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Case for nonadiabatic quantized conductance in smooth ballistic constrictions
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We present quantum-mechanical calculations of the conductance (G) of smooth, but not adiabatic,
ballistic constrictions (BC s). Although the BC width varies smoothly with position, the effective po-

tential for each transverse mode exhibits a pair of peaks that cause multiple reAections. If mode mix-

ing is neglected, G is dominated by transmission resonances. However, the exact (nonadiabatic) G is a

smooth function of F& with quantized plateaus. This is an explicit example of the breakdown of adia-

baticity being the source of conductance quantization in a smooth BC.

During the past few years there has been much interest
in the study of electronic transport in mesoscopic systems
in general, and most recently of quantum coherent eAects
in ballistic nanostructures (BN's) in two-dimensional
electron gases (2DEG's). In the BN's the effective dimen-
sionality of the electrons is reduced to one or zero, and the
quantization of energy levels is very important. For ex-
ample, at low temperatures, it has been observed that the
conductance G of a narrow ballistic constriction (NBC)
joining two 2DEG's is quantized in units of 2e /h. '- This
result can be understood by considering the relevant
length scales: the width W and length L of the constric-
tion, the electronic Fermi wavelength kF, and the mean
free path I. Typically, 8' and L —100 nm, kF-40 nm,
and I-1 pm. Since W-Xq, the lateral confinement in

the constrictions produces strongly quantized transverse
subbands. Also, 8 and L-Xp & I so that the electrons
move ballistically through the system. Thus, as the Fermi
energy EI: is increased and another transverse subband
becomes populated, G increases by a unit of quantum con-
ductance, 2e-'/h, so that

2

G= ' W(E, ),
h

where JV(Et:) is the number of occupied subbands for a
given EF. For E~'s between two consecutive subband
minima, say between the nth and the (n+ l)th, G has a
nearly constant value equal to 2e 'n/h, i.e., there is-a con-
ductance plateau (CP).

Measurements of 6 relate the current through the con-
striction to the electrochemical potentials deep within the
reservoirs so that G is given by'

T(EF),2e
h

where T(EF ) is the total transmission coefficient, equal to
the sum of the transmission coefficients over the occupied
levels at the Fermi energy. Assuming that the modes in

the constriction do not mix, and that the transmission
coefficients are I (0) if Et is above (below) the bottom-of
a given subband at the center of the constriction, one ob-

tains Eq. (I). These assumptions are quite restrictive
since they are equivalent to neglecting eAects of nonideal
electron injection, mode mixing, and partial reliection of
the wave field in the vicinity of the constriction. Glazman
etal. have demonstrated their validity in the adiabatic
limit, where the width of the constriction is assumed to
vary very slowly, and obtained exponentially sharp CP's.
The adiabatic and nearly adiabatic regimes have also been
discussed by Yacoby and Imry. '

On the other hand, one can consider NBC's with abrupt
geometries. In this case the CF's are modulated by reso-
nant transmission due to longitudinal resonances ("or-
gan-pipe" modes) along the constriction. ' ' Some ex-
perimental evidence suggestive of these resonances has
been obtained by Hirayama, Saku, and Horikoshi. ' In

the abrupt models there is a strong impedance mismatch
between the NBC's and the 2DEG's at their ends, and the
eA'ects of current injection, mode mixing, and reflection
are included in the calculations. Tapering the constric-
tions, or ramping the potential in them, ' ' "' reduces
the impedance mismatch and weakens the resonant modu-
lation.

From the outset, it has been recognized that realistic
NBC's are not fully adiabatic or completely sharp. The
constriction is just a finite part of a large 2DEG; its width

changes noticeably over a very small region of the system.
With this in mind, Glazman and Jonson have stressed
the lack of global adiabaticity in ballistic devices in the
absence of magnetic fields, and pointed out the impor-
tance of distinguishing between local and global adiabatic
regimes. More recently, Laughton et al. and Nixon,
Davies, and Baranger have sho~n that accurate conduc-
tance quantization may still be possible even when adiaba-
ticity is significantly violated by scattering due to poten-
tial irregularities. Ulloa, Castano, and Kirczenow,
Castano, Kirczenow, and Ulloa, " and Lent and Leng
have considered nonadiabatic eAects in periodically modu-
lated one-dimensional ballistic conductors.

However, the elegance and simplicity of the adiabatic
theory and its good agreement with experiments are very

appealing, and the adiabatics is wide1y accepted as the
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fundamental explanation of quantized ballistic conduc-
tances. In this paper, which builds on the work of Yacoby
and Imry, ' we present results that strongly suggest that
quantized conductances observed in real systems may not
be adiabatic in origin. We consider model constrictions
with a smooth geometry, but without taking the adiabatic
limit. The Schrodinger equation is solved exactly, albeit
numerically to find the wave function, reAection and
transmission coefficients, and the two-point conductance
of the system. The effects of mode mixing, refiection, and
current injection are fully taken into account. Our main
results are (a) G is a smooth function of EF with quan-
tized plateaus if the mixing between the different propa-
gating modes is fully taken into account. (b) However, if
mode mixing is neglected, the conductance G„is strongly
modulated by resonant transmission, a behavior that is
anomalous since the constriction is smooth. This modula-
tion appears because the effective potential for each trans-
verse mode is not simply a smooth, featureless barrier as
in the adiabatic limit, but exhibits a pair of peaks which
induce strong multiple refiections unless significant nona-
diabatic mode mixing intervenes. This shows that in such
constrictions it is precisely the nonadiabaticity that is re-
sponsible for conductance quantization.

A schematic representation of the model (drawn to
scale) is given in Fig. 1. The electrons are confined to the
unshaded area by a lateral hard-wall potential. The con-
striction width W(x) varies smoothly from W, for ~x~

&L/2 to Wo W(x 0) at thecenterof theconstriction.
We use an effective-mass Hamiltonian given by

H —62(a2/ax 2+a2/ay )/2m*+U(x, y), (3)

where U(x,y) is the confining potential. If )y) ~ W(x)/
2, U(x,y) 0;U(x,y)=~otherwise.

Ignoring, just for the moment, the motion in the x

direction, the normalized transverse wave functions in the

y direction are given by
r r l/2

2'"'= w(. )
sin

"
ly —W(x)/2]

w(x)

for ~yI ~ W(x)/2 n = 1,2, . . . . Here x is treated as a pa-
rameter. In terms of this (locally) complete basis of
transverse eigenfunctions the wave function can be ex-
panded as follows,

e(x,y) = g A. (x)y., (y). (5)
n=l

To find the expansion coefficients, A„(x),substitute (5) in
the Schrodinger equation, multiply by t'„,„(y)and in-
tegrate over y. Since the p's are orthonormal we obtain a
set of coupled differential equations as in Ref. 10:

, +2a„„(x) +P„,„(x)

where

2m*EF
nw

E A„(x)=0,w(x)'
(6)

p W(r)/2 a
atnn(x) —=J pw r(y) . pn r(h)dy. ,—W(.ri/2

t w(.r)/2 a2
Penn(x) —= 0'n!r(y). , 0.r(y)dy.

(7a)

(7b)

From now on the unit of energy will be Eo=h2n2/
2m Wo and the unit of length Wo=W(x=0). The
specific functional form of W(x) is quite arbitrary; we
only require the continuity of W'(x) =dW(x)/dx and
W"(x)=d'W(x)/dx. In this work, we have chosen
W(x) as follows:

W, 8'0
W( )= ', , f~x[ L/2

(W,.—Wo)cos(xn/L) + Wo

and

W(x) =W,
„

if ~x~ ~ L/2.

W(K)

I

x=-L/2
I I

x=L/2

This form is represented in Fig. 1 for 8', =68'0, and
L =2wo. To simplify the discussion, we now rewrite (6)
in a more transparent form. We define an effective poten-
tial

2

Vg(x)=,+ (I+n'x'/3)w(x)' nw(x)

and since a„„(x)=Owe obtain

, —n'V„,(x)+n'~ A„,(x)

FIG. 1. Schematic representation of the model constriction
used, drawn to scale. The shaded areas are inaccessible to the
electrons. The width at the center of the constriction is Wp. For
Ix)&L/2 the width is W, The constriction width varies
smoothly. W; 6Wp and L 2Wp.

= —g [2a„,„(x)8/Bx+B„,„(x)]A„(x),
nant

where e=EF/Eo. In (9), the right-hand side represents
mode mixing. If this term is neglected, the left-hand side
becomes a set of decoupled one-dimensional Schrodinger
equations; in this case, the only remaining effect of the
constriction would be through the effective potential
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FIG. 3. The exact conductance G (solid line) is a smooth

function of Je=(EI:/Eo) '~'-, for W,. =6WO and L =2WO. In the
adiabatic approximation the conductance G„(dashed line) has

strong resonances due to reflections between the peaks in the
effective potentials shown in Fig. 2(b).
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FIG. 2. (a) W(x) of the NBC and dW(x)/dx as functions of
x. (b) Effective potentials V„(x)(solid lines), and the trans-
verse mode energies t;, (x) =n'- /W(x)' (dashed lines) vs x for

68'0 and L =28 0. Each pair of curves is labeled by the
corresponding mode index.

V„,(x) for each mode. This is an adiabatic approximation
in the sense that the modes propagate through the con-

striction without mixing.
We solve the system of Eqs. (9) numerically in order to

calculate the exact conductance G. The numerical tech-

nique required the use of backward differentiation formu-

la methods since (9) is a system of stiff differential equa-

tions, a detailed account will be published elsewhere. We

also solve the decoupled system obtained by neglecting the

right-hand side of (9) to obtain the adiabatic approxima-
tion G„to the conductance.

In Fig. 2(a) we plot W(x) and W'(x) vs x for L =2Wo
and W,, =6Wo. In Fig. 2(b) we plot the effective potential

V„(x)(solid line) and e„(x)=n'-/W(x) (dashed line)

versus x for several different mode indices, n, as indicated

by the numbers next to each pair of curves. Notice that
where )W'(x)( is maximal V„(x)has peaks that are

higher than V„(x=0).These peaks become more pro-

nounced for higher mode numbers. Thus we see that the

effective potentials for the transverse modes are qualita-

tively different from a simple potential barrier, and have
"mirrors" at the ends of the constriction. If W, is in-

creased the peaks become progressively more dominant.
On the other hand, s„(x)is a smooth featureless barrier,
similar to the effective potential found in the adiabatic
limit. By itself it would give rise to a transmission
coeScient for any decoupled mode, which would rise

smoothly from zero to 1 as EF is increased.
In Fig. 3 the solid line is G, the exact conductance of

the system, and the dashed line is G„,the conductance
when mode mixing is neglected. Notice that G and G„are
very different. G„is strongly modulated by transmission
resonances caused by multiple reAections between the
peaks in the effective potential; this resonant modulation
is stronger for the higher modes since for them the peaks

are larger. However, G in which no approximations are
made and mode mixing is fully taken into account is a
smooth function of EF and has conductance plateaus at
the quantized values. These contrasting results for G and
G„illustrate that a priori neglect of nonadiabatic mode
mixing is not warranted even though we have a constric-
tion of smooth appearance and the conductance exhibits
quantized plateaus.

It is important to emphasize that our results apply to
other constriction shapes as well; the important ingredient
is the qualitative behavior of W(x) that includes a smooth
change of width over a ftnite region. For larger external
widths than the ones presented in this work, we expect
that this breakdown of adiabaticity would be even more
pronounced since the nonmonotonic features of the
effective potentials will become more dominant. If the
constriction is asymmetric, the peaks at its two ends would
be different and the effects of resonant transmission for
the decoupled modes would be less pronounced. This
would tend to lessen the differences between G and G„."

In conclusion, we have presented evidence that nonadia-
batic mode mixing &nay play an unexpectedly important
role in the development of quantized conductance plateaus
in smooth but finite ballistic constrictions, showing that it
is not necessary to use adiabatic approximations to ex-
plain quantum electronic transport in realistic ballistic
nanostructures. We hope that these results will stimulate
further research and discussion leading to a more
comprehensive understanding of ballistic quantum trans-
port phenomena.

Note added. After submission of this paper we received
a copy of work prior to publication by Bryant in which

the importance of nonadiabatic mode mixing in current-
injection phenomena in vertical quantum-dot systems is

demonstrated.
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