## Scanning-tunneling-microscopy and spectroscopy studies of C<sub>70</sub> thin films on gold substrates

T. Chen, S. Howells, M. Gallagher, and D. Sarid Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

L. D. Lamb, D. R. Huffman, and R. K. Workman

Department of Physics, University of Arizona, Tucson, Arizona 85721 (Received 27 February 1992; revised manuscript received 25 March 1992)

Thin films of high-purity  $C_{70}$  were deposited on polycrystalline gold surfaces and studied by scanning tunneling microscopy (STM) in ultrahigh vaccum. Topographic images reveal initial-stage growth patterns ranging from close packing with a twofold symmetry to random stacking.  $C_{70}$  molecules appear oval-shaped, in agreement with the proposed  $D_{5h}$  structure of  $C_{70}$ . Static orientational disorder is observed in both close-packed and random-stacked regions. The adsorbed  $C_{70}$  molecules show the highest STM contrast at bias voltages well below the HOMO-LUMO gap voltage. These and scanning-tunneling-spectroscopy results are discussed and compared with those obtained previously on similarly prepared  $C_{60}$  thin films.

The discovery of the condensed form of the fullerenes<sup>1</sup> has aroused tremendous interest in this new form of carbon and in novel materials derived from it.<sup>2</sup> The research and development efforts have led to the remarkable discovery of superconductivity in doped solids of  $C_{60}$ ,<sup>3</sup> the observation of unusual electrical transport,<sup>4</sup> magnetic,<sup>5</sup> optical,<sup>6</sup> and mechanical properties<sup>7</sup> in  $C_{60}$  and  $C_{70}$ , successful separation and extraction of a number of higher fullerenes<sup>8</sup> and the fabrications of a variety of fullerene derivatives.<sup>9–11</sup>

 $C_{60}$  and  $C_{70}$  are the two most abundant fullerene molecules. The proposed structure of  $C_{60}$  is a strained carbon cage consisting of twenty hexagonal and twelve pentagonal rings, each formed by distorted carbon  $sp^2$  bonds.<sup>12</sup> The structure of  $C_{70}$  can be derived from that of  $C_{60}$  by, e.g., inserting ten extra carbon atoms in between the two halves of a  $C_{60}$  "cut" perpendicularly to one of its fivefold symmetry axes.<sup>13,14</sup> The resulting structure has a reduced symmetry of  $D_{5h}$ , with five nonequivalent carbon sites, in contrast to the  $I_h$  structure of  $C_{60}$  with all carbon sites being chemically equivalent.

Recent <sup>13</sup>C NMR, <sup>15</sup> Raman and IR spectroscopy, <sup>16</sup> and structural studies<sup>9,10</sup> of high-purity  $C_{60}$  and  $C_{70}$  samples have provided experimental evidence that is highly compatible with the key expectations for these proposed structures. Real-space images of  $C_{60}$  have been obtained using high-resolution microscopy techniques such as scanning tunneling microscopy (STM), $^{17-21}$  atomic force microscopy,  $^{22-24}$  and TEM (Ref. 25) on thin films of highpurity  $C_{60}$  and of  $C_{60}/C_{70}$  mixtures prepared on metal-lic,  $1^{7-20,23}$  semiconductor, <sup>21</sup> and insulating substrates. <sup>22</sup> In this paper we report on the first scanning tunneling microscopy and spectroscopy (STM-S) studies in ultrahigh vacuum (UHV) of high-purity C<sub>70</sub> thin films deposited on metal surfaces. STM images show extended coverage of  $C_{70}$  molecules ranging from packing with a twofold rational symmetry to random-stacking arrangements on polycrystalline gold substrates. A large fraction of the  $C_{70}$ molecules appear oval shaped, in agreement with the proposed structure of C<sub>70</sub>. Static orientational disorder of

 $C_{70}$  in these samples is observed. The highest STM contrast was obtained at bias voltages well below the highest occupied molecular orbital-lowest occupied molecular orbital (HOMO-LUMO) gap voltage, indicating a much reduced molecular character of the adsorbed  $C_{70}$ .

The high-purity C<sub>70</sub> sample used in this study was obtained by repeated chromatography of mixed fullerene material produced by a toluene soxhlet extraction of KH carbon.1 The chromatography was carried out on an alumina column, with elution by toluene and hexane mixtures, as described elsewhere.<sup>8</sup> Ultraviolet, visible, and IR absorption studies provide an estimate of 95% or higher for the purity of this sample. High-purity polycrystalline gold substrates were annealed at 700-800 °C in air, and then ultrasonically cleaned in ethanol. Controlled amounts of the high-purity C<sub>70</sub> dissolved in toluene were deposited on the substrates in air and dried in UHV. Auger electron spectroscopy measurements performed on these samples indicated no further contamination, and that such depositions yielded monolayer coverages of C70. Local coverage of C70 is inferred from the STM measurements, as described below.

STM-S measurements<sup>26</sup> were carried out in a UHV of  $1.0 \times 10^{-10}$  torr. The STM tips were cut from  $250 \cdot \mu$ mdiam Pt-Ir wires, and tested on cleaved 2H-MoS<sub>2</sub> or highly oriented pyrolytic graphite surfaces prior to the experiment. During STM-S data acquisition, the drift rates in x- and y-scan directions were less than  $\sim 0.5$  Å/min, and negligible in the z direction. All STM images presented here are unfiltered.

Displayed in Fig. 1 are two large-area topographic images of a monolayer coverage of  $C_{70}$ , showing their packing arrangements on the gold substrates. Images of the same surface areas obtained at opposite bias polarity revealed essentially the same information, except that the molecular contrast was somewhat reduced. The granular character of the background is typical of the polycrystalline gold substrates used in this study and in our previous work on thin films of  $C_{60}$ .<sup>19</sup> Close examination of Figs. 1 (a) and 1 (b) reveals that most  $C_{70}$  molecules appear to

<u>45</u> 14 411

14412



FIG. 1. (a) A topographic image of a monolayer coverage of high-purity  $C_{70}$  on a polycrystalline gold substrate, obtained at  $V_{\text{bias}} = 73.5 \text{ mV}$  and  $I_{\text{tunn}} = 100 \text{ pA}$ , showing both the packing arrangements of monolayer coverage of  $C_{70}$  and the morphology of the substrate. (b) Local ordering of  $C_{70}$  with a twofold symmetry. The dimensions of  $C_{70}$ , as determined from the molecular spacings, are  $a = 11 \pm 1$  Å (short axis) and  $c = 13 \pm 1$  Å (long axis), yielding an aspect ratio  $c/a = 1.2 \pm 0.1$ .

be slightly elongated, and the packing in Fig. 1(b) has a twofold symmetry, as indicated by the arrowed lines. The apparent dimensions of these molecules are  $11 \pm 1$  Å along the short axis and  $13 \pm 1$  Å along the long axis, as determined from the molecular spacings in the packed region, yielding an aspect ratio of  $1.2 \pm 0.1$ . Figures 2(a) and 2(d) are topographic images where almost all  $C_{70}$ molecules appear oval-shaped. More interestingly, Fig. 2(d) shows a unique packing arrangement that is highly compatible with the structure of  $C_{70}$ , and consistent with the twofold symmetry observed in Fig. 1. Note that the thermal drift in the slow-scan direction (vertical) was negligible in all images presented here. This was also verified by comparing the scan-up and scan-down images of the same surface areas. Cross-sectional views of Figs. 2(a) and 2(d) along the solid lines are displayed in Figs.

2(b) and 2(c), and 2(e) and 2(f), respectively. The apparent molecular "height" of 5-8 Å is similar to that of  $C_{60}$  on gold obtained under similar imaging conditions.<sup>19</sup> The arrows in Figs. 2(b), 2(c), 2(e), and 2(f), which highlight the molecules, are placed at the molecular "boundaries," i.e., the locations of local maximum contrast variation. It is interesting to note that the dimensions of these clearly resolved  $C_{70}$  molecules, as indicated by these arrows, are rather close to those obtained from the molecular spacings in the packed region. While the overall sizes of the  $C_{70}$  in Fig. 2(d) appear slightly larger than that in Fig. 1 due to a looser packing, the aspect ratio of the molecules remains the same.

Tunneling was stable throughout the imaging process. However, mobility of the  $C_{70}$  molecules, induced mainly by tip scanning, was indeed observed. This was evidenced by sudden contrast and image changes, which became more frequent as the current setpoint was increased to several nanoamperes. The STM contrast of the adsorbed  $C_{70}$  was found to decrease with increasing bias voltage from, e.g.,  $\sim 50$  mV (highest contrast) to  $\sim 800$  mV (diminished molecular contrast). This bias-voltage dependence is particularly evident when comparing the dI/dVmaps of a same  $C_{70}$  coverage area, simultaneously obtained at bias voltages of, e.g., 73.5 and 300 mV (not shown here).

The scanning tunneling spectroscopy results showed the characteristic tunneling spectra ranging from that of a doped semiconductor to an insulator, depending on the local coverage of C<sub>70</sub>. At monolayer coverage, typical I-V spectra show nearly metallic conductivities at low bias voltages, and an enhanced tunneling at bias voltages above  $\pm$  (0.4-0.6) V. I-V spectra which reveal larger energy gaps approaching the full gap of C<sub>70</sub> were obtained for higher local C<sub>70</sub> coverages.

As a comparison, our UHV-STM results on high-purity C<sub>60</sub> thin films on polycrystalline gold substrates reveal that C<sub>60</sub> molecules pack preferentially in hexagonal arrays, and appear to be spherical in shape, with an average diameter of  $11 \pm 1$  Å, as measured from the molecular spacing in the close-packed regions. The extended hcp arrangement on "rough" polycrystalline gold surfaces reflects the strength of the attractive intermolecular interaction in the initial-stage growth on metal surfaces. The agreement between the measured and expected diameters of  $C_{60}$  demonstrates that reliable size measurements can be obtained on fullerene molecules in the close-packed regions based on the periodicity in the STM contrast. There are, however, inherent uncertainties in the size determination of spatially isolated molecules on rough metal surfaces, such as the ones used in these studies. These uncertainties can originate from the tunneling contributions of the inhomogeneous background, often comparable in magnitude to that of the absorbed molecule, the electronic modifications of the molecule upon adsorption, and the overlap of wave functions in the vicinity of the tip apex. The latter can have significant effects on the STM images of  $C_{60}$  and  $C_{70}$ , depending on the detailed orbital mixing occurring between the tip apex and the surface area being scanned.

The STM images of high-purity C<sub>70</sub> thin films prepared





FIG. 2. (a), (d) Topographic images of the oval-shaped  $C_{70}$ , and their packing arrangement, as in (d), compatible with the observed twofold symmetry. The solid lines in (a) and (d) indicate the locations for cross-sectional views. (b),(c) and (e),(f) The cross-sectional views of (a) and (d), respectively. The molecular dimensions and their spacings are marked by the arrows and diamonds.

on the same type of gold substrates reveal an overall more disordered initial-stage growth pattern in comparison to that of  $C_{60}$ . No hexagonal-closed-packing arrangement is observed for C<sub>70</sub> at monolayer coverages. A large number of the C<sub>70</sub> molecules appear elongated, closely matching the proposed  $D_{5h}$  structure when viewed perpendicular to its fivefold symmetry axis. While the average dimension of C<sub>70</sub> along the short axis is found to be  $11 \pm 1$  Å, same as the measured diameter of C<sub>60</sub>, apparent sizes of the long axis show notable variations, especially in the random-stacking regions, due most likely to scattered molecular alignment with respect to the tip axis. The maximum size of the long axis of  $C_{70}$  measured in these regions is, however, the same as that obtained from the periodicity in the packed regions shown, e.g., in Fig. 1(b). These measured dimensions and the aspect ratio of  $c/a = 1.2 \pm 0.1$  are in good agreement with the expected values of  $a \approx 11$  Å,  $c \approx 12$  Å, and  $c/a \approx 1.1$ .<sup>27</sup> The "lying-down" position appears to be a preferred adsorption configuration for the C70 molecules at monolayer coverage on gold. The apparent molecular height of 5-8 Å, instead of the expected 11 Å or larger for C<sub>70</sub>, may reflect the fact that the wave functions of the delocalized electrons of the gold substrate extend further into the tunneling gap region than that of the adsorbed molecules. The  $C_{70}$  molecules, therefore, appear to be partially "embedded" in the gold substrate in the STM topographic images, as shown in Fig. 2.

The observed packing with a twofold symmetry, and the absence of an hcp arrangement of monolayer  $C_{70}$  coverage on gold are not surprising in light of the observed oval structure and the apparent absence of molecular rotation. The orientational disorder, as observed in the random stacking and, to a much lesser extent, in the packed regions, appear to be static. The non-hcp arrangement in the absence of dynamic orientational disorder may have important implications to the possible equilibrium bulk crystal structures of  $C_{70}$  at, e.g., low temperatures.

The anchoring of the adsorbed  $C_{70}$  molecules reflects the chemisorption nature of their attachment to the gold surfaces. This involves the hybridization of the high-lying molecular orbital and energy levels of the gold surface, and a preferential charge transfer from the electron-rich substrate.<sup>19</sup> This mechanism is, in the case of  $C_{60}$  adsorbed on gold and platinum surfaces, responsible for the observed intramolecular contrast (IMC). These effects

## 14414

<u>45</u>

can be further demonstrated here by the fact that, in our STM studies, the highest contrast of the adsorbed  $C_{60}$  and  $C_{70}$  is obtained at bias voltages typically less than  $\sim 0.2$ V, well below the HOMO-LUMO gap voltages of 1.7 and 1.6 eV for isolated  $C_{60}$  and  $C_{70}$ , <sup>28</sup> respectively. In the same bias-voltage range, the I-V spectra of the adsorbed  $C_{70}$  molecules display an overall metallic character. The interpretations of these STM observations are consistent with the results of photoemission (PE) studies of  $C_{60}$  and C<sub>70</sub> thin films deposited on metal and semiconductor surfaces.<sup>29</sup> In particular, the empty-state levels of  $C_{60}$  were found to shift towards the Fermi level by as much as 0.5 eV at a submonolayer coverage, when compared to a higher coverage (> 2 ML) on a gold substrate. This was attributed to a more effective orbital mixing between the first layer C<sub>60</sub> and the gold substrate, which produces a LUMO-derived density of states near the Fermi level.<sup>29</sup> The anchoring of the fullerene molecules to the gold surfaces is also supported by theoretical considerations based on the attractive interactions between the  $C_{60}$ , which become negatively charged upon adsorption, and metal surfaces, and an enhanced covalent bonding of C<sub>60</sub> to rough metal surfaces at more reactive sites, such as steps and high-index planes. 30

It is interesting to note that, in contrast to  $C_{60}$ , IMC is not observed in the adsorbed  $C_{70}$  molecules, despite the absence of thermally induced mobility and rotation. The observed structureless molecular surfaces would imply a higher degree of delocalization of the high-lying  $\pi$  electrons in  $C_{70}$  and/or spinning of  $C_{70}$  about its fivefold symmetry axis, although the latter possibility is highly speculative. While a quantitative analysis is not yet available, a qualitative understanding of the absence of IMC in  $C_{70}$ can be obtained by considering the consequences of the

- <sup>1</sup>W. Krätschmer *et al.*, Nature (London) **347**, 354 (1990).
- <sup>2</sup>See, for example, Mater. Res. Soc. Symp. Proc. **206** (1991).
- <sup>3</sup>A. F. Hebard *et al.*, Nature (London) **350**, 600 (1991).
- <sup>4</sup>R. C. Haddon et al., Nature (London) 350, 320 (1991).
- <sup>5</sup>P.-M. Allemand et al., Science 253, 301 (1991).
- <sup>6</sup>W. J. Blau et al., Phys. Rev. Lett. 67, 1423 (1991).
- <sup>7</sup>J. E. Fisher *et al.*, Science **252**, 1288 (1991).
- <sup>8</sup>F. Diederich *et al.*, Science **252**, 548 (1991).
- <sup>9</sup>J. M. Hawkins et al., Science 252, 312 (1991).
- <sup>10</sup>P. J. Fagan et al., Science 252, 1160 (1991).
- <sup>11</sup>F. Wudl et al., Fullerenes (American Chemical Society, Washington, DC, 1992), Vol. 491.
- <sup>12</sup>H. W. Kroto *et al.*, Nature (London) **318**, 162 (1985).
- <sup>13</sup>H. W. Kroto, Nature (London) **329**, 529 (1987).
- <sup>14</sup>T. G. Schmalz et al., J. Am. Chem. Soc. 110, 1113 (1988).
- <sup>15</sup>R. Tycko et al., J. Phys. Chem. 95, 518 (1991).
- <sup>16</sup>D. S. Bethune et al., Chem. Phys. Lett. 179, 181 (1991).
- <sup>17</sup>R. J. Wilson et al., Nature (London) 348, 621 (1990).
- <sup>18</sup>J. L. Wragg *et al.*, Nature (London) **348**, 623 (1990).
- <sup>19</sup>T. Chen et al., Mater. Res. Soc. Symp. Proc. 206, 721 (1991);

structural differences between the  $C_{60}$  and the  $C_{70}$ , which have direct effects on the high-lying  $\pi$ -electron configurations. Due to its ellipsoidal structure, having five more hexagonal  $sp^2$  rings than does the C<sub>60</sub> structure, the surface of C70 is less strained and therefore more graphitelike than that of  $C_{60}$ . As a result, an enhancement of the delocalization of high-lying  $\pi$  electrons is expected. In principle this could overshadow subtle effects such as the IMC observed in C<sub>60</sub>. This trend of a higher degree of  $\pi$ electron delocalization with an increasing number of hexagonal rings has indeed been demonstrated by recent xray absorption near-edge structure, <sup>31</sup> electron-energy-loss spectroscopy,<sup>32</sup> and magnetic susceptibility measurements<sup>33</sup> on high-purity C<sub>60</sub> and C<sub>70</sub> samples. Under similar imaging conditions and sample preparation, IMC was not observed in the STM images of the "giant" higher fullerenes, which contain as many as 300 carbon atoms.<sup>34</sup>

In conclusion, our UHV STM-S studies on high-purity  $C_{70}$  thin films deposited on polycrystalline gold substrates directly confirm the proposed structure of  $C_{70}$ . The measured molecular dimensions are in good agreement with that expected for the structure. The  $C_{70}$  molecules appear well anchored to the gold substrate at monolayer coverages, and the observed packing arrangement with a two-fold symmetry is highly compatible with the  $D_{5h}$  symmetry of  $C_{70}$ . The observation of significant LUMO-derived density of states near the Fermi level, and the effective anchoring of rough gold surfaces, reflect the consequence of the hybridization between the LUMO orbitals and the energy levels of the gold substrates.

This work was supported by the Air Force Office of Scientific Research and the Office of Naval Research.

- T. Chen *et al.*, J. Vac. Sci. Technol. B 10, 170 (1992); 9, 2461 (1991).
- <sup>20</sup>X. P. Gao et al. (unpublished).
- <sup>21</sup>Y. Z. Li et al., Science **253**, 429 (1991).
- <sup>22</sup>E. J. Snyder *et al.*, Science **253**, 171 (1991).
- <sup>23</sup>D. Sarid *et al.*, Ultramicroscopy (to be published).
- <sup>24</sup>P. Dietz et al., Appl. Phys. Lett. 60, 62 (1992).
- <sup>25</sup>Su Wang et al., Chem. Phys. Lett. 182, 1 (1991).
- <sup>26</sup>STM-S measurements were done using a UHV STM from McAllister Technical Services, and a control electronics and computer work station from Digital Instruments, Inc.
- <sup>27</sup>W. Andreoni et al., Chem. Phys. Lett. 189, 241 (1992).
- <sup>28</sup>R. E. Haufler et al., Chem. Phys. Lett. (to be published).
- <sup>29</sup>T. R. Ohno et al., Phys. Rev. B 44, 13747 (1991).
- <sup>30</sup>E. Burstein et al., Phys. Scr. (to be published).
- <sup>31</sup>H. Shinohara et al., Chem. Phys. Lett. 183, 145 (1991).
- <sup>32</sup>V. P. Dravid et al., Chem. Phys. Lett. 185, 75 (1991).
- <sup>33</sup>R. C. Haddon et al., Nature (London) 350, 46 (1991).
- <sup>34</sup>L. D. Lamb *et al.*, Science **255**, 1414 (1992).



FIG. 1. (a) A topographic image of a monolayer coverage of high-purity  $C_{70}$  on a polycrystalline gold substrate, obtained at  $V_{\text{bias}} = 73.5 \text{ mV}$  and  $I_{\text{tunn}} = 100 \text{ pA}$ , showing both the packing arrangements of monolayer coverage of  $C_{70}$  and the morphology of the substrate. (b) Local ordering of  $C_{70}$  with a twofold symmetry. The dimensions of  $C_{70}$ , as determined from the molecular spacings, are  $a = 11 \pm 1$  Å (short axis) and  $c = 13 \pm 1$  Å (long axis), yielding an aspect ratio  $c/a = 1.2 \pm 0.1$ .



FIG. 2. (a), (d) Topographic images of the oval-shaped  $C_{70}$ , and their packing arrangement, as in (d), compatible with the observed twofold symmetry. The solid lines in (a) and (d) indicate the locations for cross-sectional views. (b),(c) and (e),(f) The cross-sectional views of (a) and (d), respectively. The molecular dimensions and their spacings are marked by the arrows and diamonds.