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Ab initio pseudopotential calculations of the crystal structure, electronic structure, cohesive energy,
and formation enthalpy of B»As2 have been calculated using a large plane-wave expansion. We compare
the bonding with that of B», B»C2, and B»02, which have nearly or exactly identical structures as well

as with that of elemental As.

I. INTRODUCTION

This is the sixth paper of a series of B,2 and com-
pounds formed from the B,2 icosahedron. Except for
tetragonal' B50C2 all have rhombohedral symmetry. B,2

is a simple rhombohedra1 lattice of B&2 icosahedra,
whereas' ' B»C3, B»C2, and B,202 consist of the lattice
of icosahedra plus interstitial chains which consist of two
or three atoms lying along the threefold axis. Figure 1 of
Ref. 3 is a model of the B& &C(CBC) structure which x-ray
analyses indicate has rhombohedral symmetry only be-
cause the icosahedral carbon atom occupies sites random-
ly on the top and bottom triangles of the icosahedra. In
Ref. 5 we noted that as one went from Bt2 to B&202 to
B»C2 the lattice constant a, lattice angle a, unit-cell
volume, chain-icosahedral and intericosahedral bond
lengths, as well as icosahedral distortion, all increased,
while the CBC chain is shorter than the O-O. Noting
that the atomic radii of the chain atoms which bond to
the icosahedra in the above sequence go from zero to
pQ 1 .247 bohr to rc = 1 .455 bohr, one may ask if the es-
tablished pattern extends to B,zAs2 where rA, =2.230
bohr.

The boron pseudopotential used in the B,2As2 calculat-
ed is identical to that used in a11 five previous calcula-
tions. It is well known that because the Kohn-Sham
exchange-correlation (xc) potential is nonlinear in the
charge density, v„,Wv„, (p„,&)+v„,(p„„). In constructing
the ionic pseudopotential from the atomic, it has become
common to subtract off' v„","=v„,(p„,) —v„,(p„„);howev-
er, for first row atoms (for reasons we do not understand)
we have found that taking v"„,"=v„,(p„,&) yields results in
no worse and sometimes in better agreement with experi-
ment. Thus our 8, C, and O pseudopotentials have not
used the core correction. We' have recently developed a

TABLE I. Rhombohedral lattice constant, angle, and intera-
tomic bond lengths of B»As2 compared with experiment.
(Lengths in bohrs. ) The first four bond lengths are in-

traicosahedral; the last is intericosahedral. The symbols t, t, e,
and e represent atoms in the top, bottom, and two equilateral
triangles of the icosahedron.

t-e
t-e
e-e
As-As
As-e
t-t

Calc.

10.054
70.18'
3.584
3.361
3.428
3.266
4.526
3.761
3.346

Expt.

10.078
70.50'
3.594
3.377
3.464
3.305
4.515
3.770
3.347

pseudopotential which eliminates the need for the core
correction in the heavier elements. We tested this pseu-
dopotential, which is based on Hartree-Fock cores, on Na
and GaAs and found it far superior to ordinary local-
density-approximation (LDA) pseudopotentials and of
equal quality to the core-corrected LDA pseudopotential
both with respect to comparison with experiment and to
the independence of the calculated results on the atomic
configuration used to construct the pseudopotential. The
As scalar relativistic pseudopotential generated in Ref. 10
and the B pseudopotential used in Refs. 1—5 are used in
this calculation.

We expand in all plane waves with kinetic energy less
than 44.005 Ry at the five points in the irreducible wedge
of the Brillouin zone (BZ) which reduce to the two special
k points" of the fcc lattice when a =60' and use the same
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iterative technique to diagonalize the self-consistent
Hamiltonian that we used in all papers in this series.

II. RESULTS

In Table I the calculated lattice constant, lattice angle,
and bond lengths are compared with the x-ray analysis of
Morosin et al. ' The agreement is extremely good ex-
cept for a, where it is better than we obtained for B,202
but not nearly as good as for B&2 or the carbides. It is in-

teresting to note that the As-e bond is actually shorter
than the sum of the covalently bonding atomic radii of 8
and As (3.893 bohr) while the As—As bond is slightly
longer than twice the As radius (4.460 bohr). The boron
icosahedron is said' to be two electrons short of fulfilling
its bonding requirements while each As has one more
electron than needed for its tetrahedral bonding require-
ments. Thus there is expected to be some transfer of elec-
tronic charge from the As to the icosahedra. The As-As

ionic repulsion and As-e ionic attraction can account for
the small differences from ideal covalent bond lengths.
This repulsion between chain atoms also occurs in B,zOz,
where, because the oxygens do not bond to each other, it
bends the boron-oxygen bonds perceptibly off the
icosahedral radial direction.

In Fig. 1 contours of constant pseudocharge density in
the three independent faces of the icosahedron are plot-
ted. That there is more charge around the e and e equa-
torial atoms which bond to the As than about the top
atoms t is obvious. Contours of constant charge density
in the reAection plane containing the threefold rotation
axis along its long diagonal are shown in Fig. 2. This is
the first case in which the chain is covalently bonded. In
B,202 the oxygen atoms seem to repel each other strongly
and the charge density drops to 8( (where
g=millielectrons/bohr ) midway between them. In the
carbides the CBC chain is more nearly hydrogen bonded
with the boron ion playing the usual role of the proton.

FIG. 1. Contours of constant pseudocharge density in units
of millielectrons/bohr' in the three independent faces of the B»
icosakedron of B»As2. Atoms t, e, and e belong to the top and

two equatorial triangles of the icosahedron.

FIG. 2. Constant pseudocharge density contours in units of
millielectrons/bohr in the reflection plane of B»As2 ~ Boron
icosahedra are centered at the four corners of the figure and two
covalently bonding As atoms lie on either side of the center of
the long diagonal.
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TABLE II. Co~parison amongst B», B»02, B»C2, and B»As2 of calculated lattice constant, lattice

angle, rhombohedral unit-cell volume, chain length, chain-icosahedral bond, and ratio of polar-to-

equatorial circumferences of the B» icosahedron. (Lengths in bohrs. )

0
C-C
C-e
t-i
c(1)/c(2)

9.512
58.12

582.31

3.155
1.0035

B»O

9.709
63.22'

693.38
5.695
2.826
3.199
1.0113

B»C2

9.824
65.54'

751.08
5.450
3.044
3.297
1.0152

B»As2

10.054
70.18

870.22
4.526
3.761
3.346
1.0364

The chain-icosahedral bond is here also clearly covalent
whereas the C and 0 2p pseudocharge densities are so
sharply peaked near the atom that in those cases all one
sees in the bonding region is a monotonically decreasing
charge density from the chain atom to the boron.

In Table II B,2, B,202, B)3C2, and B,2As2 are listed in
order of increasing atomic radius of the interstitial

(chain) atoms which bond to the icosahedra. We see that
the calculated lattice constant, lattice angle, unit-cell
volume, chain-icosahedron bond length, intericosahedral
bond length, and icosahedral distortion all follow this or-
dering. The distortion is the deviation from unity of the
ratio of the polar to equatorial circumferences of the
icosahedron, formulas for which are given in Ref. 5. The
chain lengths run in inverse order to the atomic radii,
with the three atom CBC chain being shorter than the
O-O and the As-As being by far the shortest. In order to
calculate the heat of formation of B&zAs&z we had to cal-
culate the cohesive energy of elemental As which also
crystalizes in a rhombohedral lattice but with two atoms
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FIG. 3. Constant pseudocharge density contours in units of
millielectrons/bohr in the re6ection plane of As. There are
two As per unit cell, one shared between the four corners of the
figure and the other in the center.

FIG. 4. Energy bands of B»As2 ~ The solid (dashed) lines
represent states that are even (odd) under re6ection in a vertical
plane. Along the threefold rotation axis from I to Z the alter-
nating long- and short-dashed lines represent twofold degen-
erate states. The symmetry under inversion is shown by a + or
—at symmetry points I, B, A, and Z.
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TABLE III. Calculated lattice constant, lattice angle, inner displacement parameter, unit-cell
volume, nearest-neighbor (NN) distance, and cohesive energy of As compared with NMN (Ref. 15) and
MHW (Ref. 16) and experiment.

a (bohr)
a
El

0, (bohr )

NN (bohr)
E„h (eV/atom)

MBK

7.559
56.799'
0.2297

282.80
4.790
3.775

NMN

7.591
56.28
0.230

282.68
4.790

MHW

7.718
55.9'
0.2294

294.19
4.839
3.78

Expt.

7.751
54.554'
0.2276

282.68
4.755
2.96

TABLE IV. Comparison of various B» compounds calculat-
ed cohesive energies (in eV/atom) and heats of formation (in
eV/unit cell).

B12
B1202

B12C
B12As2

6.8314
7.1465
7.1321
7.2508
6.5733

11.37
1.41
1.63
2.50

per unit cell. It is interesting to compare the contours of
constant As charge in the re6ection plane shown in Fig. 3
with those of B,zAsz. The first- and second-neighbor dis-
tances (from the central atom to the upper-left-hand and
lower-right-hand corner atoms, respectively) are 4.790
and 5.715 bohr. Only the first neighbor bond could be
called covalent and it is longer and weaker than the As-
As bond in B&zAsz, in the sense that its charge density is
less in both the bond maxima and central minimum.

Our B,zAsz energy bands are plotted in Fig. 4, labeling
points with the Slater' notation. B,zAsz has two elec-
trons per unit cell less than B,zOz or B&zC3 but also has
one fewer band below the gap and so, like them, is a semi-
conductor. Its indirect gap from I to 3 is 2.609 eV, and
the direct gap at A is 2.636 eV but is a dipole forbidden
transition. The 2.819-eV direct gap at Z is dipole al-
lowed. The x-ray data in Table I was obtained' from a
clear, colorless sample so we may be fairly certain that
these gaps, like most calculated using the local-density
approximation for exchange and correlation„are underes-
timates.

In Table III we compare our calculated lattice con-
stant, lattice angle, unit-cell volume, inner displacement
parameter u, cohesive energy, and nearest-neighbor dis-
tance for elemental As with those of Needs, Martin, and
Nielsen' (NMN) and Mattheiss, Hamann, and Weber'
(MHW) and with the experimental values listed by
MH%. Because of the semimetallic nature of As and the
smaller unit cell resulting in a larger BZ than B&zAsz, we
used a 30-point sample of the irreducible BZ wedge cor-
responding to the fcc 10 special k-point sample. " The
agreement with NMN is remarkably close considering
the fact that their pseudopotential calculation did not use
the xc core correction. The all-electron calculation of
MH% gives a and a in better agreement with experiment
but for the two most important quantities in determining
the total energy, i.e., the unit-cell volume and the
nearest-neighbor distance, ' our results are actually in

better agreement with experiment than theirs. Remark-
ably, the two calculations yield identical cohesive ener-
gies which, as usual, due to the LDA, are too large. '

In Table IV are listed our' calculated cohesive ener-
gies E„h and heats of formation for B,z and all the rhom-
bohedral compounds we have studied where
H(B„X )=(n +m)E„„(B„X )

—nE„h(B,2) —mE„&(X).
The intericosahedral bonding of equatorial atoms in B,z
is through a weak 6 bond to which each of three icosahe-
dra contributes —,

" of an electron. Thus it was completely
unexpected that B&zAsz mould have less cohesive energy
(per atom) than B,2. In fact, we would have guessed that
B&zAsz might have more cohesive energy than B&zOz for
two reasons: (1) the As bond to each other whereas the 0
do not; (2) according to the standard model' the 0 and
As play the role of cations, donating electrons to the B&z
icosahedra, but O has a larger ionization energy and elec-
tron affinity than As. The only physical reason we can
give for the calculated result is a size effect. The large As
atom both stretches the tt intericosahedral bond and, as
we have seen, causes an icosahedral distortion more than
three times larger than that in B,zOz. In all respects in
which As is favorable Sb is equally favorable but because
of the even larger Sb atomic radius, B,zSbz does not exist.
On the other hand, because of the small As cohesive ener-

gy, B,zAsz has a larger heat of formation than either
B,zC3 or B,3Cz and is quite stable.

In this last paragraph we summarize what is known
about the bonding of crystals based on B&z icosahedra.
From a chemist's point of view' there are 13 internal
icosahedral covalent bonds requiring 26 electrons and 12
external covalent bonds requiring 12 electrons from the
36 icosahedral boron electrons. The icosahedron at-
ternpts to make up part of this two-electron deficit in one
or more of the following ways. It can incorporate a
higher valence element into itself such as in B„C(CBC).
If the interstitial chain has more electrons than required
for its bonding as is the case for CBC, As-As, and 0-Q
chains, it can ionize the chain. In the case of tetragonal
B&oCz, the icosahedra ionize the two interstitial borons
which otherwise play no role in the bonding. From a
physicist's point of view, because the valence pseudo-
charge density is fairly constant over the surface of the
icosahedron, except in the region of the boron cores
where it is expelled, the icosahedral surface may be con-
sidered to be a two-dimensional metal. These metal shells
then must have a large enough mork function to fraction-
ally ionize the other atoms in the crystal. Although the



BANDS AND BONDS OF B)2As2 1537

two pictures are equivalent, the chemist's seems more
useful. In all the rhombohedral cases, except B&2, the six
top and bottom atoms of the icosahedron covalently bond
to atoms of icosahedra above and below while the six
equatorial atoms covalently bond to the chain atoms.
The chains themselves may be either bonding (CBC and
As-As) or nonbonding (O-O). All this is easily seen in the
contour plots. In the case of B~2 the six equatorial atoms
each contribute —', of an electron to a 6 bond involving
atoms from two other icosahedra and in this way reduce
the number of electrons required for bonding. In tetrago-
na1 BspC2 ten icosahedral atoms bond to other icosahedra
and two bond to carbon atoms. Because the two intersti-
tial borons fall far short of making up the eight-electron
deficit of the four icosahedra, B5pCp is only metastable
however, we have just completed a calculation of B~pN2

where the nitrogens each have one electron they do not
need for their bonding and which they can contribute to
the icosahedra; we find that B~pN2 is stable against
decomposing into 4B&p+2BN. Thus the chemists picture
holds together very well. In addition, of course there has
to be some component of ionic bonding contributing to
the cohesion, and finally, we have shown in this paper
that size (of the interstial atoms) effects can reduce the
cohesive energy.
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