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Relationship between resistance, localization length, and inelastic-scattering length
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An integral equation for the average resistance of a wire sample of length L, R(L), is obtained in

terms of the probability density function for inelastic scattering and the average quantum resistance

due to elastic scattering within the sample. This equation yields the average sample resistance as a

function of the sample length L, the electron localization length (, and the inelastic-scattering length

AT), which depends on temperature. For the metallic regime, L & (&AT), and the insulating re-

gime, L &AT) & (, analytic expressions for the average resistivity p(T) in terms of g and AT) are ob-

tained. Our approach allows a unified treatment of both regimes. The relationship of the present re-

sults to those of Abrahams et al. and Thouless on the conductance of thin wires is discussed.

The measurement of dc resistance of a sample as a
function of sample length L and temperature T provides
much information on the nature of the sample and is

therefore of fundamental importance. In this paper we

present a simple formulation to calculate the average
resistance, R(L, T), of a thin wire sample of length L in

terms of the probability density function for inelastic
scattering, P(x,L, T) (defined below), and the average
sample resistance r(x) due to elastic scattering within the
sample. The latter quantity is the resistance determined
from the quantum mechanical transmission and reflection
amplitudes for elastically scattered waves traversing a

length x, averaged over distributions of elastic-scattering
centers. ' The former quantity is the probability density
function for inelastic scattering not to occur in the region

[O,x] and to occur in the region [x,x+dx] in a sample of
length L. The main result of this work applies directly to
conduction in insulators, semiconductors, metallic
glasses, and metals. It also bridges the gap between the
recent work on the ballistic electronic conductance of
small samples and studies at higher temperatures and/or

long sample lengths in which inelastic collisions become
important. Band and Avishai derived the expression for
R(L, T) in terms of the probability density function

I

P(x,L, T) and an average elastic-scattering resistance
r(x) for the special case of a periodically varying one-
dimensional potential which elastically scatters electrons,
with and without inclusion of randomization of the period-
ic potential (i.e., averaging over randomizations). Here
we generalize the result to an arbitrary average elastic-
scattering potential and thereby obtain a more general ex-
pression.

The mutual effects of elastic and inelastic scattering on
resistance have been considered by many authors.
The model we develop includes the effects of phase ran-
domizing inelastic scattering on the electronic propaga-
tion in an average elastic potential. We initially assume
that the major effect of an inelastic collision is phase ran-
domization of the electronic wave function; following
Refs. 15 and 16, backscattering due to inelastic scattering
is not included (backscattering due to elastic scattering
is). We provide a comparison of our results with these
references. We then phenomenologically add a contribu-
tion to the resistance from proper inelastic-scattering
effects using Matthiessen's rule, ' which also accounts for
inelastic backseat tering.

The generalization of the expressionz for R(L, T) is

given by

R(L, T) = dx~ P(x~, L, T),r(x~,O)+ dx2 P(x2 x i, L x i, T)
~L

x r(x2.,x))+ dx3P(x3 xq, L —xq, T)[r(x—3,x2)+ ]

This formula is obtained employing the following phe-
nornenological argument. Without inelastic collisions, the
resistance R(L, T) equals the average resistance (aver-
aged over the distribution of elastic-scattering sites ' ),
r(L;0). If an inelastic collision occurs at x ~, the phase of
the electronic wave function is disturbed and the resis-

I

tance is computed by adding in series the resistance
r(x~.,O) and the resistance of the remainer of the path.
We define the probability of proceeding to x] without

suffering a phase-breaking collision and then suffering a
phase-breaking collision at x~ as P(x~, L, T). r(x~, O)
must be multiplied by the probability P(x~, L,T) and an
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integral over all possible x ~
from zero to L must be taken.

Now, let us consider the whole random walk of the elec-
tron. The electron starts from x=0 and proceeds to x~
without suffering an inelastic collision, and suffers its first
inelastic collision at x~ with probability P(x~,L, T). The
resistance associated with this random walk is r(x~,O).
The electron then proceeds from x] to x2 without
suffering an inelastic collision, and suffers its second in-
elastic collision at x2 with probability P(x2, L, T), and so
on. The resistance of each of these random stalks must be
added in series. Equation (1) expresses the series summa-
tion of resistances weighted by the appropriate probability
distributions. In what follows we shall assume transla-
tional invariance of the average elastic resistance, i.e.,
r(xq.,x~) =r(x2 —x~). It should be stressed that the as-
sumption of translational invariance for r(x2,x~) is valid

only upon taking an impurity average of the sample, and
the approach used here is appropriate only for systems
where fluctuation phenomena in the transport are of no
relevance.

It is a simple matter to convert the series in Eq. (1) into
the integral equation

pL =, dx P(x, L)r(x)+pL —p(x),

where

r L

(x) = dxP(x, L)x.
Thus,

(3)

(4)

dx P(x,L)r(x)
p(T) =

dx P(x,L)xJp

(r)
(x)

We would now like to specify a probability density
function P(x,L) and a resistance r(x). For a conduc
tor, HT) «(, the number of electrons that have not suf-
fered a collision decays exponentially with length as
exp[ x/8T)] where gT) is —the inelastic-scattering

R(L) = dx P(x,L) [r(x)+R(L —x)], (2)

(we have dropped the explicit T dependence). This is a
universal form for R(L) in terms of an arbitrary density
function P(x, L) and an elastic collision resistance r(x),
in the sense that it holds regardless of the detailed form of
r(x) and P(x,L). Given P(x, L) and r(x), the resistance
R(L) can be calculated by numerically solving the in-

tegral equation.
While Eq. (2) is valid for all L, it is of interest to use

Eq. (2) to obtain an expression for R(L) for the case of
large L, i.e., L »g,8T), where g is the electron localiza-
tion length and 8T) is the temperature-dependent
inelastic-scattering length, since this is the usual limit for
macroscopic samples. In this limit, the resistance is

linearly proportional to the length of the sample with the
constant of proportionality called the resistivity, R(L, T)
=p(T)L. We can easily obtain an expression for the
resistivity p as a function of g and AT) for this macro-
scopic limit. Substituting the expression R(L) =pL into
Eq. (2), we obtain

length. The exponential character originates from the dy-
namics of population decay, dn/dx = —Nrsn, where n is
the electron density unaA'ected by inelastic collisions,
N(T) is the density of the phonons at temperature T and
o is the inelastic cross section for electron-phonon col-
lisions, and AT) '=N(T)cr. Clearly, the probability
density for large L also decays exponentially; for finite L,
the normalized probability density is

P(x, L) =AT) ' exp[ —x/AT)]

+exp[ L/A—T)]b(x L—+e), (6)

This form of the average elastic resistance vanishes as
x 0, as required.

An explicit expression for the resistivity can now be ob-
tained using Eq. (6) for the probability density function
and Eq. (7) for the elastic-scattering resistance in Eq. (5)
for p. Assuming R(L, T) =p(T)L, we obtain the follow-
ing expression for the resistivity as a function of ( and

T),

p(T) = (ro/g) (1 —exp [ L/gT ) [1 A—T )/g]] )—
[1 AT)/g] f 1

——exp [—L/8T )1]

We conclude from Eq. (8) that the resistivity varies in-
versely with g for AT)/(&&1, the resistivity depends on
both g and AT) for AT)/( & 1, and it diverges exponen-
tially with the power of the exponential dependent on
L/AT) for AT)/(& I [hence the assumption R(L, T)
=p(T)L is not warranted for gT)/(& 1, but see below
for modifications in this regime]. Figure 1 plots p(T)/
(ro/() vs gT)/g for a number of values of L/gT). For
AT)/g«1, the dependence on AT)/g is indeed negligi-
ble. For AT)/g & 1, p(T) depends on both AT) and g in-
dependently, but does not depend on L/8T) (i.e., the
resistivity is independent of sample length). Note, howev-
er, that inelastic collisions have been used only to inhibit
localization effects in our analysis so far. We have yet to
include the effects of inelastic collisions contributing
directly to the resistance.

For an insulator, AT) & g, the hopping mechanism is
weak and the resistance increases dramaticaliy. In this lo-
calized regime, the "probability of proceeding to x]
without suffering a phase-breaking collision and then
suff'ering a phase-breaking collision at x~," P(x~, L, T),
must be modified. The probability P(x~, L, T) is no longer
independent of the localization length. The form of
P(x~, L, T) necessary to take into account Mott variable
range hopping in a thin wire is

where e is a positive infinitesimal number. The last term
guarantees a normalized proability distribution and as-
sures that if no inelastic collision occurs in the sample,
R(L) =r(L). It is consistent with the ideas introduced by
Buttiker regarding resistance of perfect leads. In the lo-
calization regime, the randomization of the elastic poten-
tial yields localization of the electronic wave function and
results in an exponential form of the average resistance for
large x given by'

r(x) =ra[exp(x/g) —1] .
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P(x,L) =Cexp[ —xV '+2( ') —h(x)/kaT]+exp[ —xK '+2& ') —h(x)/kaT]6(x —L+e) . (9)

R..h(r, T) = oo 'L

I —L ( (IO)

where oo is the conductance times an appropriate short
sample length ' (see below). For a system of size L larger
than AT), the resistance can be obtained by adding up the
resistance of an appropriate number of phase-coherent
lengths, i.e., lengths of the order AT). This gives

—IL
R(L, T) =R„h[L =AT), T]

Here, h(x) is the mean hopping energy for hopping a dis-
tance x, A(x) =(xWdn/dE) ', where W is the width of
the thin wire and dn/dE is the density of states per unit
energy. '" The A(x) term in the exponential accounts for
the fact that the probability P(x, l, ) must go to zero at
small x (the probability of finding a site with appropriate
hopping energy becomes small), the W' term is unimpor-
tant in the AT) & ( regime, and the 2( term originates
from the site overlap integral. '" The resulting resistance
is linear in L for L &AT), and using Eq. (5) the resistivi-

ty can be analytically determined in terms of modified
Bessel functions. It can be shown to behave asymptotical-
ly as Mott variable range hopping in one dimension, p(T)
-exp(a((W(dn/dE)kitTJ '/ ), where a is a numerical
constant. However, we should note that the variable-
range-hopping resistance in 1D may be dominated by the
lowest probability hop and the average arguments used by
Mott do not account for this.

We emphasize that the probability in Eq. (9) allows for
a unified treatment of metal and insulator regimes and a
smooth transition between them.

Previously, Abrahams et al. ' and Thouless' con-
sidered the conductance of thin wires in the regime
AT) «(. They obtained the result that for a fully phase-
coherent sample of size L

and, hence,
—

I

1
—AT)/g

'p T (12)

p(T) = +, forAT) &g &L.rp/g k p /ne

T/g T
(13)

In this argument we assumed for simplicity that the trans-
port mean free path from inelastic processes is the same as
the total phase-breaking mean free path; this assumption
can easily be relaxed.

Knowledge of the temperature dependence of AT) al-
lows determination of the temperature dependence of the
resistivity. For example, in Fig. 2 we plot p(T)/(rp/() as
determined by Eq. (13) versus temperature using the

Taking crp=rp (, i.e., using ( as the appropriate short
sample length, we see that this equation, which results
from the analysis in Refs. 15 and 16, is equivalent to that
obtained from Eq. (8) for AT) & g «L. Our method pro-
vides a more rigorous means of adding up the resistance of
the phase coherent lengths than in Eq. (11),and produces
the same result when AT) & g «L.

We now consider the direct contribution of inelastic-
scattering collisions to the resistance. From Matthiessen's
rule, ' when two scattering mechanisms (elastic and in-

elastic) contribute to the resistance, p(T) =p ' (T)
+p (T). In the metallic regime, Eq. (8) furnishes the
resistivity p

' (T) due to elastic scattering, as affected by
inelastic scattering limiting localization. The simple for-
mulation of Ohm's law gives p (T) =m/[ne r (T)]
=kF/ne'AT) due to proper inelastic scattering, where m

is the electron effective mass, n is the electron density, kF
is the Fermi momentum, and i is the inelastic collision
time. Thus, we finally obtain

106 I I I I I I I I I I I I I I I I I I I I I I I I 100

I(T)-T
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

104 =

100 =-

80—

60—

40—

20—

1.00
I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

0 05 1 15 2 25
I(T)l(

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

50 100 150 200 250 300 350
T( K)

FIG. I. p(T)/(rp/() vs the ratio of the inelastic-scattering

length to the localization length as obtained from Eq. (10). The

results in the region AT)/g & I satisfy the assumption of resis-

tivity independent of sample length.

FIG. 2. Calculated p(T)/(rp/() vs T, assuming AT) —T
for two values of the localization length, (=/200 K) and

(=A50 K). For T & 200 K and T & 50 K, respectively, the

resistivity is exponentially increasing and is length dependent.
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dependenceAT) —T, for two different values of the lo-

calization length corresponding to (=A200 K) and

(=/50 K), and three different values of the dimension-
less ratio x=kF/ne ro. For temperatures near those for
which AT) =g, the resistivity decreases rapidly with in-

creasing temperature due to the first term on the right-
hand side of Eq. (13), and the material is insulating for
lower temperatures. For high temperatures, the second
term in Eq. (13) dominates and the resistivity increases
with increasing temperature. Note that the resistivity

goes through a minimum as a function of temperature.
Determination of the parameters appearing in the present
theory may be possible from the deconvolution of experi-
mentally determined temperature dependence of the resis-
tivity of samples.
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