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Ab initio molecular-dynamics techniques extended to large-length-scale systems
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The Born-Oppenheimer approximation divides the problem of quantum molecular dynamics into two
familiar problems: (1) solution for the electronic wave functions for a given instantaneous arrangement
of ions and (2) the motion of the atomic cores under the inhuence of those wave functions. A combina-
tion of conjugate-gradient methods to solve (1) with standard molecular dynamics to solve (2) results in a
scheme that is at least two orders of magnitude more accurate than previously possible, thus allowing ac-
curate calculation of dynamic correlation functions while maintaining tolerable energy conservation for
microcanonical averages of those correlation functions over picosecond time scales. By employing
conjugate-gradient techniques, this method is used to extend the applicability of finite-temperature ab in-
itio techniques to systems with large length scales.

I. INTRODUCTION

Car and Parrinello's introduction of their approach to
ab initio total-energy calculations made tractable ab initio
molecular dynamics of medium-sized quantum systems
(-10—100 atoms). The basic idea in this method is to
perform molecular dynamics on the combined system of
atomic coordinates and electronic wave functi-on
coe+cients, where the forces on the atoms are calculated
using the Hellmann-Feynman theorem, and the forces on
the electronic coefficients are taken to be the derivatives
of the electronic energy functional with respect to these
coefficients. Generally, the wave-function coefficients are
all assigned the same fictitious mass, judicious choice of
which (typically 200—300 a.u. ) limits the transfer of ener-

gy from the atomic to the electronic degrees of freedom
and keeps the electronic system in the vicinity of the
Born-Oppenheimer (BO) surface by approximate adiabat-
ic isolation of the atomic and electronic subsystems. '

BO tolerances reported in the literature for nontrivial
semiconducting systems, those with more than one active
ionic degree of freedom, are on the order of a few tenths
of a meV/ion, ' while those for gapless systems tend to be
much worse, —10 meV/ion, for reasons discussed below.

A major contribution to this BO deviation in semicon-
ductors is in the form of periodic energy transfers be-
tween the ions and electrons. These transfers involve
several tenths of a meV/ion and have frequencies in the
range (Esilj, )' on uP to (E,„,/P)'~ (and even higher in
systems with long length scales ). Here, Es is the gap,
E,„, is the electronic plane-wave cutoff energy, p is the
fictitious electron mass, and all physical quantities are ex-
pressed in atomic units. In a typical semiconductor cal-
culation the lowest of these frequencies is a few times the
optic phonon frequency; in a metallic situation it is zero,

indicating a breakdown in the scheme for this class of
systems with consequences outlined below. Unfortunate-
ly, in the combined molecular-dynamics scheme it is im-
practical to limit the fictitious kinetic energy of the elec-
trons to less than some fraction of the energy in the ionic
system. This excess energy is needed as a store to be con-
verted back and forth into fictitious kinetic energy of the
electronic coordinates to allow them to adjust continu-
ously as the ions move. Because the total fictitious Harn-
iltonian is conserved, the periodic transfer of energy to
and from the electronic system results in a periodic slow-
ing and speeding of the ionic system and thus adds a ficti-
tious vibrational motion to the ions which tends to aver-
age out over time and keep the atomic and electronic sub-
systems adiabatically isolated, as long as the energy-
transfer time scale is much quicker than the time scale
for the atomic motion. One can increase the frequency of
the fictitious modes and weaken this coupling by decreas-
ing the fictitious electronic mass, but then one must de-
crease the time step for integrating the equations of
motion, and the computational costs increase. Also,
there is no reason why in principle such superposed ficti-
tious vibrations cannot affect the calculations of thermal
properties.

The thermal-expansion coefficient of Si (Ref. 4) and
proton diffusion constant in Si (Ref. 5) have both been
calculated using this technique with fair quantitative
agreement with experiment. However, in these calcula-
tions it is unclear how much of the discrepancy is due to
effects from the fictitious dynamics or from the Aaws

pointed out by the authors of these works in the physical
models, such as neglecting the quantum nature of the Si
lattice in the case of the thermal expansion coefficient or
not considering defects and possible molecular H2 forma-
tion in the case of proton diffusion, or simply due to
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inaccuracies in the local-density approximation itself. It
is important in such situations to be able to sort these is-
sues out, which can only be accomplished with a scheme
giving direct control over the sources of calculational er-
ror. Finally, the extent of the effects of errors introduced
by the fictitious dynamics has so far only been deter-
mined with a posteriori comparisons with experiment,
limiting the predictive ab initio nature of the quantum
molecular-dynamics technique.

In addition to fictitious vibrational effects, the elec-
trons drift away from the BO surface as a result of an
overall average energy transfer from the (much) higher-
temperature ionic subsystem to the lower-temperature
electronic one. This is especially true in calculations in-

volving gapless systems, which include metals and molten
semiconductors. As mentioned above, in these systems
the fictitious electronic vibrational spectrum goes soft,
the adiabatic separation is lost, and the forces experi-
enced by the ions are no longer correct even in an aver-
age sense. Energy then flows freely from the atomic to
the electronic subsystem. One must then "quench" the
electronic system, hold the ionic coordinates fixed, and
relax the electronic coordinates back to the BO surface,
as often as 15 times per picosecond (about once every op-
tic phonon period) of simulation time. The excess ener-

gy removed from the electronic system in this process ul-

timately has its origin in the ionic system, which must
then be compensated for its loss by pumping energy back
into it. This is accomplished in various gross ways, but it
is clear that without detailed knowledge of which ionic
modes are being depleted of energy, one cannot expect
such a procedure to robustly reproduce the dynamic
properties of the system. Under these circumstances it is
safer not to consider dynamic correlations in the ionic
system but to regard the "trajectories" that one has gen-
erated as just a large number of configurations at a par-
ticular total energy and content oneself with calculating
ensemble averages rather than time-dependent correla-
tion functions.

Finally, it has been pointed out that as the longest
length scale in the supercell increases, integration of the
fictitious equations of motion becomes dominated by the
I /G instability (charge sloshing) in the Hartree energy.
Here, G refers to the shortest nonzero reciprocal-lattice
vector of the supercell. To overcome this instability, the
time step for integration of the equations of motion must
be taken to approach zero as the system size increases.
While the onset of this instability probably depends on
the physics of the systems under study, the effect has
been observed empiricallp at 8 Ry in a silicon system of
six primitive cells ( -32 A long).

The conjugate-gradient methods of Teter, Payne, and
Allan, and Gillan for relaxing the electronic wave func-
tions, however, are free of the aforementioned instability
and are known for fixed atomic arrangements to converge
quicker than the best electronic molecular-dynamics
schemes by factors of 10 or more in terms of actual com-
puter CPU time. By combining this scheme for the elec-
trons, standard molecular dynamics for the atoms, and a
scheme for producing good trial wave functions for each
atomic arrangement, we have produced an ab initio

molecular-dynamics scheme that is free of all the above
difficulties. Without having to adjust a fictitious electron-
ic mass, perform periodic quenches, or rely on fictitious
vibrations to average out errors, one can directly control
the BO error and, for about the same CPU time invest-
rnent as traditional combined molecular-dynamics
schemes, keep it at the 10 -eV/atom level. Such pre-
cision allows accurate calculation of dynamic correlation
functions averaged over a rnicrocanonical distribution
over picosecond time scales. Moreover, because this
method does not require an ad hoc scheme for pumping
energy back into the ionic system, it maintains the desir-
able ab initio nature of the approach.

The basic outline of our scheme is as follows. From
the electronic wave functions of preceding time steps, we
construct trial wave functions for the current atomic ar-
rangement according to the scheme described in Sec. II
of this paper. We then use the complete conjugate-
gradient (CCG) procedure of Teter, Payne, and Allan to
relax the electrons to within a set tolerance of the Born-
Oppenheimer surface. From these wave functions, we
derive the forces experienced by the atoms and then
move them according to some standard molecular-
dynamics scheme such as the Verlet algorithm. The pro-
cess then repeats. In Sec. III we present the results we
obtain with this scheme, and in Sec. IV we present some
concluding remarks.

II.CONSTRUCTION OF TRIAL WAVE FUNCTIONS

Taking our cue from the molecular-dynamics scheme
of Car and Parrinello, we start by considering the sirn-

plest possible wave function guess. Let 4„k( [r j ) be the
wave function for band n and k point when the ionic
coordinates are [ r j, and let 4—„k( [ r +dr j ) be the wave
functions when the ions are at [r +dr j. Then, a first at-
ternpt at a trial wave function for the configuration

{r +2 dr j might be the simple linear extrapolation

0"„k([r+2dr j )=4'„k({r+dr j )

+[+,k({r+dr] ) +,k([&j )]

(2.1)

where the prime indicates a trial wave function as op-
posed to the fully relaxed version, which we call
%'„k([r+2dr]). As long as 4'„k({r]) is a continuously
differentiable function of [ r j, the error in

({kr+2drj) is clearly O((dr) ). Because the total-
energy functional E [4; [ r j j is stationary about
0'({r+2dr j ) when r=r+2dr, the BO error of the trial
wave function will be O((dr) ).'

There are several difficulties that must be overcome be-
fore one can employ (2.1). The first is minor and easily
solved. It is that (2.1) results in wave functions that are
not properly orthonorrnalized. However, because

( 4'„k ( [ r +2 dr j ) ~

%"
k ( [ r +2 dr j ) )

=5„+O((dr) ), (2.2)

one can simply carry out the Gram-Schmidt orthonor-
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s—= X II+„„({r+dr
n, k

(2.3)

malization on them without disturbing their correctness
to first order. In what follows, it is understood that this
orthonormalization procedure is always applied as the
last step in constructing trial wave functions.

The second difficulty is more serious. In practice
4„ I, ( [ r j ) is frequently a discontinuous function of [ r j .
This is due mostly to the various indeterminacies in
defining the %„1,( [r j ). Specifically, one may choose any
ordering for the state label n, one may multiply each state
by an arbitrary phase factor, and one may form arbitrary
unitary transformations in degenerate subspaces. If one
chooses the label n according to the ordering of eigenen-
ergies, then as two bands cross, their wave functions will
transform discontinuously into each other, making linear
extrapolation ineffective. If one extracts the Kohn-Sham
eigenstates by subspace diagonalization, then the phases
ascribed to the wave functions will vary seemingly ran-
domly according to the particular matrix diagonalization
algorithm employed, again introducing discontinuities in
the %„z. Finally, if the motion from {rj to [r+dr j
splits a degeneracy, and unless the original degenerate
states were mixed according to the proper irreducible
representation, the states will change discontinuously
when the new crystal field resolves them. As long as one
does not start the simulation at a [ r j of high symmetry
so that there are no degeneracies, all of these problems
can be avoided by simply not subspace diagonalizing be-
cause this is the only step in the CCG method where the
state ordering, mixtures in degenerate subspaces, or
phases are changed nonadiabatically. In fact, all of the
results in Sec. III were obtained in this way.

However, one cannot always forego subspace diagonal-
ization. In some cases it is needed to obtain good conver-
gence rates in the CCG scheme, and subspace diagonali-
zation is currently the only way in the CCG scheme to
obtain the Kohn-Sham eigenstates, which are requisite
for computation in a metallic system. In cases requiring

sub space diagonalization, the arbitrariness in the
0'„ t, ([r j ) must be removed in a way that makes the
changes in the wave functions as small as possible. All of
the above arbitrariness in the 4„1, correspond to trans-
formations on the 4„I, which leave the charge density
and total energy invariant. We propose to minimize the
differences between the wave functions at two successive
time steps by employing the most general such transfor-
mation, arbitrary unitary linear combination among all of
the wave functions at a given time step. We have found
(see Appendix A) that one can, for about the same effort
as subspace diagonalization, literally minimize the
differences between the two sets of wave functions

procedure should be done before the linear extrapolations
if one is subspace diagonalizing.

All of the sources of discontinuity in 0'„1,( [r j ) that we
have discussed so far are not physical, in the sense that
they do not affect physical quantities such as the total
charge density. The only source of physical discontinuity
in 'Pl [r j ) is Kohn-Sham eigenstates crossing the Fermi
level because under these circumstances the charge densi-

ty is affected. In a system with many bands, the effect of
bands crossing the Fermi level on the single-particle
Hamiltonian will be rather small (on the order of 1 over
the total number of bands), and thus the effect on the
Kohn-Sham eigenstates will also be small. The main
difficulties in these cases then come from the fact that the
states which have just crossed the Fermi level do not
resemble the states which they have replaced. These
4„1,([rj) will change discontinuously. Subspace align-
ment also provides a prescription for solving this prob-
lem. By including a few empty states in the system above
the Fermi level and performing the above described sub-
space alignment on both the filled and empty states,
alignment allows continuous extrapolation between filled
and empty states. Though there still may be discontinui-
ties as bands cross into the included empty states from
yet further above, subspace alignment, as described in

Appendix A, elegantly isolates the resultant large
changes in state vectors to the uppermost empty states.
These states contribute to neither the total energy nor the
self-consistent single-particle Hamiltonian, and as long as
they are brought back to convergence before they can
cross the Fermi level, the simulation will not be adversely
affected. Insuring this is quite cheap in terms of compu-
tational effort because in the CCG scheme empty bands
require far less computation, as the self-consistent single-
particle Hamiltonian does not have to be updated. Final-
ly, an a priori concern introduced by the introduction of
insurance states into the subspace alignment scheme is
that the alignment might scramble states from above and
below the Fermi level to the extent that it becomes im-
possible to define an approximate Fermi level for the ex-
trapolated wave functions. However, as shown in Appen-
dix A, alignment does not strongly mix Kohn-Sham
eigenstates whose energy difference exceeds the typical
eigenenergy drift between successive time steps. Thus,
tracking which states are to be filled or empty is in no
way complicated by the alignment procedure, and hence
this extrapolation procedure may be applied to both
semiconducting and metallic systems.

The third difficulty in using (2.1) is that this would gen-
erate acceptable [5E =O((dr) )] trial wave functions for
the ionic coordinates {r(t„)+[r(t„)—r(t„,)] j rather
than the correct [r(t„+,)j. To surmount this difficulty,
we generalize the scheme as follows. First, we take

under such general unitary combination. This procedure
actually factors the rotation in Hilbert space which car-
ries the subspace spanned by the 'P„ 1, ([r j ) to the sub-

space spanned at r +dr into a series of simple rotations in

orthogonal two-dimensional subspaces, one for each
band. Because the optimal S in (2.3) scales like dr, (2.1)
may again be trusted to yield trial states correct to first
order in r. In all of the variations we describe below, this

I, ([r(t„+,)j )

(2.4)
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FIG. 1. Schematic illustration of the two-dimensional extra-
polation scheme for trial wave functions. Taking linear com-
binations of %„z,4„&,and 4„, we can only form trial wave
functions 4'„+& appropriate for ionic coordinates r„'+, in the
plane containing r„2, r„&, and r„. We thus choose the linear
combination, parametrized by a and p, that minimizes the
difference )(r„'+, r„+—, )).

which is a correct first-order trial wave function when the
ionic coordinates are

(2.5)

To insure that the resulting wave functions are in as close
correspondence as possible to the actual ionic locations
[r(t„+,) j, we choose a and p by minimizing

= //r(t„)+a[r(t„) r(t„,)]—
+p[r(t„])—r(t„2)] r(t„+])//, — (2.6)

III. RESULTS

As a test of our scheme, we have simulated bulk Si at
300 K in a periodic cubic supercell of 64 atoms with a
Kleinman-ByJander pseudopotential at a cutoff of 8 Ry.

which determines a and P uniquely. (This processes is il-
lustrated in Fig. 1.) We have found that this two-
dimensional extrapolation scheme represents a significant
improvement over the corresponding one dimensional
scheme, where we set p=0 and optimize just a. One can
also easily generalize such a scheme to dimensions
beyond %=2. If the modeled ionic motion involves N
degrees of freedom, the trial wave functions become
essentially exact [r'=r(t„+, )], and the scheme will pro-
duce wave functions, and hence forces, correct to first or-
der in the displacements, which would be suScient to
model harmonic phonon motion without refinement of
the electronic wave functions beyond the guess (2.4).
However, at some point r„and r„~ will become too far
separated for a linear scheme such as this to work, and
the benefits of matching r' closer and c1oser to r„+, will
be lost. Satisfied with the performance of the two-
dimensional extrapolation scheme, we have not experi-
mented with any of higher dimension.

The k-point integrations were approximated with just the
gamma point. The initial configuration and velocities
were chosen to give equal total potential and kinetic ener-
gies in directions chosen independently from the uniform
process on the (3X64)-dimensional unit sphere. The
equation of motion of the ions integrated using the Verlet
algorithm with a time step of 3.256 fsec, which is —„of
the k =0 optic phonon period as determined from a
frozen photon calculation. Note that we have somewhat
arbitrarily taken the mass of the Si atoms to be the isoto-
pic average of 28.09 amu, which in this homopolar simu-
lation just sets the overall time scale. To update the wave
functions, as described in Sec. II, we first performed the
two-dimensional linear extrapolation with the optimiza-
tion on a and p, and Gram-Schmidt orthonormalized the
result. Because the linear extrapolation proceeds band by
band, this requires no extra core memory. We then apply
the CCG method. With the wave function for each band
constrained in the subspace orthogonal to the other
bands, we update it in successive conjugate directions un-
til the change in the total energy is less than either
35 X 10 s eV or 30% of the energy change of the first up-
date. This procedure is applied to all of the bands until
the energy change during an entire pass through the
bands is less than 12.5X10 eV/ion. At this point, we
calculate the Hellman-Feynman forces on the ions and
move them again.

Our rationale for the above iterating criteria is as fol-
lows. For this system, we have found that the energy im-
provement from successive band updates decreases by
factors of about 10, whereas the energy improvement
from successive global band passes, regardless of the num
her of band updates, decreases by factors of 3 or 4. In
both cases, updating individual bands and passing
through all of the bands, this energy improvement
proceeds in nearly perfect geometric progression. These
results then indicate that the limiting factor in conver-
gence to the BO surface is not refinement of individual
bands but rather self-consistent adjustments of the bands
with respect to each other. Consequently, refining the
bands to more than about one-third of the energy change
in their first update is not productive, and for this reason
we have chosen the above 30%%uo criteria. It is also clear
that updating each band beyond where its change is
35X10 eV is unproductive because further refinement
can only change the total energy of a band pass by
-(3.5X10 eV/band) [2 (band/ion)]=7X10 eV/ion,
which is the tolerance we have set for this calculation. In
a similar vein, we chose the band pass cutoff to be
12.5X10 eV/ion because in a perfect geometric se-
quence with decay constant one-third, the error is one-
half of the last term included, placing us again within
7X10 eV/ion of the BO surface when we stop refining
our wave functions.

We ran the above simulation for -0.84 ps (260 time
steps), which took 42.9 h of CPU time on the Pittsburgh
Supercomputing Center Cray- YMP supercomputer. We
caution, however, that because the simulation was started
with completely converged wave functions as input, the
earlier iterations required less electronic refinement than
the latter. For the last half of the run, the CPU time re-
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quired for each ionic iteration leveled off at a value corre-
sponding to 66 CPU h/simulation psec. Note that al-
though we are working with just the gamma point, our
code works with fully complex wave function. Changing
to real wave functions would speed the calculation by at
least a factor of 3.

The results of the total and potential energies of the
ionic system as a function of time are shown in Fig. 2.
Over the entire 0.84-psec run, the total energy of the sys-
tem drifted 5.1%, corresponding to a drift rate of
6.1%/psec. However, by the end of the run the fluctua-
tions in U appear to be settling down to their micro-
canonical expectation, " and the total-energy drift rate
settles down to well less than 1% [a least-squares fit gives
(0.30+0.10%)]. At this rate the system could run with
the total-energy drift less than the microcanonical fluc-
tuations in the potential energy (-2.5%) for several pi-
coeseconds without requiring rescaling of their ionic ve-
locities. Note that this does not represent a fundamental
limit on our scheme, as energy conservation can be im-
proved by using a better integration scheme for the ions
than the Verlet algorithm or by using a smaller ionic time
step. Finally, we have estimated the BO errors for this
run by fitting the energies of successive band passes to
geometric series. As intended, by far the most representa-
tiue value was -4X10 eV/ion, while for just a few
iterations the BO error got as large as just under 8 X 10
eV/ion. Thus our scheme does indeed maintain the elec-
trons extremely close to the BO surface without requiring
quenches of the electronic system. '

As an application of the scheme and as a test of the
quality of our dynamics, we have determined the photon
spectrum of our supercell through the time-dependent
velocity-velocity autocorrelation function. This was done
by first projecting the ionic displacements from our simu-
lation onto the allowed k states with no assumptions on

the polarization vectors and then determining the fre-
quencies present in the autocorrelation functions of these
spatial Fourier coe+cients W. e used data from the entire
0.84 psec of the run. The transform of the autocorrela-
tion function was effected by the maximum-entropy
method (MEM). ' (See Appendix B for a complete
description of the analysis. ) The raw results of fits with
220 poles for each class of k point are superposed and
plotted in Fig. 3. Here, we have scaled the frequencies so
that the optic phonon frequency coo as calculated from a
frozen phonon calculation at the same cutoff, is normal-
ized to 1. The heights of the peaks, or the energies in
them, are not meaningful in that our system has not yet
equilibrated. We note that the primary caveat when
working with the MEM is that it is known to produce
spurious peaks when working with noisy data at a large
number of poles. No such peaks were found, and the
only effect of increasing the number of poles has been to
sharpen the peaks, indicating very clean data. In fact, the
signal to noise ratio in this plot is remarkable; although
the L2 peak is small, it is still 20 times larger than any lo-
cal maximum not associated with a spectral peak. The
agreement between the I 25 peak and the frozen phonon
frequency coo is excellent (+0.2%), and the discrepancy
is on the order of what we expect due to our use of a time
step of —,', the period in a Verlet algorithm in a pure har-
monic potential (+0.4%). Finally, taking the frequen-
cies of the peak values of these spectra, we compare our
results with the experimentally measured phonon fre-
quencies, ' ' and again find excellent agreement. These
results are summarized in Fig. 4. In particular, our spec-
tra clearly and accurately reproduce the celebrated flat-
tening of the lower acoustic (TA) modes as one moves
away from the I point. Also, we observe a fine splitting
of the upper bands along X that was not reported in the
initial experiments, ' but which is present in bond charge
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FIG. 2. Total and potential energy of the ionic system in our
calculation. The bar indicates the +o. variations in potential en-

ergy we would expect for our system in a microcanonical en-

semble in the absence of anharmonicities. Note that though our
choice of starting configuration initially results in large Auctua-

tions, the fluctuations appear to be settling down to their ex-

pected thermal behavior by the end of the run.

FIG. 3. Superposition of MEM spectral fits for each class of
allowed phonon k state. The fits were performed with 220 poles
on samples running for 260 times steps, the entire length of our
run. The irreducible representations were determined from
correspondence with experimental phonon data (Refs. 14—16).
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sensitive to fictitious vibrations in the ionic system, then
this scheme might be preferred.
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APPENDIX A: SUBSPACE ALIGNMENT
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model calculations. ' A splitting on the same order has
been observed in Ge, ' which has a very similar phonon
structure.

FIG. 4. Phonon spectrum as determined from peak values of
data in Fig. 2. These values are completely ab initio with no
free parameters. Open circles represent experimental data
(Refs. 14-16),and solid circles represent our results.

S—=Xf.ll ~~ &
—~n'&ll'. (A 1)

In this theory the quantity that plays the central role is
the matrix U defined by

U„„—= (m~n'& .

In terms of this matrix, we then are to minimize

(A2)

We are set with the task of minimizing

g„~~ ]n &
—~n'&

~~
by performing a separate unitary trans-

formation in the space spanned by { ~
n & ] and the space

spanned by {~n' & ] in order to "align" the two subspaces.
Keeping in mind that eventually we will be concerned
only with the quality of the alignment for the bands filled

up to some level, we generalize our task to the minimiza-
tion of a weighted sum,

IV. CONCLUDING REMARKS S=Tr[F(2I—U —U )], (A3)

In conclusion, we have described a scheme that com-
bines standard molecular dynamics for the ions, the CCG
method for the electrons, and a method for producing
good trial wave functions. We have verified with a realis-
tic calculation that this scheme can maintain the elec-
trons within a few times 10 eV of the BO surface
without periodic quenching of the electronic system. Our
results all show that the scheme produces accurate dy-
namic correlation functions with good microcanonical
energy conservation over picosecond time scales without
artificially scaling the ionic velocities. Finally, all of this
is accomplished with about the same computational effort
as traditional schemes. The present method may be fur-
ther improved by employing a better molecular-dynamics
scheme than the Verlet algorithm or by developing a
better understanding of what band updating criteria to
set in the CCG method. It also may be made more
efficient by determining just what BO tolerances are
necessary for a particular application. The subspace
alignment formalism makes the scheme robust by provid-
ing a promising prescription for treating gapless systems
that will be free of fictitious drag on the atomic system.
For many systems this scheme may be viewed as avail-
able alternative to traditional combined molecular-
dynamics techniques. However, if one is interested in
simulating systems requiring super cells with large length
scales (e.g., exceeding -30 A for Si) or systems where dy-
namic correlations are important, or systems that may be

U then transforms to

U'"= A'U A'. (A5)

To incorporate the unitarity constraints on A and A' we
consider the Lagrange variational equation

0=5[S'"+Tr(A A A +A'A'A' )] . (A6)

Here, A and A' are matrices of Lagrange multipliers,
which must be Hermitian to incorporate the unitarity of
the A' s, and

S'"=Tr[F(2I A'U A —A UtA—' )] . (A7)

The above variation leads to the Lagrange-multiplier
equations

F A'U=A A,
FA U =A'A'. (A8)

The Lagrange matrices are easily related to U" ' at its op-

where I is the unit matrix and F is a diagonal matrix with
f„along its diagonal. Now consider the dual unitary
transformations

~n"'&= g A„~m &,

(A4)
Im'& .
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timal value

(A9)

A'=(+cos8) '3 U' .

We also can get U'*',

U'*'=+cose,

(A 14)

(A15)

Note that all quantities transformed according to the op-
timal subspace alignment, will be given the superscript
(~). Throughout this discussion we shall use freely the
Hermitian properties of F, A, and A', and the unitarity of
A and A'. Eliminating Ufrom (A9) gives

F A'=F AF (A 10)

and thus we conclude that F commutes with A'. Since
they commute, F and A' must be simultaneously di-
agonalizible, and thus A' must be a diagonal matrix be-
cause F is already diagonal. Note that any issues of de-
generacy in F's spectrum may be trivially resolved by
adding an arbitrarily small monotonic function of n to
f„. The fact that A' is diagonal is extremely important.
Not only does this determine the transformation de-
scribed by the A' s, it also means that U" is diagonal,
which has very important geometric consequences.

To see how A' being diagonal determines the A' s, we
solve for A' by multiplying the second Lagrange equation
in (A8) by its Hermitian conjugate

A'=FAU UA F. (Al 1)

The square root of this equation will yield a Hermitian
A', as required, because the right-hand side is the product
of a matrix with its Hermitian conjugate. The indeter-
minacy left in the sign of each eigenvalue of A.

' is to be
resolved in the end by taking the choice which minimizes
S'*'. Because A' is diagonal so must be its square, which
by (A 1 1) means that A U U 2 is diagonal because F is
diagonal. Thus A is determined to be the unitary matrix
diagonalizing U U. Any further indeterminacy is
resolved again by inspecting the resulting S"'. To deter-
mine explicit forms for the A' s, we define A by

A U UA =cose (A12)

A' =F(+cose ), (A13)

where the + indicates an indeterminacy of sign in each
diagonal element. From A' we easily get A' from the
second Lagrange equation in (AS),

where 6 is a real diagonal matrix of elements between 0
and ~/2. This choice of the form of the eigenvalues of
U U is justified by the fact that, as shown below, its ei-

genvalues are all between zero and unity. With A now

set, (Al 1) yields A',

and from this we get the optimal S,
S'*'= +2f„(1+cosO„) . (A16)

U *'=cose,
which means

(n'*' m'*') = U'* =5 cosOmn nm n

(A17)

(A18)

Thus it is clear that the eigenvalues of U U, which are
manifestly positive, are in fact i(n~m') i for some align-
ment of the subspaces and thus must be between zero and
unity as mentioned above. The fact that U" is now di-
agonal indicates that the projection of each basis ket is
one subspace lies along a basis ket in the other, and thus
that all of these projections are orthogonal. This will not
happen in general and only occurs here because we have
allowed a change of basis in both subspaces.

This property is important because it factors the uni-
tary transformation in Hilbert space that carries one sub-
space onto the other into a series of independent two-
dimensional rotations. To see that this is true we shall
assume that the two subspaces have already been aligned,
so that U already has the form (A17), and we can drop
the ( e ) superscripts. To exhibit the factorization into in-
dependent rotations, we define a basis for the entire Hil-
bert space with three classes of ket: a series of kets, say

I ia ) I, that span the space orthogonal to both subspaces;
those kets (n ) = ~n') for which 8„=0;and the remaining
,
'm ) and i m

' ) for which 8 %0. Clearly this forms a
basis for the entire space. Orthonormalization is now
trivial because ( n

~
m ' ) ~ 5„. A suitable class

(parametrized by q) of orthonormal bases I iP ) ) for the
Hilbert space is

From (A16) it is clear that to minimize S the correct
choice of sign is the upper one, and that A should be
chosen so as to list the eigenvalues of U U in descending
(ascending) order provided that we have written the f„ in
descending (ascending) order. This then determines com-
pletely and explicitly the linear combinations to be taken
in each subspace to perform subspace alignment. Note
that the A's are independent of the values of F; this has
important implications described below.

The geometric interpretation of the transformation
effected by the A's is simple. After the transformation, U
becomes

~a) for all a
in ) for all 8„=0

~m') —cosO im )
ip ) = cos(gOI ) ~m )+sin(gO ) . — for all 8 &0

sinO

~m') —cosO ~m )—sin(gO )~m )+cos(gO ) . for all 8 %0 .
sinO

(A19)
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We can then construct a corresponding series of unitary
transformations over Hilbert space:

(A20)

In particular, for g=1 this transformation carries the
unprimed subspace onto the primed subspace in the
promised series of two-dimensional rotations. This trans-
formation is also, by construction, the minimal such
transformation. The geometric interpretation of the 0„
from the spectrum of U U is then the angles of the two-
dimensional rotations in which the overall unitary trans-
formation carrying one subspace onto the other may be
factored. Finally, by adjusting g, one has an explicit for-
mula for raising this transformation to arbitrary powers
for interpolation or extrapolation of the changes between
the subspaces.

The meaning of the independence of the A's from F is
that the closest possible set of N pairs of states, one from
each subspace, for any N up to the dimensionality of the
subspaces is just those pairs of kets associated with the
smallest N values of 0„. We can see this by just setting
the first N values of f„ to 1, and the rest to e, where e is
small. (The e artifice is necessary because F must be in-
vertible. ) As a result, if in going from Ir„) to Ir„+, I a
few additional bands have crossed from above down into
the set of bands we are considering, the procedure will
not form linear combinations of low-lying states to try to
match the new states at the expense of matching the low-
lying states to each other. Thus, in such cases the una-
voidable large changes in basis vectors will be isolated in
the upper bands as promised in the text.

We also mentioned in the text that part of the useful-
ness of the subspace alignment scheme in dynamics cal-
culations comes from the fact that alignment does not
strongly mix Kohn-Sham eigenstates separated in energy
by more than the typical eigenenergy drift from time step
to time step. This is easy to see because U„=&m ln'),
where m ) and ln') are solutions to two self-consistent
single-particle Hamiltonians &„and gj„+, at successive
time steps. Viewed in this way, the subspace overlap ma-
trix is given by

&m (&„„—&„)ln'&
(A21)

E„' —E

location in the supercell at a finite set of discrete times
(t„I. Here we have labeled each ion according to its
primitive lattice (in our case fcc) vector R and identity in
the crystalline basis b because from this information we
intend to extract the phonon spectrum to(k) of the primi-
tive fcc lattice. To extract the behavior at different k
points, we make the following transformation:

(81)

(82)

krak, b

(83)

Here we have summed all of the spectral energy in stars
of degenerate k points because this ultimately yields
better statistics. Also, note that to conform with the
standard practice of considering the spectrum of particle
velocities rather than positions, one should use

Pz ~ (te) = co Pk +(co—). We have chosen the positions rather
than the velocities as primary variables because the Ver-
let algorithm does not directly yield velocities, and the
best prescriptions for estimating the velocities amount to
nothing more than inverse transforming itoekb(to) Final-.
ly, if we define k-star averaged autocorrelation functions

R"~( „)=g g kb( + „) kb( ),
m krak*, b

(84)

then, as is well known, R„",(t„) and Pk+(to) are trans-

forms of each other,

where N„11 is the number of primitive cells in our super-
cell and k runs over the N„11 points of the lattice recipro-
cal to the superlattice that lie in the first Brillion zone of
the primitive lattice. Note that because the b subscript
$W &~ye~a .~~aPian V~W~WWS ~kb ~unS ~~~a -the-NWmS ~a ~je
basis rather than, as usual, the phonon bands, this trans-
formation assumes nothing about the structure of the
phonon system other than what we can conclude from
translational symmetry. If we were to analyze complete
discrete time sequences et,b(t „),. . . , ekb(t„), then the
co(k) spectra we seek would correspond to sharp peaks in
the Fourier intensities

where the E's are exact eigenenergies as in the usual de-
velopment of perturbation theory. From this it is clear
that U and, hence, the A's will not strongly mix states
unless E„' E is 0(&„+,——&„), i.e., unless they are
separated in energy by less than the typical drift in the
eigenenergies between time steps. Finally, as a practical
bonus, if we are solving the electronic problem with a
scheme that yields the Kohn-Sham eigenstates, we can
exploit the fact that U U is then nearly diagonal and
compute the A's at little additional cost.

and

oo

P„v, (to) = g e "R„",(t„)

= gz "R„"(t„),

(85)

(86)

APPENDIX B: EXTRACTION GF FREQUENCIES-
THE MAXIMUM-ENTROPY METHOD

The calculational scheme described in this paper yields
rz (t„)b, the displacement of each ion from its equilibrium

where 5= t„+1—t„ is the sampling interval, and z =e '

The Fourier normalizations expressed in (85) and (86)
shall be used throughout.

Suppose we have data for N time steps. Then we can
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obtain Pk, (co} through (86) by estimating the R„", with

the so-called unbiased estimator, which in our case
takes the form

1
N —8 1

R~", (t„)= g g ek, (r +r„)ek„(r } .
X —n m O kCk*, b

This though, only gives us estimates of
Rk+(t ~z, ~), . . . , Rk+(tN, ). [Recall that R„",( t)—
=R„'+ (t).] If we set the remaining R„", to zero [which

would mean simply discrete Fourier transforming the

Rz+ (t„)],our frequency resolution will be severely limit-

ed by the length of our sample. For example, in a 1-psec
run of our calculation {300 time steps}, where the time
step is —,

' the I optic phonon period, the corresponding
resolution is only about —,', the optic phonon frequency.

An alternate approach is clearly needed. Through (85)
any estimator for the spectra Pk +(co) corresponds to some

extrapolation scheme for the R„"+(t„)beyond those we

can estimate directly. The approach that the maximum-
entropy method brings to this extrapolation problem is
simple: The information we have imposes a probability
distribution for which sequence we are actually sampling
in the space of all possible sequences
[ekb(t „),. . . , Eks(t„)); a reasonable choice for the ex-
trapolated R„", is just the mean of (84) under this distri-

bution. If this probability distribution is insufficiently
peaked to guarantee that these mean values lay
sufficiently close to the actual values we wish to extrapo-
late, then we must conclude that we lack sufficient infor-
mation. The concept of maximum entropy enters in
determining the probability distribution imposed by our
information in the same way it does in statistical physics.
For example, one can justify use of the macroscopic
Boltzmann distribution f (p, q) =exp[ 13H(p, q)]-
for a classical gas at constant energy by noting that of all
macroscopic distributions with a given E
= ff (p, q}H(p, q)dp dq, the Boltzmann distribution cor-

responds to the greatest number (in fact, the vast majori-
ty) of microstates 0; that is, it maximizes the entropy
S:—1nQ ~ —N~„, ff(p, q)lnf (p, q)dp dq, where N„,„, is

the number of particles. In the same way, the vast major-
ity of probability distribution functions p( [ekb(t„)] )

with mean correlation functions

Then, considering just these distributions, we pick out the
one of maximum entropy which is consistent with our
R&~(t ). This two-step process is convenient because, as

we shall see shortly, the maximum entropy associated
with a particular set of mean correlation functions is
directly expressible in terms of the values of those mean
correlations. Therefore the set of (R„'+(t )) we shall

use in (86) to obtain the Pk, (co) is just the one consistent

with our P&+(t ) and maximizing this maximum-

entropy expression.
%'e now proceed with the program, paralleling the

standard development found in the literature with nota-
tion and minor generalizations appropriate to our prob-
lem. First, the distribution with maximum entropy with
a fixed set of correlation functions is found by the
Lagrange variation

0=&f (p{ [~kb(t. }]} —lnp{ [&kb(t. }]}—v

k,Rk;(t )

m, k

X g de„„(t„).
n, k, b

(88)

=Z 'exp —g g g Ekb(t )A, , keekg(&()
k* kek*b1, m

(89)

where the partition function Z:—e"+' is set to normalize

p~

Z = exp E'kb t 1'I — k
E'kb t(

k~k*b l, m

X g de„b(t„) .
n, k, b

(810)

Here, p is a multiplier of the normalization constraint,
and the A, „ are real and satisfy A, „=A, , like the

7 7

{R ",(t ) ) they constrain. Independently varying p at

each e&&(t„) yields

p( [e„b(t„)])

n, k, b

exactly equal to our estimates R„",(t ) yield very nearly

equal {Rk; (t ) ) for the remaining m. We determine

this distribution, and more importantly its mean correla-
tion functions, in two phases. First, knowing that the
distribution we seek has some set of (Rk; (t ) ), we find

for each such set the distribution corresponding to the
greatest number of "microstates" 0 as measured by the
entropy

= —Ip{[ kb(t„)] }lnp( [ekb(t„)] }p dekb(t„) .
n, k, b

Standard Gaussian integration then gives

S= +1nz&d.f
2

1+in' g to„, —f 1ng,„,(z), (811)
2 k* 27Tl Z

where u + is the fraction of k points in the star k *, Xd f,
k

an irrelevant constant, is the total number of degrees of
freedom in the Gaussian, and A,„,(z) is defined from the

A,„~(t„)= A, „~ in analogy with (86). To satisfy the con-

straints, the A, must insure
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a
lnZ

1 dz z
2vri z A,„,(z)

(B12)

Proceeding, we rewrite (B16) as

2(N —1)
P„'()= ' " g (

—g),
n=1

(B19)

which means simply

(Pk, (z*)) =wz, [Ak, (z)] (B13)

S= gw„, f ln(P„(z)) .k' 2mi z
(B14)

Hence, aside from constants which do not change with
our data, we can take the entropy associated with a prob-
ability distribution whose mean spectra are (Pk+(z) ) to

be

where the aforementioned properties of the cn guarantee
that the polynomial roots g„obey the property that if g is

a root, then so are g', g ', and g' '. These latter facts
may be seen by direct substitution into the sum in (B16}.
Because Pk, (z) must also be positiue on the unit circle, we

further know that each g on the circle must occur with
even multiplicity, otherwise P„+(z) would fiip sign as we

pass through it. Consequently, we can divide the roots
into two groups (N —1) each, I(„I and f g'„ I, where, for
all n, („=1/g'„' and g„does not lie inside the unit circle.
This allows us to rewrite (B19)for ~z~

= 1 as

We now maximize the entropy given in (B14) over all

possible spectra that are consistent with our estimates
P„"+, with the result being the spectra we seek. Because

we shall use the (P„+(z)) determined in this way as our

estimate for the spectra, we shall now drop the
expectation-value brackets for convenience. This gives

N —1

X g(z —g„)
n=1

N —1

g (z —1/g'„')
n=1

N —1

P„.(z) '= (
—1)" 'c

n=1

0=5+ w + . f lnP +(z)
1 dz

k*
k* 2+i z

N —1

m = —(N —1)

(B15}

Hk, (z)Hk', (z)

where

N —1

H„~(z)—:g a„'(k')z"
n=0

(B20)

(B21)

where the c's are the multipliers for the constraints that
the estimates from (B7) correspond to the actual mean
correlations as we know them from (B5). The c's must be
real and obey c„, =c„+ as do the R k', ( t ) they

7 7

constrain. The solution to (B15) is

( —1) 'c
n=1

(B22)

is some N —1 degree polynomial with no zeros inside the
unit circle, and

N —1
' —1

1
Pk~(z) =

Cke Z

where the c's must assure

ZnR„(r )
1 dz

2~i z pc m
k*,m

(B16)

(B17)

is a real constant chosen so that ao(k') =—1. Multiplying
both sides of the reciprocal of (B20) by z "H„'+ (z) and in-

tegrating around the unit circle employing (B5) yields the
Yule-Walker equations

N —1 1 d 2 n

1=0 2n.i z H„, z

Following Edward and Fitelson, we now proceed to
derive the Yule-Walker equations from (817). ' Using
Wold's method, we can derive constraints on the form
of the sum in (B16). Knowledge of P„~(z) on the unit cir-

cle is sufficient to determine the c;precisely,
N —1

c z( P„,'(zI), (818)

where the zI are spaced evenly around the unit circle in
the usual way. From this we easily verify the Lagrange
conditions that c =c*=c because P„,(z) must be
real and invariant under z ~z * on the unit circle.

(B23)

where we have used the fact that 1/Hk, (z) has no poles
inside the unit circle and collapsed the contour to the ori-
gin.

Finally, the Yule-Walker equations, (823}, may be
solved with the Levinson-Durbin algorithm, ' which
recursively solves these equations for increasing numbers
of estimated Rk+. If we label the solution to (B23)
when there are p + 1 autocorrelation lags
Ia~, (k*),a 2(k'), . . . , a (k'), o (k')I, then the
Levinson-Durbin algorithm gives the solution at order p
in terms of the solution at order p —1 as
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a (k*)=— R„"(t )

p —1

+ g a~, (k*)R„",(t )
q=1

a (k*)=a
&

(k*)+a (k*)a*
&

(k*),
cr2(k")=[1—~a (k*)~ ]cr,(k*),
and the initial solutions are simply

a), (k') = —R„"„(t,)/R„' ~(to),

cr, (k')=[1 la»(k")I ]Rz'„(to),

a

(B24)

(B25)

as may be verified directly in (B23) by induction.
In summary, our procedure for determining the spec-

tra shown in Fig. 3 is to first project out the phonon char-
acter using (B2) and compute the R„",(t„) from (B7).
These values are then employed in (B24) and (B25) until a
solution is built up to some order p. The spectra are then
given directly by co P„„(co)with Pk+(co) given by (B20)
and (B21). The only "free parameter" in this scheme is
the order p, one less than the number of correlation esti-
mates used in the fit. Many researches have observed
diSculties such as spurious peaks, peak splitting, and

peak shifting when using p approaching the number of
sample data. This is probably due to insisting that the
mean correlations of the probability distribution

p([e„l,(t„)I) be exactly the estimated correlation func-
tions, which will tend to be most in error for larger time
lags. One solution to this potential problem is to develop
a scheme where the entropy is maximized with con-
straints that allow some differences between the
( Rk~(t„) ) and the R„'~ (t„) with less weight given to the

higher order R„"~(t„). However, we have found that in-

creasing p up to as much as 90%%uo of N, the number of
sample times, only sharpens our peaks and produces none
of the aforementioned affects. This suggests that our
data, and hence our dynamics, are very well behaved.
Another possible way to improve the scheme is to make
the probability distribution p sharper by incorporating
more information. For instance, the inner product in
(B4) may be replaced by an outer product resulting in ma-
trix R„",(t„) that incorporate polarization information.

Such a scheme gives (B16) with P„,(z) and ck + replaced

with matrices. The Yule-Walker equations and the
Levinson-Durbin algorithm are not so easily generalized,
however, and for this reason we have adopted the stan-
dard "scalar" approach in analyzing the spectra for this
paper.
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