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Effective interatomic interactions in inhomogeneous semi-infinite systems
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The parameters entering the effective Ising model of disordered alloys with nonuniform composition

at the sample surface are derived within the framework of the generalized perturbation method. The

tight-binding version of the linear-muffin-tin-orbital method and its generalization to inhomogeneous al-

loys is used to describe the electronic structure in the local-density approximation, while the semi-

infinite nature of the problem is included via the surface Green s-function approach. The method is ap-

plied to evaluate the site-diagonal terms of the Ising model as well as the effective interatomic interac-

tions between sites within and between top layers up to the fourth-nearest neighbors of the fcc (001) face

of the transition-metal alloys Pd5pRh&p and Ag&pPd5p.

I. INTRODUCTION

Alloy phase stability in bulk solids, ordering and clus-

tering phenomena, etc. , are currently studied within a
microscopic theory based on a generalized three-
dimensional (3D) Ising model. ' The problem consists of
two equally important parts: (i) the quantum-mechanical
description of the electronic structure, which supplies the
parameters for the 3D Ising model; and (ii) the study of
this model for T )0, using methods of statistical mechan-
1cs.

The statistical part of the theory has already achieved
a high level of sophistication. The traditional mean-field

theory (Bragg-Williams approximation) is currently re-

placed by more advanced approaches. At present, the
most important ones seem to be the cluster variation
method (CVM) and Monte Carlo simulations. In both
approaches it is assumed that the configurationally
dependent part of the internal energy can be written as a

rapidly convergent sum of pair and multisite interatomic
interactions.

The parameters entering the 3D Ising model are de-

rived basically in two different ways. (i) A limited set

(about ten) of periodic crystal structures representative
for a given problem is chosen and their total energies are
calculated within the local-density approximation (LDA).
These energies are then directly mapped onto the Ising
model. This method, proposed by Connolly and Willi-

ams, was recently developed further by Zunger and co-
workers ' and is called the renormalized interaction ap-
proach (RIA). Standard ab initio band-structure tech-
niques applied to suitably chosen small supercells can be
used, and the double-counting terms are included. On
the other hand, as the interaction energies, which are of
order of a few mRy, are obtained as differences of total
energies, the numerical requirements are severe. (ii) The
multiple-scattering expansion of the thermodynamical
potential for the statistically disordered alloy is the start-
ing point for the generalized perturbation method (GPM)

of Ducastelle and Gautier, the concentration waves

theory (CWT) of Gyorffy and Stocks, and the embedded
cluster method (ECM) of Gonis et al. All these methods
are based on the coherent-potential approximation (CPA)
for the disordered state, and quite recently they were em-

ployed in calculations of the Ising model parameters from
first principles. ' '" Here the advantages are explicit ex-
pressions for the interatomic interaction parameters and
thus physical transparency. The double-counting terms
are neglected on the basis of the so-called force
theorem, ' but further efforts to clarify this point would
be desirable.

Very recently first attempts appeared to generalize the
GPM theory also to the case of alloy surfaces. These
studies' ' are based on empirical tight-binding (TB)
Hamiltonians and on the description of the semi-infinite

solid in terms of a finite cluster of atoms using the recur-
sion method.

The aim of this study is to present a systematic method
for the calculation of the parameters for the 3D Ising
model of semi-infinite disordered alloys, which can in

turn be used as a starting point for a statistical treatment
of surface-induced structural phenomena, such as segre-

gation, ordering, and formation of other inhomogeneous
patterns. The main parts of our method are (i) the appli-
cation of the TB-LMTO (linear-muffin-tin-orbital)

method to describe the electronic structure of the ran-

dom alloy, 's (ii) the description of the semi-infinite

geometry of the system within the surface Green's-
function (SGF) formalism, ' (iii) the use of a CPA ap-

proach generalized to inhomogeneous systems, ' which

allows us to describe any concentration profile connected
with the surface, and (iv) the determination of the Ising
Hamiltonian parameters within the GPM, using an ex-

pansion with respect to the inhomogeneous CPA effective

medium.

II. THEORY

In order to determine the parameters of the Ising
Hamiltonian for a semi-infinite disordered alloy with con-
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centration inhomogeneities near the sample surface, one
has to know its electronic structure. The corresponding
formalism was developed recently. ' We therefore
present here only those aspects necessary for the present
purposes.

The semi-infinite alloy is considered to be divided into
three parts: (i} a homogeneous bulk alloy, (ii) a (homo-
geneous) vacuum, e.g., represented by empty spheres with
flat potentials, and (iii) an intermediate region consisting
of several atomic layers, where all inhomogeneities
(structural and electronic) of the system are concentrated,
and which in the general case also contain a few layers of
empty spheres. After configurational averaging, all lay-
ers could, at least in principle, have different local physi-
cal properties. To make the problem tractable, we as-
sume that from a certain layer on the electronic proper-
ties of all subsequent layers are those of the correspond-
ing infinite system, namely, either a homogeneous bulk

alloy, or the vacuum. We therefore approximate the
semi-infinite alloy by an intermediate region that contains
N atomic layers (p =1,2, . . . ,N) and which is coupled to
the vacuum and to the bulk alloy.

The central quantity to be determined is the
configurationally averaged auxiliary resolvent' of the
system,

g(z) = ( [P(z) S]—' ) = [P(z)—S]

Here, P(z) is a site-diagonal potential function matrix,
which characterizes the scattering properties of all sites.
In a binary alloy A, B, , P(z) is the site-diagonal poten-
tial function matrix, which at a given site R is randomly
either P "(z) or P (z). Within the CPA, the nonrandom,
configurationally averaged coherent-potential function
matrix P(z) is also a site-diagonal quantity

P~(z), p =1,2, . . . , N in the intermediate region
P(z)= '

P (z) or P"(z) otherwise, (2)

where the indices b and u refer to the bulk and vacuum
region, respectively, and P"(z) is determined using the
bulk TB-LMTO-CPA method. ' For cubic lattices, stud-
ied in this work, P"(z) is a diagonal matrix' with respect
to L =(I,m). Due to the lowering of the symmetry at
the surface, P~(z) is nondiagonal with respect to L even
for cubic lattices. '

In Eq. (1), S refers to the screened structure constants
within the most localized nonrandom muffin-tin-orbital
representation. The use of the screened structure con-
stants has two important advantages. (i) As S is nonran-
dom by definition, and P(z) is random, but site diagonal,
the configurational average can be performed within the
CPA. It should be noted that, contrary to the empirical
TB-CPA method, no additional difficulties, such as off-
diagonal randomness, arise. (ii) The short-range charac-
ter of S allows us to introduce the concept of principal
layers (PL), which greatly facilitates the theoretical treat-
ment.

Within this concept, the semi-infinite alloy is viewed to
be composed of PL's defined in such a way that only the
nearest-neighboring PL's are coupled by the structure
constants S. Depending on the actual structure of S, and
on the face of the system, a PL consists of one or more
atomic layers. For example, a restriction to first-
(second-) nearest neighbors turns out to be sufficient' '
for a fcc (bcc) lattice. Consequently, for a fcc (001), fcc
(111),and bcc (110) surface, a PL is equivalent to just one
atomic layer. For the sake of simplicity, in this paper we
limit ourselves to this case. The generalization to the
case of PL's consisting of more than one atomic layer is
straightforward, and was developed previously. '

The coherent-potential matrices P (z) in the inter-
mediate region, 1 ~p N, are found from a set of coupled

inhomogeneous CPA equations which in matrix form is
given by

c t (z)=0,
a= A, B

t, (z)= [P (z) —P, (z}]I 1+4 (z)[P (z) —P~(z) ]]
(3)

Here, the c are layer-dependent concentrations of the
atoms a=A, B which are generally different from the
bulk ones, cb"=c, and cb =1—c. For a particular site R
in a given layer p, t (z) and 4 (z) are the on-site ele-
ments of the single-site t matrix, and of the averaged
resolvent g, 4~(z)=gti ti (z), respectively. To solve Eqs.

P P

(3), one needs an explicit expression for 4 (z}. Due to
the two-dimensional translational symmetry of g(z), one
can perform a two-dimensional lattice Fourier transfor-
mation, by which the problem is reduced to a one-
dimensional semi-infinite linear chain with nearest-
neighbor interactions between PL's. The remaining step
is now to determine the surface Green's function (SGF)
of the bulk alloy and of vacuum. By definition, the SGF
is the top PL projection of the resolvent of the semi-
infinite homogeneous alloy or of the vacuum. These
SGF's provide the necessary coupling to the intermediate
region. In other words, using the concept of SGF's, one
can reduce the original problem of infinite order to an
effective problem of finite order N. By using bulk
screened structure constants,

Spp(ki~ i) =Soo(kg ),
Si~(k~~ ) —Soi(k~[ }5t+i,q+Sio(k[~ +p —s, q

one gets for the (p, q) block (1 ~p, q ~N) of the inverse
configurationally averaged resolvent g(k~~, z)
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jg '(kll, )} =[P ( ) —S (kll) —I (kll, )]5

01(
ll

) @+1 q lp(
ll

) p —1,q

where

S„,(kll }=gexp[ikllR }S(R), R E [R~, } .

(4)

(5)

which has to be solved self-consistently. The layer-
diagonal elements g~~(kll, z } of the matrix g(kll, z) can be
effectively calculated by a partitioning technique' via a
recursive set of equations terminated by I, and I z [see
Eqs. (6)]. The layer-diagonal-, but site-off-diagonal ele-
ments of g(z) are found from the expression

1
g „,(z)= gg„(kll, z)exp[ikll(R —R')} .

RpRp Nil k
II

Here, k~~ is a vector from the surface Brillouin zone and
the symbol [Rzz} denotes a set of vectors that connect
one (arbitrarily chosen) site in the pth layer with all the
sites in the qth layer. In Eq. (5) we made use of the fact
that the structure constants S depend only on a difference
vector R =R —R . In Eq. (4), I' (kllz) denotes the cou-
pling of the intermediate region to the alloy (or vacuum),
namely,

I,(kll, )=S, (kll)Q (kll, )S,(kll),

I (kll, z)=0 for p=2, . . . , N 1, — (6)

P~(kll&z)=Sp](kll )0 (kll&z)S]p(kll }

The quantities 9 (kll, z ), A=v, b, are the SGF's of the vac-
uum and of the homogeneous bulk alloy. They can be
determined directly in real space by using the technique
developed in Ref. 16, which avoids the k~ integration
common to other approaches' ' and reduces the prob-
lem to the following set of equations for 9 (kll, z) and
0"(k

ll, z ):

9 (kll, z ) = [P (z) —Soo(kll )

—
Soi(kll )9 (kl, z }Sip(kll )]

(kll'z ) = [P"(z)—Soo(kll }

—Sio(kll )Q'(kll, z )So](kll )]

~ —@p+g g+g gg+-, g g +RR 9R 9'R'+
R a R,R' a, a'

(a,a'= A, or 8), (10}

(12)

where z=E —i5. The first term compensates the extra
singularities in ln[g (z)], which originate from the poles
of P(z). In the most localized representation, as a rule,

these singularities lie well outside the occupied part of
the energy spectrum and need not be considered.
Decomposing the configurationally averaged Green's
function g(z) into its diagonal (gd ) and off-diagonal (g,s )

parts with respect to lattice sites, one gets

Tr lng(z) =Tr(lng(z} —in[1+ [P(z}—P(z}]g&(z)}
—in[1+ t (z)g,tt(z) ]), (13)

where the quantities P(z), P(z), and t(z) are defined in

Eqs. (1)—(3). The usual GPM expansion of Eq. (13) into
multiple-scattering series yields for the Ising Hamiltonian
parameters the expressions

dg (E)=—lim Imtrln[1+[Pg (z) Ptt(z)]gott(z)} i—1

K 5~0+
(14)

are the configurationally independent part of the alloy
internal energy 6p, the on-site energy 2Pz, the pair intera-
tomic interactions Vz~, and, generally, the interatomic
interactions of higher order. A particular configuration
of the alloy is characterized by a set of occupation indices

gR, where gz = 1 if the site R is occupied by an atom of
the type a, and g~ =0 otherwise. The parameters are
found within the GPM by mapping at T=O the grand-
canonical potential Q,&(T=O, EF} of the electronic sub-

system (where EF is the Fermi energy)

EF
Q„(T=O, E~)= —f N(E)dE (11)

onto the Hamiltonian (10). The integrated density of
states N(E) for a particular configuration of the alloy is
within the TB-LMTO-CPA formalism given by

N(E) = ——lim Im Tr —,'ln P(z) +ln[g(z)]1 d
7T 5~0+ 2 dz

Here, N~~ is the number of lattice sites in a given layer.
We remark that the quantity 4~(z) that enters the CPA
equations (3) is a special case of Eq. (8), namely,
4 (z) =gz „(z). The layer-off-diagonal and site-off-

p R R

diagonal elements of g(z), that enter the expressions for
the Ising model parameters [see Eq. (15) below] can be
found from (4) either by partitioning technique, or by
direct inversion of [g(kll, z)] '. For g, (z) one gets

Dg(E)= f dg (E')dE', 2P~ =Dg (EF),

where z =E—i5. Similarly,

vga~, (E)=—lim Imtr in[1 —
tg (z)g~R (z)

K 5~0+

X tz, (z)gz ( )R]z,
(15)

1g«, (z)= gg„(kll z expjikll(R, —R,')} . (9)
P q

IJ k
II

This formally completes the solution of the electronic
part of the problem.

The parameters of the semi-infinite alloy Ising Hamil-
tonian &,

where Tr denotes the trace in configurational and angular

rnomenturn space, while tr means the trace over angular

momentum space only. It is advantageous to rewrite the

Ising Hamiltonian, Eq. (10), using the so-called transfor-

rnation to the lattice gas model, gR =1—gz =gR. If we

limit ourselves to single-site and pair interactions, the Is-
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ing Hamiltonian can be written up to a constant as

g+R)R +
2 X +RR' /R)R' &

R,R'

where
+R +R +R + X [+RR' +RR'1

R'(WR )

+RR' +RR'+ +RR' +RR' +RR'AA BB AB BA

(16)

(17)

(18)

The energy-dependent quantities VRR R (z) and VR„R
are obtained in a similar manner. In analogy with the
EPI s, it is common to work with effective triplet interac-
tions (ETI) VRR R defined as

cy —
[
ctr A A A cy A AB cy AB A cyB A A +~ABB

RR'R"

+ cyBAB+ cyBBA cyBBB] (20)

It should be noted that the ETI's modify both the on-site
as well as the pair terms of the effective Ising Hamiltoni-
an when the transformation to the lattice gas is per-
formed.

III. RESULTS

The above formalism is applied to the (001) face of fcc
Pd50Rhso and Ag50Pd50 random alloys. Our choice is
motivated by the fact that the PdRh system was studied
for the bulk case both by the GPM method based on the
KKR-CPA (Korringa-Kohn-Rostoker) method' and us-

ing the renormalized interaction approach. ' We thus
can compare our results for deep layers with the above-
mentioned results. The system AgPd was studied by us
previously, ' both for homogeneous and inhomogeneous
concentration profiles at the sample surface. The PdRh
system represents a weak-scattering limit of the alloy
theory while the AgPd alloy exhibits a strong level disor-
der with non-negligible disorder in bandwidths. '

We mention briefly some details concerning the numer-
ical part of the problem. We consider s, p, and d states

The quantities VRR. in (18) are the renormalized
effective pair interactions (REPI); the unrenormalized
ones (EPI) correspond to the first-order expansion of the
logarithm in (15). Note that the sites R, R ' are in general
located in different layers p and q of the intermediate re-
gion. The corresponding energy-dependent quantities
VRR.(E) and URR.(E) are defined using the quantities

VRR (E) and URR. (E) in (15) in analogy to (18). The
quantity 2)R is the renormalized effective level or the
point-cluster energy, which can contribute significantly to
ordering and segregating processes in systems with ine-
quivalent sites such as surfaces or bulk alloys with
different sublattices. Note that according to (17), the on-
site term 2)R is modified by pair interactions. Its energy-
dependent counterpart DR(E) is obtained from DR(E)
and VRR (E), Eqs. (14) and (15), in analogy to (17).

The multisite interatomic interactions can be evaluated
similarly to the pair interactions. For example, for the
unrenormalized triplet interactions one obtains in analo-

gy with the EPI's
I If I tt

URR'R" (z) IR (z)gRR (z)rR (z)gR R "(z)~R (z)gR "R(z) ~-

(19)

on each atom so that all occurring matrices are of order
9. For simplicity, we neglect the dependency of the po-
tential functions P (z) on the layer index p, and use
values derived from the self-consistent bulk TB-I.MTO-
CPA calculations. We also employ the simplest model
for the vacuum-solid interface, namely, the hard-wall-like
boundary condition. ' In this case, 0"(z) [see Eq. (6)] is
simply zero. We have also made calculations with other
types of boundary condition such as a step barrier, but
the results for the PdRh system indicate that REPI's are
not very sensitive to the actual form of the boundary con-
dition. However, a further study of this point would be
of interest.

The necessary Brillouin zone (BZ) integrations were
performed over the full surface BZ [400 special k~~ points
in a square surface BZ of the fcc (001) face]. All calcula-
tions were carried out in the complex energy plane and
then analytically continued to the real axis. Note that
the logarithms in Eqs. (14) and (15) should be evaluated
from deconvoluted quantities. ' The set of coupled CPA
equations (3) was solved for N =3, while the possible de-
viations from the bulk concentration were limited to the
first two top sample layers. ' We have evaluated all
REPI's up to the fourth-nearest neighbors (NN} within a
given layer as well as between various layers in the sur-
face near region. In order to compare our results with
existing calculations for the bulk case, ' we have
identified the first-, second-, and fourth-NN's in the
fourth layer, and the third-NN between the third and
fourth layers with the corresponding bulk alloy REPI
values. Due to the fast convergence of the layer GF's to
the bulk ones' this is a very good approximation. We
also evaluated some typical ETI's such as triangles and
linear triplets in various top layers.

The REPI's for fcc (001} PdsoRh~o alloy are summa-

rized in Fig. 1. We note very good quantitative agree-
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FIG. 1. Renormalized effective pair interactions for the fcc
(001) Pd50Rh5o random alloy. The positions of atoms forming a
pair are specified by layer indices p-q, whereby the index 1 refers
to the surface, and by the type of neighbors (first- to fourth-
nearest neighbors). The first-, second-, and fourth-nearest
neighbors for p=q=4, and the third-nearest neighbors for
p =3,q =4 can be identified with the corresponding bulk values.
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xnent of our results with those obtained for the bulk sys-
tem. ' We also note the fast decrease of REPI's with
distance in all layers including the surface layer. The
negative values of REPI's indicate a strong tendency to-
wards phase separation at T =0 which agrees with the
existence of a miscibility gap in the bulk PdRh phase dia-
gram. Note that contrary to a general conclusion made
in Ref. 13 on the basis of a simplified model the first-NN
surface REPI is not dominating. A similar effect was
found recently also in the TiRh system. '

We have also compared the calculated REPI's with
EPI's for Pd50Rh50 and Ag50Pd50 alloys. The general
quantitative agreement is very good for both systems
though our calculations for Pd90V&0 system indicate non-
negligible deviations.

In Table I we present the values of the ETI's calculated
for the fcc (001) Ag50Pd50 alloy. We have chosen a few
simple triplets, including various triangles and linear trip-
lets along the [110]direction. The values of ETI's for tri-
angles are generally very small as compared to the
REPI's. For the bulk case this is in agreement with the
results in Ref. 6. Similarly to the REPI's the ETI's also
quickly approach the corresponding bulk values within a
few layers below the surface. It is interesting to note that
the largest ETI values are found for linear triplets, while
the smallest values are obtained for triangles formed sole-
ly from nearest neighbors. This somewhat surprising re-
sult was also reported in the bulk alloy case.

The key to the understanding of the behavior of the
REPI's lies in the energy-resolved quantities, Vaa (E),
Eq. (15). They are shown in Figs. 2 and 3 for PdRh and
AgPd alloys, respectively. Clearly, the actual value of the
REPI depends strongly on EF, or, alternatively, on the
actual band filling. We note that for the PdRh system EF
lies between zeros of V(E) thus indicating relative stabili-

ty with respect to perturbations like the charge redistri-

bution at the surface. This should be contrasted with sit-
uations when E~ lies close to the zeros of V (E), especial-

ly those for the first-nearest neighbors. Such systems
could be rather sensitive to a proper treatment of charge
self-consistency, possible lattice relaxations, etc. Prelimi-
nary calculations indicate that the PdV system may be
such a case. In accordance with the strong level disorder
in AgPd mentioned above, the absolute values of the
V(E)'s for the AgPd system are about three times larger
than those for the PdRh system. Due to the position of
Ez just above the d bands in Ag&OPd&0, the absolute
values of the REPI's are rather small. We note that for
the AgPd system the values of the REPI's roughly follow
the pattern predicted in Ref. 13.

In a statistical mechanical study of ordering or segre-
gation phenomena at the surface on the basis of the Ising
model (16) it is assumed' that the REPI's do not depend
on the actual concentration profile at the surface. In a
proper treatment of the ordering and segregation process-
es both the REPI's and the concentration profiles should
be determined in a self-consistent manner. ' In order to
see how important modification of the REPI's due to the
inhomogeneous concentration profile can be, we compare
for fcc (001) Ag50Pd~o alloy' in Fig. 4 the results of the
homogeneous case with two inhomogeneous concentra-
tion profiles. We point out the following. (i) There is
essentially no difference between the studied cases in the
fourth layer. This, in turn, justifies our choice of the
fourth layer as a "bulk" layer in the above analysis. (ii)
The overall shape does not change dramatically in the
alloy studied, nevertheless we find non-negligible
differences for certain energies (i.e., for certain band
fillings).

The values of the point-cluster energies may be decisive
for the ordering or segregating phenomena in inhomo-
geneous systems, like alloy surfaces. In Fig. 5 we show

TABLE I. Effective triplet interactions (ETI) for the fcc (001) Pd50Rh, o random alloy. The positions
of three atoms forming a cluster are specified by layer indices p&, p2, and p3 (index 1 refers to the sur-
face layer) and by the type of neighbor pairs n», nz3, and n» (indices 1, 2, and 4 refer to the first-,
second-, and fourth-nearest neighbors).

p& p2 p3 n&2 np3 n31 ETI (mRy/atom)

0.409
0.127
0.081

Type

triangle

0.155
0.108
0.087

triangle

0.660
0.253
0.200
0.209

triangle

0.649
0.980
0.945
0.962

linear triplet
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fcc PdppRhzp (001) Agp Pd p(001) alloy
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FIG. 2. Energy-resolved nearest-neighbor renormalized
effective pair interactions V„„,(E) for the fcc (001) Pd&pRhsp

random alloy. The full, dashed, and dotted lines denote the sur-

face (p =q =1), the interlayer (p =1,q =2), and the bulk

(p =q =4) terms, respectively. The dashed vertical line denotes
the position of the bulk alloy Fermi level.

I I

-0.75 -0.5 -0.25

ENERGY (Ry)

for the first top layers (p = l, 2, 3) the difference
D~(E} Db(E} be—tween the energy-resolved on-site terms
and the value corresponding to the bulk (subscript b),
represented by the fourth layer. As demonstrated in Ref.
13, this difFerence is roughly proportional to the
difference in the surface tensions of the pure constituents.
As an example we have chosen the case of the homogene-
ous Ag50Pd50 alloy. We have found a quick convergence
of the point-cluster energies to their bulk value. Another

FIG. 4. Energy-resolved nearest-neighbor renormalized
effective pair interactions V „,(E) for fcc (001) AgPd random

P

alloy with a bulk composition AgspPd5p. We compare three
concentration profiles Ag, Pd&, in the first two layers

P P

(p =1,2): (i) homogeneous profile, c& =c2=0.5 (full line), (ii) in-

homogeneous profile, cl =0.1, c2=0.75 (dashed line), and (iii)
inhomogeneous profile, cl =0.9, c2=0.25 (dotted line). The
layer indices (p, q) of atoms forming a pair are attached to cor-
responding curves.

20—

0 10—
cd

0

fcc AgppPdpp (001)
interesting result is that these differences may vary
dramatically and even change sign. This may be quite
important for segregation processes because the alloy can
gain or lose energy when atoms in top layers are inter-
changed mutually.

Ag MPd&p(001) alloy
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FIG. 3. Energy-resolved nearest-neighbor renormalized
effective pair interactions V„,(E) for the fcc (001) Ag5pPdsp

P
random alloy. The full, dashed, and dotted lines denote the sur-
face (p =q = 1), the interlayer (p = 1, q =2), and the bulk

(p =q =4) terms, respectively. The dashed vertical line denotes
the position of the bulk alloy Fermi level.

-0.75 -0.5 -0.25

ENERGY (Ry)
FIG. 5. Energy-resolved differences of the point-cluster ener-

gies, D~(E)—Db(E), for the homogeneous fcc (001) AgspPdsp
random alloy. The full, dashed, and dotted lines correspond to
the first three layers, p =1,2, 3, respectively.
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IV. CONCLUSIONS

We have developed a method to calculate from first
principles the parameters of the 3D Ising model of a ran-
dom semi-infinite alloy with an arbitrary concentration
profile near its surface. The generalized TB-LMTO-CPA
technique' is used to evaluate layer- and concentration-
dependent effective levels and effective pair and triplet in-
teratomic interactions of the Ising Hamiltonian within
the GPM method. The numerical feasibility of the
method was demonstrated for the cases of the fcc (001)
faces of Pd50Rh50 and Ag50Pd50 alloys. For the case of
deep layers we recovered the results obtained for the bulk
alloy by other methods. '

We have found important modifications of the pair in-
teractions at the surface due to the changes in the local
electronic structure, as well as due to the specific position
of the bulk Fermi level dictated by the alloy composition.
In agreement with similar studies based on empirical
models, ' ' our calculations using the Bragg-Williams
statistical model indicated a crucial importance of the
on-site terms for the segregation process. We have found
non-negligible modifications of the REPI s due to possi-
ble concentration-profile inhomogeneities at the surface.
These modifications depend sensitively on the position of
the bulk alloy Fermi level, i.e., on the band filling. Con-
sequently, a consistent theory of surface segregation
should include in each iteration step a recalculation of
parameters of the effective Ising model for the concentra-

tion profile determined in the previous iteration from sta-
tistical mechanics.

The present version of the theory can be generalized in
some respects, e.g. , by including the effect of layer relaxa-
tion at the surface, by inclusion of the relativistic effects,
and by considering other crystal faces. We mention at
least two points which we think are of great importance
for surface related problems and which should be
clarified in the future: (i) the problems of charge self-
consistency at the surface which lead to level shifts, and
which can strongly modify on-site as well as interatomic
parameters of the Ising model; and (ii) the problem of the
double-counting terms neglected in the GPM-CPA
method on the basis of the force theorem. '

Our method represents an approach based on the
local-density approximation to construct the effective Is-
ing Hamiltonian for alloy surfaces, which, in conjunction
with the CVM approach or Monte Carlo simulations,
opens a way to study surface alloy phase stability prob-
lems from first principles.
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