schematic structure of HMMC. M'+ =Pt'+, Pd +,
or Ni +. X =Cl, Br, or I . AA and Ydenote a ligand and
a counterion, respectively.

Let us briefly survey the experimental studies for
the relaxation process of the exciton in
[Pt(en)2][Pt(en)2C12](C104)4, which is typical HMMC.
Hereafter, we wi11 call it the "Pt-Cl complex. "

Wada et al. have observed a strong light absorption
band of the Pt-Cl complex in the visible region, which
corresponds to the aforementioned CT exciton, and its
peak energy is 2.7 eV. Recently, Wada et al. also deter-
mined the binding energy of the exciton, using electric-
field effects, and this energy turned out to be 20—30%%uo of
the free-electron-hole pair excitation energy. This result
indicates that the strong electron-hole correlation must
be accounted for in a theoretical description of this
HMMC.

Luminescence spectra from the STE have been ob-
tained by Tanino and Kobayashi and Tanaka et al.
Their energy is 1.2 eV, being 45% of the exciton energy.
Such a large Stokes shift indicates that the e-ph coupling
is strong in this material. The luminescence lifetime has
also been determined to be about 100 ps. ' This is excep-
tionally short compared with the lifetime of STE s in or-
dinary insulators, such as alkali halides, for which it is
about 10 s. This means that the STE is not the final
state of lattice relaxation, but there are lower-lying excit-
ed states intrinsic to the CDW.

In connection with such low-lying excited states, Kuri-
ta and co-workers have recently found that two extra
light absorption bands appear in the energy-gap region of
the CDW, when the CT band is excited by an intense
laser light. ' These photoinduced absorption bands are
called the A and B bands, and their respective peak ener-
gies are 70%%uo and 80% of the exciton energy. More re-
cently, two other bands C and D have been also found. C
is 15% (Ref. 10) and D is more than 80% (Ref. 11) of the
exciton energy. In addition to this photoinduced absorp-
tion. Kurita and co-workers found that the intensity of
the electron spin resonance (ESR) signal increases as
these bands develop. Thus the origin of these bands is
concluded to have a spin. From the analysis of its ESR
signal, very recently, Kuroda et al. have proposed that
the spin is localized only within two metallic sites. '

Our main purpose in the present paper is to clarify
these eight rather diverse experiments from a unified
theoretical point of view. In our previous theoretical
works, ' ' the exciton effect in the final state of the opti-
cal transition was not fully taken into account. More-
over, for the displacement of X, only the component
longitudinal to the chain axis had been considered. Re-
cently, however, Degiorigi et a/. ' have found from in-
frared measurements that the force constant of the X
vibrations transverse to the chain axis is an order of mag-
nitude smaller than the longitudinal ones. Furthermore,
Yamashita and Toriumi' have recently synthesized a
material that has a transverse displacernent even in its
ground state. Thus we are no longer justified in neglect-
ing the transverse movements of X during the relaxa-
tion process.

Mishima and Nasu' ' have also studied this exciton
problem theoretically. In their theory, however, the fina
state of the optical transition is not an exciton, but a
free-electron-hole pair. For this reason, the exciton effect
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has been left unsolved despite its importance.
Therefore, in this paper, we will introduce a model that

takes into consideration both longitudinal and transverse
movements of X, as well as excitonic effects. With this
model, we will clarify the nonlinear lattice relaxation of
the exciton.

II. SIX-PARAMETER MODEL

and
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l, cr 1

++S(0g(q( —q(~, )n( + U g n( n(p
l, o

+V g n(n(+I
l, o, o'

H(:— VS(co—,y Iq J(l(n( +n( ( l )+co( g—q((l2
l, cr 1

V T J glqj( l(a( a( —(, +H. c. )

+XF(q»q, , ( ,)-
1

(3)

In these equations, alt is the creation operator of the
electron localized at metallic site I with spin a ( =a,P),
and T is the transfer energy between neighboring two d 2

orbitals. ql is the dimensionless coordinate of the longi-
tudinal displacement of X, and m is the energy of this
phonon mode. Its kinetic energy is neglected under the
adiabatic approximation. S is the site-diagonal e-ph cou-
pling energy. U and V denote the intrasite and intersite
Coulombic repulsive energies, respectively.

H~ in Eq. (l) is associated with transverse movements.
As we mentioned before, this part will become important
even in the ground state in some HMMC's. Throughout
this paper, however, we assume that it plays its role only
after the exciton has separated into an electron and a
hole, because it is only the electron that repels the X
q~l is the dimensionless coordinate of this displacement at
the site l with the energy co&. We consider the following
two kinds of effects coming from this movement.

The first effect is the diagonal coupling between excess
electrons and this transverse motion. When more than
two electrons are on the two neighboring M's, the X be-
tween them will move away from the chain, so as to de-
crease the Coulombic repulsion. S~ denotes the energy-
lowering constant of this movement. Since this motion
has even parity, the e-ph interaction should be propor-
tional to q» for very small displacements. However,
when the displacement is large enough, it is expected to
be proportional to ~qj(~. Since we only consider the equi-
librium configuration with a relatively large displace-

Let us now introduce a model Hamiltonian (I) to de-

scribe the nonlinear lattice-relaxation process of the exci-
ton in the HMMC. I is given as (fi= 1 )

H =Hl~+H

where

ment, we can assume this e-ph coupling to be proportion-
al to iq„i.

The second effect of H~ is an increase in transfer ener-

gy. When X lies on the chain axis, d & electrons are
influenced by a potential barrier coming from the repul-
sion of X, as schematically shown in Fig. 3. The
transfer energy T in Eq. (2) is nothing but the tunneling
through this barrier. However, under transverse dis-
placement, the barrier decreases and it results in an in-
creased transfer energy. We assume that this increase is
proportional to ~q»~ for the reason given above. T'
denotes its proportionality constant.

The last term of Eq. (3) and the function F in it are in-
troduced so as to make the two neighboring X 's move
in opposite directions, as indicated in Fig. 1. We assume
F(q»q j (, ) is the following function:

0 for q~lqj 1 &
~0,

(4)
gqilqj. ,l-i for qilqi, l-i »

where g is a positive constant of the order of unity.
As one can easily infer, Eq. (3) can produce a uniform

increase in the transfer energy. However, we exclude this
uniform change because it is already taken into account
as a parameter T in H~~. In order to exclude this effect,
we use the q j 1 generated by the following equation:

l)( N

q» qJ.I ~ X ( l ) qj.('
1'=

&

where q~l is a number that is determined to minimize the
total energy, and N is the total number of the sites.

Introducing dimensionless coordinates

Q([ = (~~~)'—"q(f Q(l—:(~!.~~(.)'"qj.()
we obtain a convenient form for the Hamiltonian, which
contains six parameters: T, U, V, S, S~, and T'. The
value of T has been calculated within the Huckel theory
by Whangbo and Forshee, and it is about 1 eV. There-
fore, using the remaining five parameters U, V, S, S~, and
T', we will systematically investigate the aforementioned
eight experiments.

Let us now explain our method to calculate the ground
and excited states. In the case of the ground state, we use
mean-field theory for interelectronic interactions and the
adiabatic approximation for phonons. Within mean-field

FIG. 3. Schematical pseudopotential for the d 2 electrons as
Z

a function of the transverse displacement of X . Solid line,
without displacement; dashed line, with displacement.
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theory, we can approximate H by the mean-field Hamil-
tonian (=HHz), in which n«and (al+i a«) are re-
placed by their averages so that

nl ~(nl ) (al+i, al ) (al+i, al

These (nl ) and (al+, al ) are unknown parameters to
be determined self-consistently. By diagonalizing this
HHF, we can obtain energies of the ground and excited
states. In order to take into account the electron-hole
correlation in the excited states, we define the difference
(=hH—) between the mean-field Hainiltonian HHP and
the true one H as

FREE EXCITON
CONTINUUM

2

(3
K
LLIz
LU 1--

0
0

U/T = 1.43, V/T = 0.79, S/T = 0.29

0.5 1.5

STE 1S

TRlPLET ~

hH =H —HHF, (6)

and diagonalize it within the basis set of the one-electron
excited states obtained from HHF. This is first-order per-
turbation theory. Then, we can determine the new ener-
gies of excited states and their wave functions, including
the exciton.

By working this process out for various lattice
configurations, we can obtain adiabatic potential-energy
surfaces. In numerical calculations, we use a ring that
consists of 200 lattice sites occupied by 200 electrons. All
the energies are normalized by T( = 1 eV).

Our way of thinking, in the present paper, is the pa-
rameter theory. That is, we will clarify results of the
aforementioned eight experiments by using the five ad-
justable parameters U, V, S, S~, and T'.

III. RESULTS AND DISCUSSION

First, let us consider the lattice relaxation from the free
exciton to the STE. To describe this type of relaxation,
we use the following variational function for Ql, which is
the same as that introduced by Mishima and Nasu, '

Ql =( —1)'Q I 1+b,g [tanh0( I
t

~ )
—1]],

where ( —1)'Q denotes the Peierls distortion in the CDW
state, and this Q should be determined beforehand within
mean-field theory. The curly brackets [

.
] denote the

local lattice displacement from this ground state. b,g is
its amplitude and 0 corresponds to its reciprocal width.

Let us now determine the three parameters U/T, V/T,
and S/T. Setting U/T = 1.43, V /T =0.79, and
S/T =0.29, we can reproduce the three experimental re-
sults: the excitation energy of the free-electron-hole pair,
the binding energy of the free exciton, and the energy of
the luminescence from STE. We shall use these parame-
ters later, and calculate the potential surface, which has
not been obtained by experiments to date.

The calculated results and the adiabatic potential-
energy surface are shown in Fig. 4, as a function of b, g.
In this figure, 9 is determined to minimize the energy of
the first excited state ( =E„,). All the energies are refer-
enced relative to the ground-state one, and this conven-
tion is used hereafter. The transverse displacement does
not appear at this stage, because the electron and the hole
are not yet sufficiently apart from each other.

The solid line in Fig. 4 is the case of the singlet excita-
tion, and its E, has the local minimum at around

b,g=1.6. In this configuration, the calculation shows
that 2S and the 2P states also remain as bound states, as
shown in the figure. The charge- and spin-density profiles
around the STE are shown in Fig. 5. We can see that a
spin-density-wave state has appeared at these five metal-
lic sites. The dashed line in Fig. 4 denotes the triplet ex-
citon. When Eg =0, the singlet and the triplet are de-
generate, because the exchange interaction becomes zero
in our model Hamiltonian H. As b, g increases from
zero, however, the triplet shifts off from the singlet. It
takes the energy minimum at around Ag =2, and it is
larger than that of the singlet.

As mentioned before, the STE in HMMC is expected
to decay into the soliton pair. Next, let us study this
channel, using the following variational function for Ql

..

Ql =( —1)'Q [1+6,g [tanh0( I 1~
—lo/2) —1]], (8)

where 0 corresponds to the reciprocal width of a soliton,
and lp denotes the intersoliton distance. When 10=0,
this pattern just corresponds to the STE-type local lattice
distortion, Eq. (7). On the other hand, when /0))1 and
b, g =1, the phase of the Peierls distortion is completely
inverted in the region —lo/2 (1 (lo/2, which corre-
sponds to the soliton-antisoliton pair.

The adiabatic potential-energy surface calculated using
this type Ql as a function of lo is shown in Fig. 6,
wherein 8 and hg are determined to minimize E„,. Ac-
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FIG. 5. Charge- and spin-density profiles of the STE.

FIG. 4. Adiabatic potential-energy surface from the CT exci-
ton to the STE as a function of b, Q. 8 is determined to mini-
mize E I. The solid line is singlet, and the dashed line is triplet.
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cording to the results of numerical calculations, the first
excited state, in the region 10))1, is a pair of spin soli-
tons, while the ground, second, and third excited states
are pairs of charged solitons. The widths of these soli-
tons are about 6 in units of the lattice constant.

As seen from Fig. 6, the singlet STE has three possible
relaxation channels. Since the barrier between the STE
and the spin-soliton pair is only about 0.1 eV, the singlet
STE is expected to decay into spin solitons (lowest excit-
ed state) through the tunneling process under the barrier
or through the thermal activation process over the bar-
rier. On the other hand, it is also seen that the singlet
STE will decay into the charged soliton pair, or return to
the CDW ground state. It is a nonradiative process
through this barrier region. Because of these three decay
channels, the lifetime of the STE is expected to be short.
These calculated potential surfaces are qualitatively con-
sistent with the observed lifetime of the STE. '

From the dashed line in Fig. 6, it can be seen that the
triplet STE is unstable, since there is no barrier between
the triplet STE and the soliton pair. Incidentally, the en-
ergy barrier for the intersite hopping motion of this soli-
ton is about 10 meV.

If a soliton pair is generated, we can expect to get addi-
tional light absorption bands due to this soliton, as indi-
cated by the arrows in Fig. 6. The energy of the main ab-
sorption band is about one-half of the energy of the CT
exciton, and it does not correspond to any of the A, B, C,
or D bands. We have also taken into account the effects
of the transverse displacement on the charged solitons.
However, since the positive soliton is not affected by this
displacement, the absorption band around the half of the
exciton energy remains unchanged. Therefore, it can be
concluded that the origin of the photoinduced absorption
bands is not solitons.

Next, let us see the relaxation from the STE to a pair
of polarons. As for the polaron-type displacements QI,
we use the following variational function:

Q~ =(—1)'Q I 1+[kg+ sgn(l)hg ]

X [tanh0(1111 1 c/21) —I]],

INTERSOLITON DISTANCE 2p

FIG. 6. Adiabatic potential-energy surface from the STE to
the solitons as a function of lo. b, Q and I9 are determined to
minimize E„&.
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FIG. 7. Adiabatic potentia1-energy surface from the STE to
the polarons as a function of 10. EQ and 8 are determined to
minimize E l.

where 0 corresponds to the reciprocal width of a polaron,
and Io denotes the interpolaron distance. (b Q+hg )

gives the amplitude of the local displacement in the right
half (I &0) or the left half (l &0) of the chain. When
10=0 and bg =0, this pattern is just the STE-type local
lattice distortion, Eq. (7).

In Fig. 7, we show the adiabatic potential-energy sur-
face as a function of lo, while 0 and Eg are determined to
minimize E„,. b,g is fixed to zero, which is the case of
two symmetric polarons. In the region l0 ))1, the second
excited state is a distant pair of polarons, while the first
excited state is irrelevant since it returns to the STE when
b, g is introduced. The width of this polaron is g in
units of the lattice constant.

When such a higher-energy state of the STE as the 2P
state or the electron-hole continuum is excited, it will re-
lax down to a pair of polarons, since this potential surface
has a dissociative nature, as seen from Fig. 7. We can see
a very small barrier at around l0=20, which comes from
the small overlap between two polarons. Because of this
barrier, once the polaron is created, it becomes stable at
low temperatures. Incidentally, we have also calculated
the potential barrier for a polaron to hop between sites,
and it is about 10 meV. Hence the polaron is pinned at
low temperatures.

For the case of the hole polaron, the lattice relaxation
terminates up to this state. On the other hand, for the
electron polaron, it will relax further, because, as we have
explained before, an excess electron induces the trans-
verse movements of X . Let us consider this effect in
connection with the photoinduced absorption.

Figure 8 shows various excitation energies from the
electron polaron. In this calculation, the total number of
electrons was 201, and qj& in Eq. (5) was determined to
minimize the total energy. On the left-hand side of this
figure, we show the experimental energies of the A, B, C,
and D bands. The middle of this figure is the theoretical
result without H~, and corresponds to the case of the
hole polaron. We can see that the hole polaron cannot
give the A and B bands, as far as we use the aforemen-
tioned values for U, V, and S, which can reproduce the
energy of the free-electron-hole pair, the binding energy
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FIG. 8. Excitation energies from the electron polaron. SITE NUMBER

of exciton, and the luminescence. On the right-hand side,
we show the excitation energies from the electron pola-
ron, fixing S~/T and T'/T at 1.16 and 0.2, respectively.
As we mentioned before, H~ with these values of S~ and
T' influences neither the ground state nor the excited
states, provided they have no localized excess electron.
We can see from this figure that the two excitation ener-
gies shift towards the experimental values. The total
spectrum is given by the superposition of the electron and
hole polaron. Thus we can conclude that the excitation
energies calculated here correspond to the A, 8, C, and D
bands.

Figure 9 shows the spin distribution of the electron po-
laron. Figure 9(a) is the case without Hj, that is, the case
of the hole polaron. The effects of H~ are shown in Fig.
9(b) and 9(c). Due to the site-diagonal part of H~, the ex-
cess electron is trapped more strongly than the hole pola-
ron, as shown in Fig. 9(b). Further, due to the effects of
the site-off-diagonal part of H~, a bonding state of the ex-
cess electron is created between two metals. Consequent-
ly, the spin distribution changes from the one-center type
to the two-center one, as shown in Fig. 9(c). This strong-
ly localized spin distribution is consistent with the ESR
experiment.

Thus, with use of only five adjustable parameters, we
have developed a unified picture that can clarify the re-
sults of eight rather diverse experiments. That is, the ex-
citation energy of the free-electron-hole pair, the binding
energy of the exciton, the luminescence, the four photoin-
duced absorption bands, and the ESR experiments.

Incidentally, the luminescence from the STE is expect-
ed to polarize mainly in the parallel direction. Because of
H~, however, we can also expect to get a small perpendic-

FIG. 9. Spin-density profile of the electron polaron.

ular component of luminescence. Wada ' has already ob-
served such a component, and it is consistent to the
present model.

IV. CONCLUSION

We have examined nonlinear lattice-relaxation process-
es of the exciton in HMMC's, using the extended Peierls-
Hubbard model. This model takes into account not only
the longitudinal lattice distortion of the X but also the
component of motion transverse to the chain axis. The
effect of strong electron-hole correlation beyond mean-
field theory has also been taken into account, and the adi-
abatic potential-energy surfaces relevant to the relaxation
of the exciton have been determined. Eight rather
diverse experimental phenomena has been clarified sys-
ternatically from a unified theoretical point of view. It is
concluded that the origin of the photoinduced absorption
bands is the electron polaron and the hole polaron.
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