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Despite the fact that the CBLM relies o a topological
approximation that replaces the real crystal lattice with a
Cawley tree, this approach has the great advantage that
it includes SRO explicitly in the calculation of the elec-
tronic spectrum and internal energy. Contrary to the
TB-GPM-CPA calculations, ' the effect of charge-
transfer on SRO is taken into account, a contribution
which has been shown by Robbins and Falicov" to be of
consequence in the variation of energy with SRO. But
perhaps the most interesting aspect of this approach is
that the study of SRO can be extended to topologically
disordered systems, such as amorphous or liquid materi-
als, using the scalar cluster-Bethe-lattice approxima-
tion. ' Thus it allows one to treat on the same footing the
solid and the liquid part of the phase diagram due to the
same level of approximation used in both calculations.
This is in fact a necessary condition for the study of equi-
librium between liquids and compounds or solid solu-
tions.

In this paper we have focused our attention on the rela-
tively complex Ni-Al system which is of both theoretical
and technological importance. Sigli and Sanchez' have
shown that a CVM treatment using effective-pair interac-
tions (EPI) determined from available thermochemical
data was able to give a good representation of the phase
diagram. Our purpose is thus to calculate these
effective-pair interactions using more elaborate
quantum-mechanical calculations. In a previous paper, '

calculations of the electronic structure of Ni-Al com-
pounds and the subsequent study of hybridization effects
on thermodynamic properties have been presented in the
framework of a tight-binding approximation coupled
with CBLM. EPI have been extracted, using that alloy
energy could be well represented by a function consisting
of a nonlocal term describing the energy of the random
alloy and an ordering term given by concentration-
dependent EPI. Their manifestation on the phase dia-
gram determination via the tetrahedron approximation of
the CVM is now presented.

The paper is organized as follows. In Secs. II and III
we present a brief review of the quantum- and statistical-
mechanical approaches used in our calculations. In Sec.

In the past decade, it has been a goal to combine at a
high level of accuracy both quantum-mechanical and
statistical-ther modynamical contributions to obtain a
theoretical knowledge of the phase diagrams. One of the
most efficient statistical-mechanics techniques is the
cluster-variational method' (CVM), which provides a
good description of the free energy as a function of
short-range order (SRO). The CVM requires, as input,
interaction parameters that determine ordering or clus-
tering reactions occurring in the alloy systems. These in-
teractions must be defined carefully and then obtained by
means of quantum-mechanical calculations. The realiza-
tion that these interactions can be derived from electron-
ic band-structure calculations has initiated extensive
research in this field. At the present time, two ap-
proaches are available for such calculations. The first
one is the so-called Connolly-Williams and the closely
related c.G, approach; in this approach it is assumed that
the total energy can be written as a sum of configuration-
independent many-body interaction potentials multiplied
by the multisite correlation functions. The sum runs over
all the cluster types and in practice, it requires the ex-
istence of a maximum cluster beyond which the many-
body interactions are supposed to be negligible. In the
second approach, the energy of the completely disordered
solid solution is calculated by the coherent-potential ap-
proximation (CPA). The effective-cluster interactions
are calculated by the embedded-cluster method or by the
generalized perturbation method (GPM) using a pertur-
bative treatment about the completely disordered state.
In this case, the ordering energies can be written as an ex-
pression in terms of concentration-dependent nth-order
effective-cluster interactions. The GPM can be
developed with the first-principles multiple-scattering for-
malism of the Korringa-Kohn-Rostoker coherent-
potential approximation, or more simply in the frame-
work of the tight-binding approximation (TBA). At this
level of approximation, let us also mention the alternative
approach proposed by Robbins and Falicov and which is
called the alloy cluster-Bethe-lattice method (CBLM).

Tight-binding electronic band-structure calculations were combined with a free-energy expression
given by the cluster-variation method. The e6'ective pair interactions used in the cluster-variation
method were evaluated by the cluster-Bethe-lattice method. They are restricted to the first-nearest
neighbors in fcc-based structures and to first- and second-nearest neighbors in bcc-based structures; s
and d orbitals have been used for Ni, while s and p orbitals were included for Al. The phase diagram has
been constructed incorporating both fcc and bcc lattices and the occurring ordered compounds. The
liquid part has been evaluated using the same Hamiltonian, chemical short-range order being calculated
in an isotropic environment. The calculated diagram agrees reasonably well with the one determined ex-

perimentally.

I. INTRODUCTION n
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IV we present the results of the calculations for the Ni-Al
system and compare them with the available experimen-
tal data.

II. MODEL

A. The tight-binding bond model

As shown by Robbins and Falicov' the electron-electron
and ion-ion intersite interactions can be written as

E;',"'„";„E,'","—'= —V(Z/2) g xJ Q IIJ(ntnJ nt nJ )
I J

The main assumptions of the model used by Nguyen
Manh et al. Pasturel, Nguyen Manh, and Mayou, '

and more recently by Colinet, Bessoud, and Pasturel' to
calculate the electronic properties of T-Al compounds are
briefly reviewed here. We choose as the Hamiltonian a
tight-binding Hartree model with intersite and intrasite
electron-electron Coulomb interactions, neglecting the
magnetic interactions,

+Hion-ion He-e

fp, Jv

The first two terms represent the one-electron Hamil-
tonian H„, incorporating the effective potential from the
ions and other valence electrons. H, , is a correction for
counting the electron-electron interaction in H„ twice
and H;,„;,„represents the ion-ion interaction. In this ex-
pression, I ip ) is the ket for the orbital p on site i, the
on-site and hopping energies E;„and t;„give, respec-
tively, the effective atomic energy of the p orbital on site i
and its coupling to the orbital v on site j.

In our calculations we assume that the on-site and hop-
ping energies, i.e., E;„and t;„, depend only on the
species of atom at the relevant sites and in the case of
hopping parameters, the relative positions of the sites

where V denotes the nearest-neighbor contribution to the
average intersite potential per transferred electron,
An~ = n~ —

n~ is the charge transfer to species I, Z is the
coordination number, and P~J describes the pair probabil-
ities.

B. The electronic density of states in the alloy

A quantity which is of central interest in our calcula-
tions is the electronic density of states. According to the
state which characterizes the alloy at a given composi-
tion, i.e., liquid state, solid solution, or compound, three
different steps are required to calculate the electronic
density of states of the alloy.

1. Compounds

To calculate the electronic density of states of com-
pounds, we have used the recursion method, ' which con-
structs a new orthogonal basis {Igk ),k = 1, . . . ) from the
linear combination of atomic orbitals (LCAO) orthogonal
basis {Ii p) j, where the tight-binding Hamiltonian matrix
is tridiagonal. If I(1) is made equal to Iip), then the
Green s function of this Hamiltonian is given by the con-
tinued fraction

E;„=Er'„+Pt„ &ipIG(z)Iip) =
b2

E,'",'"'= ,' g x, U„,(n,—„)(n„),
Ip, v

(4)

where x~ is the concentration of I species at site i, and

U„ the effective intrasite Coulomb interactions,

(nt„) = f Nt„(E)dE (&)

and

t,„,=t,„j,(r),
where I denotes the species I at site i, tt„z„(r) and Et„are
intrinsic tight-binding parameters, and gt„ is the mean
effective Coulomb potential seen by the p orbital on a
type-I atom in a given alloy, which is calculated in two
parts: an intrasite contribution (effective direct exchange
energy) g't"„'", and an intersite contribution (effective
Madelung energy).

The one-electron total energy E&, is given simply by in-

tegrating up to the Fermi energy E~ the density of elec-
tronic states N(E) multiplied by the energy E,

E„=f N(E)EdE . (3)

The intra-atomic electron-electron energy can be approx-
imated by'

z —a, —
b

z a2
Z a + ~ ~

3

where {a„)and {b„] are the matrix elements.
The coefficients a„and b„are calculated up to a given

step no and the continued fraction is then terminated in
the usual way: a„&„=a„andb„&„=b„.' We repeat

0 0

these calculations for all the nonequivalent sites of the
compound studied and the electronic density of states of
the compound is given by the sum of these local densities
of states.

2. Solid solutions

To compute the electron density of states of a solid
solution which can exhibit chemical short-range order,
we have used the alloy cluster-Bethe-lattice method in its
simplest version; i.e., a single-atom cluster. The real lat-
tice is replaced by a Bethe lattice and the configurations
of the environment of an atom are treated in a mean-field
approximation. Within this scheme, the coordination
number and mean distribution of the nearest neighbor are
reproduced exactly.

The mean Green's function of atom I on site i is given

by the CBLM equations, '
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1
Gr(z) =

z —Hor —g Prr Trr(Rx }Gr(z,R~ )TJr(R~ )

Gr(z, Rr, ) =
z —H OI

1
7

Prr Trr(Rr )Gr(z, Rr )Trr(RL )
(10)

where Trr(Rx ) is the transfer matrix from an I atom to a
J atom in direction Rx, and Gr(z, Rx) is the mean
Green's function of a J atom located on the auxiliary
Bethe lattice, which is obtained from the initial Bethe lat-
tice by removing the bond in direction —Rz.

HpI is the Hamiltonian without hybridization. Chemi-
cal short-range order (CSRO) appears in the definition of
the pair probabilities and for each composition and de-

gree of SRO, the density of states is computed self-
consistently. The total energy is also calculated as a
function of SRO; we shall see that its SRO dependence is
particularly important since it is from this that the
effective-pair interactions will be obtained.

3. Liquid alloys

Liquid alloys may also display CSRO, as has been
shown very recently for the liquid A180Ni20 alloy, and it
is essential to consider this when determining their ther-
modynamic quantities. The best way to perform such
calculations is to use a variational method with, as a
reference system, a mixture of hard spheres which all
have the same diameter but different charges and which
interact through a screened Coulomb potential. ' This
reference system has been found to describe well the
structural and thermodynamic manifestations of ordering
in disordered alloys. ' To compute local density of
states, we have used the scalar version of the alloy
CBLM '2

The Green's function of atom I is given by

Gr(z)= Q P G (z) .
a (I)

Gr(z) is scalar inside the invariant subspaces a(I) defined

by the types of orbitals chosen (s, p, and d in our case), '~

and Eqs. (9) and (10) become

G (z)=

Gp(z) =

1

z —Ho —g o pGp(z)
P

1

z Horr g—op G—(z)

(12)

(13)

where 0 &
is the part of the mean second moment of the

density of states (DOS) on a state a due to the coupling
with states P of the neighbors, and

f d R grr(R)&r[Trr(R)P&Trr(R)P ],1

~a

where n is the degeneracy of the subspace a and grr(R )

the pair-correlation function between atoms of type I and
J, provided by the reference system.

For liquid alloys, the electron-electron and ion-ion in-
tersite interactions also have a particular expression
Eq. (7) becomes

E;',"'„";,„E,'","'= 2~p—x„—(2n„bn„+bn„)f g„„(R)V(R ) dR
0

+2x„xrr(n„hnrr+nrrhnz+n„bnrr )f g„rr(R ) V(R )R dR
0

+xrr(2nrr b, nrr +b,nrr )f grrrr(R ) V(R )R dR
0

(15)

p being the number density.
To describe the liquid state in these types of liquid al-

loys, it is also passible to take a Bethe lattice with a coor-
dination number roughly equal to 12; in this case, to de-
scribe SRO the pair-correlation functions are replaced by
the pair probabilities. It has been shown that for thermo-
dynamic data, i.e., hE and hS, these two approaches give
similar results. Of course, in the second case, informa-
tion about the structure of the liquid is lost.

C. Electronic parameters

The electronic parameters are similar to the ones used
by Colinet, Bessoud, and Pasturel in their study of
cohesive properties of the Ni-Al system. ' The calcula-
tions include the five d-like and one s-like arbitals for Ni
metal and the three p-like and one s-like orbitals for Al
metal. The hopping energies between like species were
evaluated from Harrison's solid-state table, and hop-
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ping energies between different species were calculated
using Shiba's approximation. For the on-site energies,
we use the atomic on-site energies given by Herman and
Skillman; for transition metals, the values were calcu-
lated for one transition atom with the d" + 's
configuration. The values of E, ', Ed ', E, ', E ' are
equal to —0.76, —2.27, —2.94, and +2.27 eV, respec-
tively. The Coulomb energies were taken to be U„=0.50
ev, U,d=0. 75 eV, Udd=1. 6 ev, and V=0.25 eV with
the fact that U„Upp.

From this set of tight-binding parameters, the internal
energy of the alloys in their different topological
configurations can be calculated, which is the first step
towards the phase-diagram calculation.

1. Stoichiometric compounds

In this case, the configurational entropy is taken equa1
td zero.

2. Solid solutions or ordered phases presenting
an extended concentration range

The configurational entropy is described by means of
the CVM. The CVM entropy is found to be given ap-
proximately by a sum of the partial cluster entropies.
The maximum cluster used in our study is the tetrahed-
ron containing both first and second neighbors in the bcc
lattice. In the tetrahedron approximation the entropy of
a bcc disordered system is given by'

III. PHASE-DIAGRAM CALCULATIONS i,j,ki,j,k, l

Sb«=k~ 6 g w,,kllnwij'ki 12 g t,j„lnr;,k

A. Eft'ective-pair interactions

As discussed in the Introduction, the internal energies
can be considered as the starting point of the phenomeno-
logical treatment of alloy phase equilibria by means of
the CVM. To extract effective-pair interactions it is more
convenient to write the energy of al1oy formation as

b,Ef =E„,„d(x )+E„d(x,o ), (16)

where 0. is the parameter describing CSRO. As previous-
ly used, ' E„„dis a function of the point correlation func-
tion g,

E„,„d(x)= ( HO+Bog, )(1—x f )

+3 gy," 'lny '+4 gy k 'lny k' —gx;inx;
i, k

(21)

where w,Jkl, t;Jk, yiJ ', yyik", and xi denote, respectively,
the probability of finding tetrahedra, triangles, second-
neighbor pairs, first-neighbor pairs, and points in the
configuration given by their subscripts (i equals 3 or B in
a binary alloy).

For the disordered fcc structure, we have

Sf k~ 2 g w;p, l lllw&j'kI

i,j,k, l

and the ordering energy is —6 yy, ',"iny, ',"+5yx, lnx, (22)

E„d(x,o ) = —,
' g Zk Vk($2"' —gf),

k

(18)

E„d=4x(1—x )(Z/2) V, o (19)

where Zk, Vk, and gz
' are, respectively, the coordination

number, effective-pair interaction, and pair-correlation
function for kth nearest neighbor. For fcc-based struc-
tures, E„d can be written as

ij k Wij kl
I

(2)—~
kl

(23a)

(23b)

The cluster probabilities are related by the following con-
sistency relationships:

and for bcc-based structures yk =gw, kl
(i)—

jl
(23c)

E„d=4x(1—x )[(Z, /2) V, o, +(Z2/2) V2a2] . (20)

V, for fcc-based structures and both V, and V2 for bcc-
based structures are obtained from the short-range-order
dependence of the calculated energy of mixing. '

B. Configurational entropy

In order to compute a phase diagram, we need to know
the total free energy of the binary alloy in a given phase,
its energy, and also its entropy of formation. In these cal-
culations, we keep only the configurational contribution
neglecting the vibrational one. In the present approach,
we use different configurational entropy approximations
depending on the nature of the phase being considered.
As for the calculations of the electronic density of states,
three families of phases are distinguished.

Xi WIjkl
jkl

(23d)

g wijkl 1

ij kl

(24)

The natural iteration (NI) equations used in the present

As mentioned above, the equilibrium state of the system
and the degree of SRO in the alloy is obtained at any
given composition and temperature by minimizing the
configurational free energy. In the case of tetrahedron
approximation, the minimization is conveniently carried
out using the natural iteration method (NIM) developed
by Kikuchi. The configurational variables are chosen
to be the tetrahedron probabilities w, -kl subject to the
normalization condition
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model have been presented elsewhere' and will not be re-
peated here.

For the case of an ordered phase present in a range of
concentration, long-range order is described in the usual
manner by means of sublattices reflecting the symmetry
of the ordered structure. A given cluster may now con-
sist of points in the crystal belonging to different sublat-
tices and their probabilities must be distinguished accord-
ingly (see Ref. 31 for more details).

—T[SIIs(o )+S„d(cr,e,K)] . (29)

Explicit expressions for the roman HS and the ordering
contributions to the entropy (SIIs and S„~) are given in
Refs. 21 and 23. As we are interested in the occurrence
of CSRO, we give here the expression of S„d

with the variational upper bound to the exact free energy

F(o,E,.K)= 23kI—I T+Er(o, E,K)

3. Liquid al/oys S,„d =[f(w)—f(0)]/2I), (30)

As has already been mentioned, the determination of
CSRO in liquid alloys may be performed using thermo-
dynamic variational calculations based on the hard-
sphere Yukawa (HSY) reference systetn. ' The structural
manifestations of ordering are modeled by a mixture of
hard spheres all having the same diameter but opposite
charges (while respecting the overall charge neutrality
condition) which interact by a Coulomb or screened
Coulomb (Yukawa) potential. In this system, the descrip-
tion of the atomic configuration requires three parame-
ters which are the diameter of the hard sphere o., the
strength of the ordering potential at hard contact c, and a
screening constant J{:. In terms of the average and order-
ing potentials, the reference interactions are given by

R&0
IN'(R) —

0 R )o (25a}

R&o
—so exp[ K(R cr)]—/R, R &c—r,sli (R )= ' (25b)

PNc(R ) =0 . (25c)

Because of Eq. (25c) the three coupled integral equations
of the mean-spherical approximation (MSA) decouple
into two independent equations. One, with the closure
conditions (to the Ornstein-Zernike equations)

hIvN(R)= —1, R &o,
cNN(R)=0, R &o.

(26a)

(26b)

describes the fluctuations in the mean number density
and is identical to the Percus-Yevick equations for hard
spheres, hence we know its analytical solution. The
second, with the closure conditions

hcc(R )=0, R (cr, (27a)

(o, s,K}BF

T,p, c,K

BF
(cr, E,K)l T,p, o,K=O, (2g)

BF {o,e, K)IT,p, o, E=0,

chic(R )=so exp[ K(R —o ))/RkII—T, R ) o (27b)

describes the local fluctuations in the compositions. Its
analytical solution has been given by Waisman. Within
this reference system, the variational conditions become

where g is the hard-sphere packing fraction and is equal
to —,

' pIro, and the function f(w) is given by

with

B,+B2+BI(w}=-
72B (1+B )

(31)

2 —1
exp(Ko ) —1

B2= —
—,
' [ 1 —3 exp( Ko)],— .

B3=exp( —K )[1—exp( —Ko)]/4Ka,

B4= [1—exp(1 Kcr —
) ]/2Ko,

(32a)

{32b)

(32c)

(32d)

RMf g„(R )41rR 'dR
0
RMf g~~(R )4IIR dR

0

(33b)

where RM is the radial distance corresponding to the first
1111111IIlllI11of g~~(R ).

For the ordering contribution to the entropy, it has
been shown that the expression of the disordered fcc
structure [see Eq. (22)] displays trends of ordering which
gives the better agreement with the one provided by the
HSY expression. This approach presents the advantage
of having only one parameter, i.e., s, to describe CSRO
but, of course, structural information such as pair-
correlation functions are lost now since the structure is
described by a Bethe lattice characterized by the coordi-
nation number Z.

and w is just twice the ratio between the ordering energy
and the strength of the ordering potential at contact.

Also the reference HSY system provides expressions
for partial pair-correlation functions gIJ(R ), which allows
us to define the structure of the liquid state and which
enters the calculation of the internal energy [see Eqs. (14)
and (15) and also the expression for the ordering contri-
bution to the entropy]. An equivalent approach which is
not discussed here is the approximation of the liquid
state by a Bethe lattice, using an isotropic environment to
calculate internal energy. In this case, the coordination
number Z and the Warren-Cowley parameter cr are the
relevant parameters but their relation with HSY parame-
ters can be established in the following way:

RM
Z=p f gx~(R )4IrR dR

and
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C. Phase equilibrium
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B. EfFective-pair interactions and disordered alloys

EPI's extractions from CBLM calculations for both
fcc- and bcc-based structures have been already discussed
in Ref. 14 and will not be repeated here. In Table II are
compared our EPI values obtained for fcc-based struc-
tures to those obtained by Carlsson using a supercell
total-energy approach. Values obtained from a fit to the
Ni-rich part of the Ni-Al phase diagram based on empiri-
cal Lennard Jones potentials are also included. We see
that the three sets of data display the same concentration
dependence even if our results give smaller values. For
all the compositions, the charge transfer comes from Al
to Ni; however, it is small as, for instance, the value ob-
tained for the equiatomic composition, hn N; =0.14
electron/atom. This result indicates that the self-
consistent contribution from ionic bonding to the forma-
tion energies of these alloys is small. In fact, from our
calculations' and other earlier work, ' ' strong Ni d and
Al p interactions are well established, leading to the ex-
istence of a pseudogap which separates the antibonding
from bonding and nonbonding regions. This strong hy-
bridization is predominantly important to explain the
strong negative values obtained for the formation ener-
gies of the compounds or the solid solutions.

For bcc-based structures, only one result given by Sigli
and Sanchez' can be used for comparison. At 50 at. %
Ni, they obtain 4V, =8.8 kJ and 3V2=4.4 kJ while our
values are 6.8 and 0 kJ, respectively. As for fcc-based
structures, V, and V2 display a very strong concentration
dependence, noting the peculiar behavior of V2 which
displays negative values in the Al-rich part and becomes
positive in the Ni-rich end. Once more, the charge
transfer is small, hN;=0. 16 electron/atom for 50% Ni
and very similar to that obtained for the fcc lattice.

In Figs. 2 and 3 are displayed internal energies and free
energies of formation calculated at T=1273 K for both
fcc and bcc structures. Our results are compared to the
ones provided by Sigli and Sanchez' and also with avail-
able experimental data. ' For the fcc structure, the
curve obtained by Sigli and Sanchez does not present the
same dissymmetry with respect to the equiatomic compo-
sition. Our results seem to be more consistent with the
fact that the AlNi3 compound crystallizes with the Llz
cubic structure while A13Ni compound crystallizes in an
orthorhombic structure. However, the values calculated
by both methods are in good agreement in the Ni-rich re-
gion, where the parameters, used by Sigli and Sanchez,
have been fitted with experimental data. For the bcc
structure, the agreement between the two sets of calcula-
tions is excellent, the comparison with experimental data
also being very good.

TABLE II. Effective-pair interactions for fcc-based struc-
tures.

0 A L 0.2 0.4 0.6 0.8 N i
I I I

I

E -20

-60 (a)

Ni

0 A L 0.2 0.4 0.6 0.8 N i

-20

-00

-60 (b)

FIG. 2. Internal energies and free energies of formation as a
function of composition for fcc lattice (T=1273 K); ———,
Ref. 13; +, Ref. 37; 0, Ref. 42.

C. Liquid phase

For the liquid phase we present calculations of internal
energies at T= 1973 K and compare our values to the ex-
perimental ones; ' two sets of results are presented, one
for completely disordered alloys, the other one for equi-

xN ~
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-60

-80

NI
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a
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+Ni
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Our work

2.5
4.4
7.0

EPI (kJ/mol)
Ref. 39

3.9
6.3
8.9

Ref. 47

3.6
5.9
8.2

-80

FIG. 3. Internal energies and free energies of formation as a
function of composition for bcc lattice (T=1273 K).
Ref. 13; +, Ref. 37; 0, Ref. 42; ~, Ref. 43.
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FIG. 4. Internal energies for the liquid phase (T=1973 K);
, with CSRO; —.——,without CSRO; ———,Ref. 13;

o, Ref. 44; , Ref. 45.

2000

1000

librium values of CSRO. We can see that the first curve
agrees with Sigli and Sanchez's curve, ' in agreement
with the fact that these authors describe the liquid phase
using a subregular solution model. However, from the
comparison of our two sets of calculations and experi-
mental data, taking into account CSRO in the liquid
phase is essential to obtain a good description of the ther-
modynamic data of this phase. Ordering effects are max-
imum around xz;=0.6, which is consistent with the
strong concentration dependence of EPI in solid solu-
tions. Strong positive values of EPI in the Ni-rich region
result in a strong ordering tendency; for instance the be-
havior of the A1Ni3 compound remains ordered up to its
melting point. In the liquid phase, the same effects,
though reduced, are observed and shown in Fig. 4.

D. Phase-diagram calculations

We have shown that the tight-binding Hamiltonian
coupled with either the CBLM or recursion method is
able to reproduce, qualitatively and quantitatively, ener-

gies of formation of the different phases occurring in the
Ni-Al system. However, to study the equilibrium be-

I I

0.2
I

0.4
I

0.6
I

0.8

FIG. 6. The bcc Ni-Al phase diagram.

tween these different phases, i.e., the equilibrium phase
diagram, there is still a "missing link" in our approach
which is the thermodynamic properties of the pure met-
als or, in other terms, the difference in free energy be-
tween the liquid and crystalline phases. At present, such
calculations are beyond the scope of our tight-binding
calculations and we have chosen to use thermodynamic
compilations to obtain these quantities.

If only fcc-based equilibria are considered, the phase
diagram of Fig. 5 is produced. Both L12 and L lo phase
regions are obtained and all transitions are first order.
Only the Ni-rich portion can be directly compared to ex-
perimental results since for Ni concentrations less than in
the observed Ni3A1, underlying lattices other than the fcc
lattice appear. However, contrary to Carlsson and
Sanchez's results, we do not note the presence of a mis-
cibility gap in the metastable Al-rich part. These authors

1500
2000

1000
1500

500—

1000

0
0

I

0.2 0.4 0.6 0.8

500—

0.2 0.4
X gj

0.6
I

0.8

FIG. 5. The fcc Ni-Al phase diagram.
FIG. 7. The calculated Ni-Al phase diagram with a com-

pletely chemically disordered liquid.
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2000

1500

1000—

tral B2 phase persists to very high temperatures, and the
L12 phase has a lower disordering temperature. Our cal-
culations lead to a peritectic decomposition of the Ni3A1
compound. The eutectic between the solid phases
NiAl(82), Ni3A1(L1z) and the liquid exists to the left of
the peritectic, contrary to the usually adopted phase dia-
grams, but in agreement with the results proposed by
Bremer et al. It should be noted that the respective po-
sitions in the phase diagram of the eutectic and the peri-
tectic are very sensitive to the values of energies of for-
mation of the three concerned phases, i.e., the liquid and
the two solids.

V. CONCLUSION

500—
I

0.2 0.4 0.6
I

0.8

FIG. 8. The calculated Ni-Al phase diagram with chemically
short-range-ordered liquid.

explain the origin of this gap from the concentration
dependence of the calculated energy of mixing for the
completely random fcc solid solutions. Such behavior,
i.e., a negative curvature of EE„„d,was not a result of
our work.

The bcc-only phase diagram is shown in Fig. 6. Note
that B2 disordering takes place at a very high tempera-
ture. A DO3 is expected at high Ni content.

When families of both fcc- and bcc-based free-energy
curves are combined with the stoichiometric A13Ni and

A13Ni2 compounds and the liquid phase, the phase dia-

gram of Fig. 7 is obtained. In this figure, the liquid phase
is treated as being completely chemically disordered. In
Fig. 8, the same phase diagram is presented but now with
the equilibrium values of CSRO of the liquid phase con-
sidered. As has already been mentioned, this factor is
essential to obtain a good description of the phase dia-
gram. Agreement with the experimental diagram (Fig. 1)
is immediately apparent. On the Al side, A13Ni and
A13Ni2 decompose congruently in the solid state, a cen-

The tight-binding calculation of the Ni-A1 system is, in
many points, in agreement with experimental observa-
tions.

(i) We are able to predict the correct ground states,
such as the B2 structure being more stable than the L10
for the equiatomic alloy or the L 1z structure being more
stable than the DO3 structure for the alloy with 75 at. %
Ni. The complex orthorhombic DO20 structure is also
found to be more stable than the fcc- or bcc-based super-
structures.

(ii) Taking into account chemical short-range order to
describe the free energy of the liquid phase is essential.
We find a congruent melting temperature for the NiA1
compound higher than the experimental data, but this
compound is known to present antisites and vacancies
even at the equiatomic composition, factors which are
not considered in these calculations. The two complex
DO2o and D 5» structures are found to melt peritectical-
ly. For the A13Ni compound, the peritectic temperature
is some 250 K higher than experiment indicates but for
the A13Niz compound, it is only 10 K higher than that
determined experimentally. From an experimental point
of view, the phase boundaries of the peritectic decompo-
sition of the Ni3A1 compound are still controversial. Let
us mention that if our results are in agreement with the
most recent experimental determinations, they are very
sensitive to the values of the energies of the three phases
which determine the equilibrium properties.
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