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We derive an expression for the magnetization M(k, b, ) in a pulsed-fiield-gradient experiment for
spins diffusing in a con6ned space with relaxation at the pore walls. Here k = pbg, , b = pulse
width, g = gradient strength, p = the gyromagnetic ratio, and 6 is the time between gradient
pulses. We show that the deviation of —ln[M(k, D)/M(0, b)] from quadratic behavior in k in

experiments in porous media can be a more sensitive probe of the microgeometry (size, connectivity,
size distribution, shape, etc.), than either the enhancement of 1/Ti over the bulk water value, or the
macroscopic diffusion coefficient, which is derived from the slope of —ln[M(k, b, )/M(0, b, )] at small

k, in the limit of large A. We propose some simple models of randomly oriented tubes and sheets to
interpret the k dependence of the amplitude beyond the leading small-k quadratic behavior. When
the macroscopic diffusion coefficient is unobtainable, due to the decay, the present considerations
should be useful in extracting geometrical information. The effective diffusion constant derived from
NMR exactly equals that derived from electrical conductivity only when the surface relaxivity is
zero, but can be close to each other in favorable circumstances even for finite surface relaxivity.
Exact solutions with partially absorbing boundary conditions are obtained for a slab and a sphere
to infer that the normalized amplitude M(k, 4, p)/M(0, 4, p) depends only weakly on the surface
relaxivity p for rnonodisperse convex-shaped pores in the parameter ranges of interest. We also
obtain expressions for the mean lifetime of the amplitude in the geometries considered.

I. INTRODUCTION

Spin echo measurements are routinely used for study-
ing molecular diffusion in fluids. When the diffusion
is confined by the presence of obstacles, the experiments
yield information about the confining geometry2 as
seen by the diffusing particle. In porous media, precisely
such information, i.e. , length scales, such as pore and
throat sizes, and geometric factors, such as tortuosity and
connectivity, determine the transport and other proper-
ties. There has been a lot of interest recently in using
NMR techniques to obtain information on microgeom-
etry, the interest being in part due to the noninvasive
nature of these measurements.

The main purpose of this paper is to show that in a
pulsed-field-gradient (PFG) experiment, the full k ("mo-
mentum") dependence contains much more information
about the microgeometry than just the usual diffusion
coeKcient, which is derived from the k dependence of
the logarithm of the normalized echo amplitude at small
k. We give examples to show the influences of size, the
local anisotropy of the pore space, and of a distribution
of sizes on the k" term. The true macroscopic diffusion
coefficient (i.e., the diKusion constant measured in the
limit of large 6, for a connected pore space) contains the
valuable information of tortuosity, but not the pore size.
Furthermore, the method suggested here can give geom-
etry information when the enhanced decay forbids a suc-
cessful extraction of the macroscopic diffusion coefFicient.
The importance of the pulsed-gradient experiment from

a theoretical point of view is that it directly measures.
the Fourier transform of the diffusion propagator in pore
space.

In order to interpret data it is a prerequisite to account
for the decay at pore walls which dominates the relax-
ation in many porous media. We give here the proper for-
mulation which takes into account the surface relaxation.
The presence of surface relaxers enters as a partially ab-
sorbing boundary condition for the magnetization at the
pore wall. Considering the importance of surface relaxiv-
ity, it is surprising that the partially absorbing boundary
condition has previously not been treated properly for
field gradient experiments, even in the context of the ef-
fective diffusion coefficient.

In addition to the investigation of the effective dif-
fusion coefIicient using field gradients, there has been
much effort in obtaining geometrical information using
the enhancement~ in the NMR longitudinal decay
rate 1/Ti. The increase in decay rate in rocks gener-
ally comes from the paramagnetic impurities on the pore
walls. The longitudinal decay rate is enhanced by relax-
ers on pore walls in proportion to the surface to volume
ratio i.e.

1 bS pS
Ti TggV V

'

where Tqg is the enhanced relaxation within a distance
b, p is a surface relaxivity, S is surface area, and U the
pore volume. The principal di%culty in relating pore size
to the relaxation rate is the appearance of an unknown
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M k, A
(1.2)

Clearly, the "diffusion coefficient" D(A) will be zero for
an isolated pore in the long time limit: thus it carries the
information on the connectedness of pores. The quotes
have been used to indicate that the diffusion coeKcient
cannot be defined unless the displacement squared grows
linearly with time, which is certainly not the case for an
isolated pore. For a connected pore space D,tr (the long
time effective diffusion constant) has the valuable infor-
mation of the tortuosity. Among others, Vinegar and
Rothwell have proposed that, as the interpulse time 4
increases, the effective diffusion coe%cient will change
from its molecular value to the macroscopic value —the
latter being related to the former by porosity and forma-
tion factor F,

D o.

FP' o. (1.3)

Here P is the porosity and F the formation factor, whidi
is the conductivity of the saturating fluid o divided by
the conductivity o. of the fluid-saturated porous medium,
which is made up of insulating grains. We have cor-
rected for the factor of P which is missing in the original
reference. Equation (1.3) follows from the Einstein rela-
tionship between the diffusion coe%cient and the conduc-

parameter p.
Apart from an unknown p, T& is not a sensitive probe

of the geometry of the pore space it, has no informa-
tion about tortuosity or connectivity. The Ti data can-
not even distinguish between connected and disconnected
pores. In fact, it is customary to analyze the relaxation
data in terms of a collection of isolated pores and use the
size data to infer the rock permeability from an empiri-
cal statistical correlation. The permeability of a system
of isolated pores is zero. The permeability is a key pa-
rameter in the oil industry and any estimation of it is
valued. Isolated pores have discrete spectrum and local-
ized eigenmodes. Even though a continuum of isolated
pore sizes can mimic the continuous spectrum of a, con-
nected system, the modes are still localized. The PFG
amplitude is sensitive to the eigenfunctions in addition to
the spectrum, and in principle, is a valuable probe of the
geometric information. '6'hile the macroscopic diffusion
coefIicient seems attractive, it may be unobtainable due
to the decay of the signal.

Since the spin echo measurements are directly influ-
enced by the confining geometry, as seen by the walker,
it is natural to use these measurements for obtaining in-
formation relating to transport. In particular, pulsed
gradient, measurements have been used or proposed to
obt, ain similar informat, ioii. "' However, the pre-
vious studies have been confined chiefly to the effective
diffusion constant, whicli is derived from the small-k de-
pendence of the amplitude, Af(k, 6). Here k = ybg,
6 = pulse width, g = gradient strength, p = the gyro-
magnetic ratio, 6 is the interpulse separation. For the
PFG experiment this means that a diffusion coeKcient is
extracted from the k2-dependent term:

tivity when applied to porous media. Thus, the PFG
experiment gives a possible way of estimat, ing F. As
noted by Vinegar and Rothwell, the formation factor F
is perhaps the most valuable geometrical factor which is
used in the oil industry to estimate hydrocarbon frac-
tion. However, there are two points which we need to
bear in mind. First, the parameters involved for a typ-
ical rock show that the signal is likely to decay before
the spin has diffused across a sufticient number of pores
needed to see the macroscopic diffusion constant. For
example, in a sandstone with a typical pore size of 5 pm,
the time required to traverse, say four pores, is about; 0.2
s, using D = 2 x 10 cm s for water at room tempera, —

ture. The typical value of Ti is of the same order, and T2
even shorter. The main problem is that the decay time is
controlled by the small pores and while there may be suf-
ficient time to traverse several small pores (due to small

pa/D), macroscopic diffusion requires traversing several
small and large pores.

In order to overcome this di%culty of lifetime, we sug-
gest that, one should study the deviation of the k depen-
dence of the amplitude from its (small) k behavior. This
deviation is an important characterization of the micro-
geometry of the porous medium, especially since this de-
viation happens even if the observation time is not long
enough t,o see t, he asymptotic diflusion constant, We an-
alyze this deviation by the means of some simple models.
Even the simple models reveal that deviation from k de-
pendence contains much more detailed inforraation than
the Ti enhancement.

The second point is that the electrical formation fac-
tor in Eq. (1.3), in the absence of any surface conduction,
will be related to that derived from NMR if p = 0. Only
then are the governing equations and the boundary con-
ditions for the underlying diffusion problems identical for
the NMR and the electrical cases. It is obvious that if
the pores were connected by long t,hin necks with high
values of p, the decay in the necks will effectively isolate
the pores. Thus the role of surface relaxivity needs to be
properly incorporated in the analysis. The study of con-
nected geometries with surface relaxivity will be reported
elsewhere.

In this paper we consider the combined effect of con-
fining geometries and nonzero p on the pulsed gradient
measurements in simple geometries. Some limiting re-
sults have been obtained in the literature for this prob-
lem, e.g. , Frey et al. obtain the solution for a sla, b for
perfectly absorbing boundary conditions p = ~. Lipsi-
cas, Banavar, and Willernesen make an approximatiori
by taking the decay in a single pore to be a product of two
terms. The first term is the decay amplitude calculated
at zero (pulsed) field gradient but with a finite surface
relaxivity p, and the second terra is the amplitude calcu-
lated in the presence of a finite (pulsed) field gradient but,

with p = 0. While our ca,lcula. tions show that their ap-
proximation is valid [see Eqs. (6.12) and (6.13) below] for
their model system, an analysis of the parameter values
show that their result is probably inapplicable to many
systems of interest. (e.g. , carbonate and sandstone rocks
in an appropriate gradient range).

The effects of restricted diAusion were first ronsid-
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ered by Wayne and Cotts and by Robertson for
the Hahni echo experiment (with a constant gradient)
in a slab geometry with refiecting boundary conditions.
Wayne and Cotts also analyzed Woessner's data on
rocks using the result for slabs. The pulsed-field-gradient
method 3 was first applied to the case of restricted
difFusion by Tanner and Stejskal. ~i 2s Numerous simi-
lar studies exist in the literature in related systems (see
Ref. 2 for a review). To remove the effects of inter-
nal field gradients due to susceptibility inhomogeneities,
which causes Tz-like decay to be much faster than Ti
like decay, the method of stimulated echoszz 24 z is useful.
Some studies exist on the kz dependence of the amplitude
arising out of geometric effects, either due to anisotropic
diffusionzi 27 or due to a distribution of pore sizes.

The results obtained in this paper are the following.
We first describe the general formulation of the decay am-
plitude in a pulsed-field-gradient-stimulated echo exper-
iment in Sec. II. We also set out the cumulant expansion
which we use to go beyond the traditional k2 dependence.
In Sec. III we study the k dependence of the decay am-

plitude for Quid in confined and connected geometries.
In Sec. IV we show the influence of size distribution and
shape on the k term in the case of isolated pores. We
present in Sec. V models of randomly oriented sheets or
tubes to model the k dependence of the decay ampli-
tude for fluid in a rock matrix. These models capture
some of the essential physics involved in the deviation
of ln[M(k, 6, p)/M(0, 6, p)] from quadratic behavior in

k, even for small k, which is seen in experiments. The
exact results for planar and spherical pores are given in
Sec. VI. The exact solutions and the cumulant expansions
show that for an isolated convex-shaped pore, the decay
amplitude depends only weakly on the surface relaxivity
p apart from an overall normalization at zero gradients,
i.e., M(k, b„p)/M(0, b, , p) is relatively independent of p.
In Sec. VII we discuss the effects of random local fields,
which arise due to the difference in magnetic susceptibil-
ities of water and the porous medium. Section VIII is
the concluding section.

We note that the problem treated in this paper is for-
mally identical to the problem of particles leaving a pore
space by passing through permeable walls, with the iden-
tification p = z where ~ is the permeability through the
wall. 2 It is assumed that the particles that have left the
pore space no longer contribute to the signal.

)Qo

T2- relaxation T&- relaxation T2 relaxation

FIG. 1. The Tanner pulse sequences of a stimulated pulse
echo (Refs. 2 and 22): go is a constant background field gra-
dient and g is the applied field gradient bg )) rj,go.

we can neglect the effects of any spatial randomness in
the local I armor frequency in the porous material. This
simplification makes it possible to consider the influence
of microgeometry separately from other complications.
Throughout this paper we will consider stimulated pulse
echo (Fig. 1) and the surface relaxivity which corresponds
to Ti. There are many systems, such as some carbonate
r"cks, where the susceptibility difference is small, and
the internal field inhomogeneities are negligible. In those
cases, the simple PFG echo'-i 2 can be used (for which
the appropriate surface decay rate corresponds to that
for Tq). If the inhomogeneities are too large, they may
even prevent the use of these techniques. We will return
to the effects of random internal inhomogeneities in the
magnetic field in Sec. VII.

A. The magnetization with partially absorbing
boundary condition

The importance of the pulsed gradient experiment
from a theoretical point of view is that it directly mea-
sures the Fourier transform of the diffusion propagator of
a walker in the pore space with an average over the initial
position of the walker implied. The presence of surface
relaxers enters as a partially absorbing boundary condi-
tion for the walkers. In the limit 6, ri ~ 0, ~gi ~ oo with

bg fixed, the expression for the decay amplitude, with
the bulk decay exp( —4/Ti~) factored out, is given by

1 'k
M(k, 6) = — dr dr'G(r, r', b, )e

II. GENERAL FORMULATION

In this section we derive the expression for magnetiza-
tion with an appropriate boundary condition and set up
the systematic procedure of obtaining geometrical infor-
mation via the cumulant expansion.

The puIse sequence for which our results are derived is
shown in Fig. 1 (see Refs. 2 and 22 for more details). We
shall make the simplifying assumption b, r~ ~ 0, g ~ oo
keeping the product bg constant. In this limit we make
two major simplifications: firstly, we can neglect the dif-
fusion of the particles during the time when the mag-
netization is in the z-y plane and secondly in this limit Dn . V'G(r, r', t) + pG(r, r', t) ~„g——0. (2 3)

k = pbg, (2.1)

where G satisfies the diffusion equation in the interior of
the pore space with diffusion constant D

BG(r, r', t)
t

(2.2)
G(r, r', t = 0+) = b(r —r'),

and the boundary conditions at the surface E with an
outward normal n are
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The amplitude can be written more concisely using
the language of random walks, since G(r, r', t) is the con-
ditional probability of finding a random walker at r, t,
which was released at r', t = 0:

M(/„- /) —(e
—~k 4(o)—~(&)l) (2.4)

B. Dimensional considerations

Simple dimensional considerations give much insight.
We propose that the "momentum" (ybg) dependence of
amplitude at fixed time reveals features of the charac-
teristic length associated with a gradient pulse 1/(pbg),
provided that the diffusion length ADA is larger than
this characteristic scale. Of course, 4 is limited by the
decay time of the magnetization.

Let us first assume that there is a single length scale
a in the confining geometry (e.g. , sphere radius, tube di-
ameter, or slab thickness). To be specific, we will keep in
mind a sandstone rock, and consider PFG experiments
on water protons in the pore spaces. For a typical pore
size in a sandstone we may take a 2—5 pm. For ex-
periments at a fixed time (pulse separation) b, , another
relevant length is the diffusion length ID = i/DA 4—32
pm, for 4 10—500ms, D=2x10 cm s for wa-
ter at room temperature. There are two time scales: the
diffusion time 7D —a~/D 0.002—0.0125 s, and the sur-
face relaxation time r~ = a/p 0.2—0.5 s with p = 10
cm/s, a value which is common in rocks. The dimen-

where ( . )«denotes an average over random walks orig-
inating from r(0) and terminating at r(E) in time 6, the
initial and final positions being integrated over. We have
used a subscript un to distinguish it from the angular
brackets which are used below to denote averages nor-
malized to their values at k = 0. The random walkers
contributing to the average diffuse freely in the interior
of the pore space and are either reflected or absorbed at
the pore walls with fixed probabilities given in terms of
P

It is important to note when the approximations made
in deriving the above expressions fail. The approxima-
tion that the gradient pulses are infinitely sharp is not
valid if the difFusion length QDb ) I/(ygb). In addition
if the length ~D6 is larger than the typical pore size,
then the particles hit the wall during the pulse. Thus,
for a 5-ms pulse, using D = 2 x 10 cm2/s, corrections
are needed for the finite pulse size when the pore sizes
are smaller than 3 pm. The effect of a finite pulse width
is not dificult to treat if the diffusion is free, and the
problem can be solved exactly, However, when the dif-
fusion is restricted, the problem becomes much harder,
except in the second-cuinulant approximation.
Therefore, the correction for a finite pulse width cannot
be made using the corresponding correction for free dif-
fusion. The other approximation that has been made
is that the magnetization is initially spatially homoge-
neous. This will break down if there is significant phase
evolution before the application of the first gradient pulse
due to internal-field-gradient inhomogeneities, or surface
relaxation. We will assume that this is not the case.

sionless ratio of these times characterizes the relaxation
strength at the surface n = 7D/7~ = pa/D 0.01—0.0'25

(this is typically small). The gradient pulse is character-
ized by a "momentum" or inverse wavelength k = pbg.
The wavelength sets the scale of the structures probed.
The inverse wave number [1/(pbg)j ranges from infinity
(for g = 0) to 23/2ir pm for 6 = 5 ms, g = 20 G/cm.

Obviously, with the assumption of a single length scale,
the time at which one starts seeing deviation from free
diffusion (for zero or small momenta) is 6 rD, this
fact has been widely utilized or proposed to study the ef-
fects of restriction of diffusion. To see the true
asymptotic diffusion constant from the small-k data for
a connected pore space, the walker would have to diffuse
at least four or five typical pores (4 x 5 pm), for which
it would take 0.2 s, by which time the signal will have
already decayed. Thus, in this case, it would be unreal-
istic to expect to obtain the true formation factor from
the data.

If the pores were much smaller, however, the diffusion
will have reached the asymptotic behavior, and there is
some evidence for this, e.g. , see Refs. 9 and 10. In these

experiments however, QDb 1.4 pm is larger than
the pore size 0.01 pm, i.e. , the pulses are wider than
the diffusion time 7D. It is therefore clear that the ex-
pressions for the amplitude assuming b-function pulses
do not apply. What is worse is that it is not clear that
the expressions for free diffusion, where correction has
been made for finite pulse width, apply with the effective
diffusion constant in place of the free diffusion constant.
This, however, is the expression that has been used to
analyze the experiments referred to.

As the relevant dimensionless momentum ka (or
k+DA for a connected pore space) becomes large, one
would expect to see deviation from quadratic behavior
in I- in the logarithm of the amplitude arising from the
restricted diffusion, as seen in Ref. 23. The following in-

teresting conclusion can be drawn from the dimensional
analysis: if two samples were otherwise similar (geome-
try, etc.) and differed only by the basic length scale, then
the amplitudes for experiments in the two rocks should
collapse onto each other if plotted as a function of the
dimensionless variables 6/rD, pbga. For g small, this
has been observed experimentally, e.g. , see Ref. 19.

C. The cumulant expansion

M(k, b.) = M(0, A)(e*" l l'&-'&~ll), (2 5)

where M(0, 4) is the number of walkers surviving at time
A, and has to be taken out so that the probability dis-
tribution given by the angle brackets is normalized (note
that the subscript un has been dropped) to one at k = 0
for all times. The odd terms vanish on averaging because
the amplitude has to be real and the cumulant expansion
gives

The cumulant expansion provides a systematic way to
gain information about the amplitude for small values of
k (r (4)). We have, in the random-walk language,
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(M(k, b.) r ).((ik [r(0) —r(A)])'"),
g M(0, a)~; (2n)!

(2.6)

where the cumulants are defined as usual, so that for
(X) = 0 one has

For k = 0, Brownstein and Tarr have given a similar
eigenfunction expansion for simple isolated pores.

One can find a bound for the lowest eigenvalue using
the standard variational approach that a trial function
(normalized) i)'dk, (r) gives

(x'), = (x'), (x'), = (x') —3(x')', (2.7) &D dpV trr +p d tr&
0

(2.14)

and so on.
The cumulant expansion formally truncates with the

quadratic term in the case of free diffusion. This is be-
cause the measure in the sense of path integrals for free
diffusion is a Gaussian, and higher-order cumulants van-

ish for a Gaussian distribution. In most existing stud-
ies, the influence of restricted geometry is taken into
accountis 2szs zs at the second-cumulant level (the as-
sumption of a Gaussian distribution of phases is equiva-
lent to this approximation). An important point of our
paper is that it is possible to extract additional geometri-
cal information from studying the k dependence beyond
the lowest cumulant. The fact that the distribution of
the total phase seen by a single random walker becomes
non-Gaussian can already be seen from the effect of a
single wall on the diffusion propagator: the propaga-
tor is the sum of two Gaussians for reflecting boundary
conditions.

The true minimum is the lowest eigenvalue, and the min-

imizing function is the corresponding eigenfunction. For

p = 0, the lowest eigenvalue is zero and the wave func-
tion is spatially constant. Taking this as the trial function
g(„—I/~V we find for the lowest mode

1 p
Tp V

(2.15)

M(k, oo) = ) f dr dr'e
pores

(2.16)

III. THE k DEPENDENCE OF AMPLITUDE
AND DIFFUSION COEFFICIENT

For reflecting boundary conditions, and for a collection
of isolated pores, the amplitude is trivially related to the
"structure factors" of the isolated pores:

D. The eigenfunction expansion

The Green's function defined in (2.2) is most conve-
niently written in terms of the eigenfunctions (for posi-
tive times)

G(r, r', t) = ) g„(r)g„(r')e
n=l

(2.8)

where Q„(r) are the normalized eigenfunctions of the
equations

In this section we use the cumulant expansion to study
the kz dependent term which, for connected pore systems
gives an effective diffusion coefflcient. For isolated pores,
the displacement is bounded above by the pore size, i.e. ,

there is no diffusion. Consider the following cases (i) a
single spherical pore of radius "a" and (ii) a connected
pore space with a characteristic length "a."

From Eq. (2.6), the term quadratic in k is

(M(k, b, ) l ((k [r(0) —r(b, )])')
M(0, 6) ) (2)!

DV Q
n

Dri &@~+ pg~ lr, z= 0.

It follows from Eq. (2.1) that

where

d„(k) = J drd„(r)e

(2.9)

(2.10)

(2.11)

(2.12)

If we assume the pore to be spherical, or if the angle
brackets include an orientational average (as would be
necessary in a model of an isotropic porous medium) we

get in d dimensions

ln
/

(M(k, 6) ) k ([r(0) —r(b, )]2)
), M(0, b.)) 2d

(3 2)

For very short times 6 && 7-D, the typical walker has
not "seen" the wall, and we have ([r(0) —r(4)]2)
2dDA, leading to the usual result

(M(k, a) &

Note that, in absence of a field gradient, the decay is

multiple exponential:
In fact, this becomes exact as A ~ 0, since from
Eqs. (2.1) and (2.2), it follows directly that

M(0 &) =
V ) .I& (0)l'e

n=l

0 In M(k, b.) 2 pS
ct-o M, V

(3 4)

(2.13) Next consider the long time behavior. In case (i), only
the lowest eigenfunction contributes to the normalized
average represented by the angular brackets. One there-
fore has
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(M(k, A)] z ~ pa
In~

'
~

= —C(a)k a, n= —, (3.5)

where C(er) is a constant, that depends on n, and is given
by

C(a) = —f[r —r']'4(r)Q(r')d r d~r', (3.6)

where the integral is over the solid sphere of unit radius.
In particular, we have

C(0)=, C(oo) = —
/

1— (3.7)

Note that a = 0 and n = oo corresponds to perfectly
reflecting and perfectly absorbing boundary conditions,
and intermediate values of n correspond to partially ab-
sorbing bc's. The numerical constant changes by a factor
of C(0)/C(oo) as one goes between the two extremes,
and this ratio in d = 1, 2, 3, can be calculated from the
above to be 1.76, 1.62, 1.53. The change, as one goes
from perfectly reflecting to perfectly absorbing bound-
ary conditions, is not even a factor of 2. Physically this
is because the lowest normalized eigenfunction does not
change very much in shape between the two extreme val-
ues: it goes from being flat for n = 0 to hump shaped for
Ct' = OO.

We could put the above results together to give to lead-
ing order in the long time limit

M(k, 4) (x exp
~

—A(er)
~
exp[ —C(n)k a ],

['
2 2

rDy

(3.9)D'

where C is a constant weakly dependent on p and A(er)
the lowest eigenvalue of the equation

V @(r) = —A g(r),

n V'@(r) + n@(r)~,.,r. —0,

(3.10)

in notation defined earlier. Note that in this equation r
is dimensionless. A(a) ~a for small n and A(oo) = A~
where A~ is as defined above. The above conclusions ob-
viously continue to hald for a convex-shaped pore space,
as long as one carries out an orientational average (oth-
erwise angular factors appear in the amplitude). The
constraint on the shape could be relaxed to a certain ex-

Here C(0) has been calculated with the lowest eigenfunc-
tion for reflecting boundaries, which is constant. C(oo)
has been computed using the lowest eigenfunction for ab-
sorbing boundary conditions, and the result is in terms
of A which is the lowest eigenvalue satisfying the equa-
tions

"r"—' "Q-(r—) = -A„'Q(r), g(r = 1) = 0,

(3.8)
7r

A~ = —, 2.405, m for d = 1, 2, 3.

tent without changing our conclusions.
Now consider the case of a connected pore space [case

(ii)]. In the case p = 0, i.e. , perfectly reflecting boundary
conditions or zero wall relaxation, there is a one-to-one
correspondence between the equations of motions and the
boundary conditions of the present problem of diffusion
of magnetization and the standard concentration difFu-

sion in a porous medium. The effective diffusion coefti-
cient in the latter problem is connected to the electrical
conductivity via the standard Einstein relation. 2 If there
is a well-defined macroscopic diffusion constant (which is

not the case, for example, on a cluster at a percolation
threshold), then one has rigorously

[r(o) —r(&)]'
2dA FP ' (3.11)

1 (9 ln[M(k, 4)] D
(3.13)

where Ci(er) 1 for small values of n for reasonably open
pore geometries. However, Ci(n) would be strongly de-
pendent on n if, for example, there were long and narrow
necks through which the walker has to pass in order to
achieve its ultimate diffusive behavior. It is assumed that
the number of walkers is normalized to one at each point
of time. We are investigating the behavior of Ci(er) in

some models of porous media, and the results will be
reported elsewhere.

It has been already suggested in the literature that the
pulsed gradient experiment could be used to determine
the macroscopic diffusion constant and hence the forma-
tion factor (e.g. , see Refs. 8—10). The above arguments
provide theoretical justification why this should be the
case. In particular the data of Fukuda et al. can be ex-
plained using the above results and other known resu1ts
on porous media. They find an "effective" diffusion con-
stant which depends linearly on porosity. Assuming that
Archie's "law" ~ holds in their case, i.e. , F = 4, their
data will be consistent with Archie's exponent rn = 2,
which is a reasonable value of rn for their sintered glass
bead samples. However, as discussed above, theoreti-
cal expressions for the amplitude may fail to hold since
the diffusion length during the application of the field
gradient is comparable to the pore size.

where F is the formation factor, which was defined in Eq.
(1.3).

For finite p, guided by the results which we found for
isolated pores, we can expect at times 6 &) vo and small
k's that,

M(k &) m exp
l

-A(o) exp -Ci(~)k( 2 D
FP

(3.12)

where Ci(n) is a numerical constant with Ci(0) = 1.
We expect that for reasonably open geometries for the
pore space, Ci(e) is only weakly dependent on a, and
therefore it is reasonable to approximate it by 1 for weak
surface relaxation. We could write our observation more
precisely as
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We have discussed up to now only the lowest order
term of the cumulant expansion. In the next two sections,
we demonstrate that it is possible to extract additional
geometrical information from studying k dependence be-
yond the lowest cumulant.

IV. THE k TERM: ISOLATED PORES

In this section we show that the k dependence of the
amplitude is a sensitive probe of the microgeometry. The
quartic term is instructive, because it gives the first devi-
ation from the quadratic behavior. For example, we show
at long times the k4 term could distinguish between (a)
monodisperse spherical pores of radius a and (b) polydis-
perse spherical pores of radii distributed uniformly with
mean (a)=0 and range ba or (c) randomly oriented ellip-
tic pores in d = 2 with semimajor axes a and eccentricity
e (the effect of finite pulse widths may interfere with this
application).

First consider a collection of spheres of the same size.
We use the lowest eigenmode with the reflecting bound-
ary condition to capture the essential physics at long
times. Thus, the eigenfunction is constant throughout
a pore and cumulants are easy to evaluate. It follows
from a straightforward integration in d dimensions that

1" -"+1 2
(CI, ,)2-) = k2-.2- '(2'"""'

. (4.i)
22~1'{-„+ n + i)n!

Here the angular brackets mean an integration over the
d-dimensional solid sphere, divided by its volume. The
cumulant expansion, Eq. (2.6), using Eq. (4.1) gives

(M(k, a) k'a' k4a4

gM(0, 6) d+ 2 2(d+ 4)(d+ 2)2

+O((ka)') (4.2)

We could also write as

lim In
~

'
l

= —Ci(d)k a —C2(d)k a, (4.3)
(M(k&6)) 2 2 4 4

qM 0, 6

with Ci ——s, 4, ~s and C2 ——1.1 x 10, 5.2 x 10
and 2.9 x 10 for d = 1, 2, and 3, respectively. The
higher-order terms are not illuminating.

Notice that the sign of the quartic term is negative,
so that the amplitude decays faster than a quadratic in
k. We show below that the sign can become different in
cases (b) and (c). Thus, the sign of the initial curvature
could be an experimental way of distinguishing between
case (a) and the remaining cases. It is useful to bear in
mind that the Rnite pulse widths could smear out the
pore radius to some extent.

Let us now consider case (b), by doing a second aver-

age over the radius by means of an additional cumulant
expansion. This gives

lim ln
~

'
! = —Ci(d)k (a ) + —C2(d) ~

k (a ) — ' 'k (a ) + O((ka) ). (4 4)

The quartic term changes sign when

( ') —( ')'
= 0.42, 0.34, and 0.28 for d = 1, 2, and 3, respectively, (4 5)

/ M(k, b.)
g M(0, A)

k2a2 P ~2 )
4 g 2p

k4a4 f 2
3~4't

192 q 8 y
' (4.6)

where a is the semimajor axis and e the eccentricity.
Again, it can be seen that the curvature at the origin
changes sign when the ellipses have enough eccentricity,

if we assume that the radii are uniformly distributed
over the interval ao —ba/2, ao + ba/2 then the term
changes sign when ba/ao is equal to 0.42, 0.34, 0.28 in
d = 1, 2, 3, e.g. , in d = 3 the logarithm of the amplit, ude
plotted as a function of k~ changes the curvature at the
origin when the spheres become 28% polydisperse, and
for more than 28% polydispersity, the logarithm of the
amplitude decays slower than a quadratic in k.

Next consider case (c). The amplitude for a given ol'1-

entation of the ellipse can be worked out as above up to
the fourth cumulant, and then an orientational average
can be done again in a cumulant expansion to yield

at e = 0.88, which corresponds to a ratio of the semi-
minor to semimajor axis b/a = 0.47. This result is due
to a distribution of the lengths of the chords, in the direc-
tion of the gradient vector g, drawn through the centers
of the randomly oriented ellipses.

In cases (a), (b), and (c) we have used reflecting bound-
ary conditions at the walls. However, the introduction of
a partially absorbing boundary condition does not qual-
itatively alter our conclusions except for an overall nor-
malization at zero k. Quantitatively, the results of Secs.
III and VI show that the numerical constants used above
are relatively insensitive to the values of p, and change, at
most, by a factor of 2. In case (b) the same considerations
should hold at finite p as long as the distribution of pore
sizes is not too wide. The subtlety is that for a distribu-
tion of sphere sizes, different spheres will have different
normalizations at zero k given by exp( —pE/a), and then
one might expect the conclusions above to change when
the amplitude in the smallest pores is reduced by, say,
a factor of 10 compared to the amplitude in the largest
pores as a result of surface relaxation. This would hap-
pen when 6 has a value given by
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(4 7)

(assuming pa/D small). However, at ized 4, if one was
interested in the k dependence of the amplitude, then it
is clear that the effect of a finite p is to put a cutoff on
the distribution of radii. One would proceed exactly as
before, only replacing the probability density function of
radii P(a) by exp( —pb, /a)P(a) for small values of pa/D.
However, it needs to be emphasized that the existence of
a broad distribution of length scales does not necessarily
imply this cutoff on the distribution of sizes; this is only
the case for isolated pores with a wide distribution of
radii.

V. k DEPENDENCE ON MICROGEOMETRY
IN CONNECTED PORES

In this section we describe a method of collapsing data
for various k and 6 which reveals geometrical informa-
tion, size, and connectivity, even when the decay of sig-
nal is strong enough such that the particles cannot dif-

fuse distances long enough to give I". We show that this
process can distinguish between a model of polydisperse
spherical pores and randomly oriented tubes or sheets

(to model the connected pore space). In the latter case
the data would collapse as described below, while in the
former case this would not happen. Also, the deviation
from k~ sets in at a much smaller value of k for the con-
nected pore space than for isolated pores, because the
important dimensionless number is kzDb. and not (ka)2.

One of the principal motivations for this paper is to
gain some understanding of the k dependence of the am-

plitude of a PFG experiment for fluids in a rock ma-
trix. To do this we need a model of the pore space to
which the walker is confined. In this context, the model
that has been considered most widely is a collection of
spherical pores with a distribution of radii. ' ' This
model captures the fact, that the walkers are confined to
a pore space. However, it misses an important part of the
physics involved for a walker in the pore space of rocks:
namely, at any point in the pore space, while there are
directions in which the walker quickly hits the pore walls,
there are also directions in which the walker can escape
from the pore, and not be hindered at all. This consid-
eration is important in this problem because what enters
into the calculation of the amplitude is the restriction
the walker sees in the direction of field gradient g. Af-

ter long times, of course, the path of the walker becomes
tortuous. However, if the observation times are not long
enough for a single walker to sense the tortuosity of the
pore space (which is quite likely to be the case, due to
decay), then the only essential ingredient of a model of
the pore space is that there be certain directions at a
typical point in which the walker can diffuse freely for
the observation time, while it hits the wall within the
observation time in some other directions. To model the
randomness of the pore space, these directions should be
oriented randomly at different points.

Keeping these in mind, the simplest models one could
think of are (a) a collection of randomly oriented tubes of

M(k)4) i.~Da (a +t )(„(a),)/4
M(0, b, )

(5.1)

where r~(6) is the displacement of a walker perpendic-
ular to the axis.

The displacement r~ can be taken from Sec. III
[or from the 2D equivalent of Eq. (6.6) below]. For
small times, (r~(b, )~)/4 Db, , and for long times

(r~(A) )/4 a2/4 using the lowest eigenfunction for
reflecting boundaries, which is a constant radially (6 (

FIG. '2. Aa illustration of a rack vvith sheetlike pares.

the same radii and (b) a collection of randomly oriented
sheetlike pores with the same thickness. Strictly speak-
ing, the tubes do not intersect, but the results should
not change much if they were allowed to intersect, pro-
vided the intersections do not form a significant fraction
of the porosity, and the intersections are widely sepa-
rated. There is a single parameter in the model, i.e. , a
length scale, namely, a tube radius or a sheet thickness.

Networks of tubes are quite commonly used to rep-
resent the pore structure of complex porous media (see
numerous references cited, for example, in Dullien and
Mohantys4). In the context of a network of sheetlike
pores we note that Wardlaw has suggested that pores
are often lamellar. Figure 2 shows a schematic repre-
sentation of a rock with sheetlike pores. Incidentally,
there exists a rich literature (see references in Cohen and
I in ss Mohantys ) on systematic methods to reduce a
pore structure to its stripped down network starting from
a micrograph. We would also like to note that the effect
on the PFG amplitude of confining the walker to effec-
tively lower dimensional spaces (sheets, tubes) oriented
randomly has been considered in the past in a different
context by Callaghan, z7 for confinement geometries that
actually correspond to tubular or lamellar pore spaces.

First consider the model with cylinders of radii a,
with axes oriented randomly. Equivalently, we consider
a cylinder with the axis in the z direction with the gradi-
ent field being oriented randomly. For a fixed direction of
the gradient field, we will make the second-cumulant ap-
proximation for the restricted diffusion along the radial
directions, to obtain
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a/p). Again, the essential physics is captured with this
approximation, and the exact results given in the next
section show that this approximation does not alter our
conclusions. The crossover from the initial to the final
form is exponential to the leading order, and to keep
things simple, one can use the fitting form

f'M(k, b, ))
I& M(0, 4)

4
(5.5)

(r~(A)') a' f' 4DE
4 4 {, a~ (5 2)

1
( & ) Dak -k [Da (&~(Lh, ) )/4-](1-s )d

M(0, b, )

(5.3)

which has the right short- and long-time behaviors, and
saturates exponentially.

Next, to see how good the second-cumulant approxi-
mation is for given ka, we could estimate the ratio of the
fourth cumulant to the second. From Eq. (4.3), this is
0.012k a, which for the parameter values considered in
Sec. II ranges between 0 and 0.17, i.e., negligible.

Carrying out an average over orientations, Eq. (5.1)
gives

1
( & ) D&k -k [D&a-(&~(a) )/2)s

M(0, b.)
(5 6)

so that a somewhat model-independent prediction would
be that different data sets of the logarithm of the nor-
malized amplitudes with the amplitude for unrestricted
diffusion subtracted out should collapse on a single curve
when plotted against the variable k~[DA —(rg(b)2)/4].
A particularly simple fitting form for (r ~(b, )2) is given by
Eq. (5.2). There is a single unknown parameter a which
could be adjusted to give the best fit, thus determining
a length scale from the data. To reiterate, such collapse
of data will not happen for isolated pores, even with a
distribution of sizes.

The second model with randomly oriented sheetlike
pores with thickness a is completely analogous to the
above, and the above expressions are modified in this
case to

The amplitude is plotted in Fig. 3. It can be seen that
the deviation from the k~ behavior set in at a relatively
small value of I-a, as opposed to the isolated pores. The
logarithm of Eq. (5.3) can be expanded to give

with

(rg(A)s) rr2 f 3DA l
2 3 {, a2 (5 7)

/ M(k, b, ) 2 /1 2 (ri(b, )2)

&M( &)) E3 3 4

+O((k'Db. )'). (5.4)

Plots of the amplitude are given in Fig. 4. The same re-
marks apply as in the case of tubes as regards extracting
a length scale. Moreover, in these two cases the func-
tional form of the amplitude is given, so that if the data
collapsed as above, the functional form could be used to
differentiate between the two microscopic geometries.

It is clear by inspection that the model has the desirable
short- and long-time behaviors, and embodies the appro-
priate tortuosity factor of FP = 3, corresponding to the
effective diffusion being one dimensional.

Equation (5.3) has an important implication. Note
that

VI. EXACT RESULTS ON SIMPLE PORES

In this section we give the exact solutions for M(k, b, )
for arbitrary p for a slab and a sphere and a lamellar and
a tubular pore. The main use of the exact results is to

(ka)2
(k a)2

-0.5
-1.0.

In M(k, h) -i.o.
In M{k.,h) -ao

-1.5 ~

-3.0.

-2.0-

FIG. 3. The logarithm of magnetization normalized to its
value for zero field gradient versus ka for tubes of width a
at various times D/&&/a = 1, 3, 9, respectively.

FIG. 4. The logarithm of magnetization normalized to its
value for zero field gradient versus ka for sheets of width a
at various times DA/a = 1, 3, 9, respectively.
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support our strategy of the previous sections where we
used the lowest eigenmode with the reflecting boundary
conditions to capture the essential physics.

@„=N„cos((„z/2a),
1 D(~
T„4a2 ' (6.1)

A. Slab-shaped pore

First consider a one-dimensional case. We take a region
bounded between z = 0, 2a, with surface relaxation only
at z = 2a, so that the eigenfunctions and eigenvalues are

where N„ is the normaliztion constant and f„are positive
roots of the

(„tan(„= 2pa/D (6.2)

We find by a straightforward integration from Eqs. ('2.17)
and (6.1) that

Ig„( )( = .
"

(4k a [1+cos g„—2 cos(„cos(2ka)] —4ka(„sin(„sin(2ka)+g„sin („).

(6.3)

The amplitude M(k, 6) follows from Eqs. (2.11) and (6.3) For g = 0, i.e. , no field gradient, we recover the results of
Brownstein and Tarr, namely,

2

I@ (0)I' =
(„[2g„+sin(2$„)]

' (6 4)

In the case of p = 0 (reflecting boundary conditions) we have („=n7r, n = 0, 1, 2, . . . , which gives for the amplitude

sin (ka) .16e Da" i'4' k~a
M(k, b, ) = + ) [1 —(—1)"cos(2ka)]

n=1
(6.5)

which is identical to Eq. (88) of Ref. 2. For p = oo (absorbing boundary conditions), the positive roots are given
by („=(n+ 1/2)s', n = 0, 1, . . . . The expression is different from Eq. (10) in Ref. 3, because here one surface was
assumed active.

The mean-squared displacement is

(I (/) (0) I )
8a ) 4

—r/T (u sin (r sin ( +
(s[g„+sin(2jo„)]

(6.6)

Note that the quantity

2DA

has the right long- and short-time behaviors, as in Eq.
(5 7).

For long times and small values of ka, the results
consistent with the cumulant expansion are recovered

M(k) b, ) e &. e (6.7)

(ii) Strong relaxivity ("slow diffusion limit" ), pa/D » 1,
and for long times

as expected. One could consider the limiting cases of
weak and strong surface relaxivity: (i) weak relaxivity
("fast diffusion limit" is for the relaxation enhancement)
pa/D (( 1:To 2a/p, and for long times

-2.0

4(ka)2

D= 5

100
-0.05 ~

-0.1 0-

4(ka)2

M(k,a) -4o
In

M(p, z)
-6.0

M(k, a)
In

M(o,a) -o.2o

-0.25

-8.0 -0.30.

-0.35-

FIG. 5. Exact solution for parallel plates for p = 0.1, 1, 10
versus 4k a for width 2a at time DA/4a = 5.

FIG. 6. Same as Fig. 4, at Db, /4a = 1, the range of k

has been reduced.



45 EFFECTS OF MICROGEOMETRY AND SURFACE RELAXATION. . . 153

-0.5

-1.0

M(k, ti) '5'
In

M(0,5) .20.

-2.5

4(ka)z 6(2I + 1)(,i„e
((2 k2nz)2

In=0 ln

kaj,'(ka) + ~Dji(ka)

I

———
I

+ t,'i'. —(~+ 1/2)'&pa ll'
2r

. (6.11)

For the limiting cases as above, for long times and
small ka the above expression gives

-3.0.

p=0.
p=l M(k, b) e ( / )ae "'

in the fast diffusion limit, and

(6.12)

FIG. 7. Same as Fig. 4, at D6/4a = 0.1.
M(k /) —(Dx /4a )b, —t a (1r —6)/3w (6 13)X2'

M(k /) e-(D&'/i«')&e-is&'o'(~-s)/~'
(6 8)X2'

The numerical constant multiplying (ka)2 is different
from the result of the cumulant expansion because only
one surface is active.

The exact solutions support our claim that the nor-
malized amplitude depends weakly on p, cf. Figs. 6 and
7. In Fig. 5, there is an oscillation in the amplitude
which dies away as p increases. This oscillation is due
to a resonance when a wavelength fits in the slab. The
effect will be reduced when there is a random orienta-
tion or a polydipersity in pore sizes. It is also possible
that the finiteness of the pulse widths will also smear out
the oscillation. When these difficulties are not present,
these oscillations can be useful probes for monodisperse
clean pores. The statement about the p dependence of
the amplitude should be qualified in the presence of these
oscillations; the precise statement is that the normalized
amplitude depends weakly on p except when a resonance
condition is satisfied ka n, d = 1.

B. Spherical pore

In this case there is rotational symmetry about the
direction of the field gradient and the eigenfunctions are

= W ji((i r/0)&io(0, 4),
+in

(6.9)

Here we choose the convention and normalizations as
given in 3ackson's book on electrodynamics, so that
jI are spherical Bessel function of order l and Y~ are
spherical harmonics. The normalization constant is N„
and the root (i„corresponds to the nth root of the equa-
tion

in the slow diffusion limit.

C. Lamellar pore

For simple shapes, such as lamella or tubes, the sepa-
ration of variables is elementary and the exact result for
the lamallar pore can be written down by inspection (for
a sheet in the z-1/ plane and an arbitrary k)

M(k +) a'Da-. E =i I@ (" )I"e

M(0, 6) P„o[tt„(0)('e-a/- (6.14)

Here Q„are the eigenfunctions and T„are the eigenval-
ues in the one-dimensional problem, which was discussed
above.

D. Mean lifetime

r = M(t) dt.
0

(6.15)

For spherical pores in d = 1, 3 the mean lifetimes are

r (p, D) = CirD + C2rp (6.16)

with Ci —s, is, and Cz ——1, z in d = 1, 2. This unex-
pected simplification arises from symmetry and the initial
condition of homogeneous magnetization. In our prob-
lem, for the mean lifetime, similar simplification occurs
only in d = 1, and the expression for the mean lifetime
for the sphere is only obtainable as a series expansion.
The mean lifetime in case of finite k can be calculated as
follows:

It has been shown recently that the problem of
magnetization decay in the presence of surface relaxers
(equivalent to the normalization at zero k in our problem)
simplifies greatly if one is interested only in the mean
lifetime r [note that M(t = 0) = 1 is the normalization
used]

P+ .
Ci ii(('i ) = Dii(&i )— (6.10) r (k) = M(k, b, )dA

0
(6.17)

Using the standard expansion of e '~' as given by
Eq. (16.129) of Jackson's book, we find, after a straight-
forward integration that

equals the s = 0 value of the Laplace transform

M(k, s) = M(k, t)e "dt.
0

(6.18)
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The Laplace transform of the magnetization with 8 = 0
satisfies

Dk)' M(r, s = 0) = —e

with the boundary condition at the pore wall:

(6.19)

Dn V'M+ pM l~d&= Or (6.20)

where we have neglected diffusion during the duration 6
of the first pulse. Thus,

r (k) = f dr e'"'"M(r, e = 0). (6.21)

(6.22)

The lifetime separates in a p dependent part and a D
dependent part. In principle, with the aid of the above
expression, it is possible to determine p and a separately,
given D. For example, for small ka &( 1, we find

(a al k a (a a
rm(k) =

I 3D+ I 12 I) 5D+ (6.23)

For the spherical pore we obtain

1 .21+1(.
rm(k) = 1 3 ) l jl+i(ka) j((ka)Dkz ka

kaj iz+, (ka) )
I + pa/D )

(6.24)

Only for I = 0 do the p- and D-dependent terms separate,
because the field gradient breaks the spherical symmetry.

Using the Cauchy-Schwartz inequality, one can prove
an inequality in the usual way relating the initial de-

cay rate 1/r;„(k) = Dk + pS/V and the mean lifetime
r (k):

1 1
(k) ) 1 or r (k) )

For a planar pore with k normal to the planes bounding
the pore we obtain

r (k) = —
l

1 —
l
+ —[1 —cos(ka)] .

2 az ( sin(ka) ) a
ka z D ( ka ) p

magnetic susceptibility of the grain and the pore fluid.
A simple expression for the pulsed echo amplitude in

presence of internal magnetic field inhomogeneities can
be given if one makes the assumption that these inhomo-
geneities are weak compared to the uniform static field.
This is a good approximation because the internal field
inhomogeneities are created by the susceptibility differ-
ence which is typically of the order of 10 in the mate-
rials dicussed here. In this limit, when one transforms
to the rotating frame, only the components of the inter-
nal field inhomogeneities parallel to the static external
field survive. The components transverse to the external
field rotate very fast and may be neglected. Thus, we

need only consider the local inhomogeneities in Larmor
frequency. Let the local Larmor frequency be uo + ~(r)
where u(r)/uo is small. For the pulse sequence as illus-
trated in Fig. 1, the amplitude M, „(k,6) is

M;„(k, ek) = jdrdr'e'"~" ~G(r, r';de)e'"t

The above expression follows if one assumes that b, rq are
so short that the spins do not significantly diffuse dur-

ing those intervals. For the illustrated pulse sequence, an
overall factor of exp[—2ri/Tz~ —(rz —i)r/Tip'] is implied.
This equation differs from Eq. (2.1) in that the spin picks
up a phase ri~(r) between the first two ir/2 pulses and
a phase rim(r') after the third x/2 pulse from the inter-
nal inhomogeneous Larmor frequency. They come with

opposing signs because the two x/2 pulses eff'ectively re-

verse the sign of the first phase. In the literature, one
usually finds the case of a constant background gradient
gp, i.e. , u(r) = ygo r.

The above more general expression is not amenable to
exact analysis in an arbitrary porous medium. However,
it is clear from the expression that when random local
fields are present, the k dependence of M(k, 6) is differ-

ent from that of the Fourier transform of the propagator
discussed in the paper. This is true even in the case of
free diffusion in the presence of a constant background
gradient, as can be seen from the exact solutions in this
case given by Tanner. We are currently analyzing the
above expression to investigate quantitatively how the k
dependence changes. The random local fields can pro-
duce nontrivial effects in the time dependence of a Hahn
echo.

VII. EFFECTS OF RANDOM LOCAL FIELDS

The main purpose of this paper was to show how the
k dependence of the stimulated echo amplitude contains
information about the microgeometry. To keep matters
simple we made the important assumption that b, rq ~ 0,
and this allowed us to assume that there was no signifi-
cant phase evolution in the random local field during r~

( see Fig. 1). We now discuss this point further.
When a porous medium, such as sandstone, is placed

in a homogeneous magnetic field, the internal local mag-
netic field is generally inhomogeneous, i.e. , varies from
point to point. This arises due to a difference between the

VIII. CONCLUSIONS AND DISCUSSIONS

We have proposed that the "momentum" (ybg) de-

pendence of t,he amplitude in a pulsed-field-gradient ex-
periment for fluids in a porous medium at fixed time
is a sensitive structural probe of the microgeometry of
the porous medium, for features in the range of length
scales lying between the diffusion length ID ——QDb, and
the characteristic length associated with a gradient pulse

1/(ybg). We have shown that the k dependence could be
used to distinguish between monodisperse spherical pores
and suKciently polydisperse spherical pores or randomly
oriented anisotropic shaped pores. We have shown that
the k dependence can distinguish between isolated pores
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and pore geometries where there locally exist directions
in which the walker can diffuse freely during the obser-
vation time. This is achieved by means of a certain data
collapse as described in the text. We have used sim-
ple models consisting of collections of randomly oriented
tubes or sheets to interpret the k dependence of the am-
plitude in rocks. We have given the exact solutions for
the amplitude for a planar pore and for a sphere with par-
tially absorbing boundary conditions corresponding to
surface relaxation, and have concluded that for isolated
convex-shaped pores with a single characteristic size, the
amplitude is only weakly dependent on the strength of
the surface relaxation apart from an overall normaliza-
tion that decays in time. For a connected pore space, we
have discussed cases where we also expect similar results
to hold.

The following experiments could test whether the nor-
malized amplitude M(k, B)/M(0, 6) as a function of k
has a weak p dependence for a given sample. Let us as-
sume that the sample is water wet (hydrophillic). First
saturate it with hydrocarbon while leaving a thin layer of
water behind, such that the hydrocarbon does not come
into direct contact with the paramagnetic impurities on
the pore wall. In this case the hydrocarbon protons will
not suffer enhanced relaxation, i.e. , p O. Next repeat
the experiment, except, first remove all water by drying
the sample thoroughly. Now the infIuence of the surface
will be non-negligible, and M(0, 6) should change. But
if the pores are not connected by long thin necks, we ex-
pect M(k, b, )/M(0, b, ) will be about the same in both
cases. A similar experiment can be done by measuring
M(k, 4)/M(0, 4) on deuterium in a fully DzO-saturated
rock and by comparing it with M(k, b, )/M(0, 6) of pro-
ton when the same rock is fully saturated with water.
Influence of paramagnetic impurities is much smaller on
deuterium than on proton. As discussed above, a strong
p dependence will have some implications on the sample
geometry.

Deviation of lnM(k, b, ) from kz behavior can result
from various reasons and has been seen in experiments.
In some systems, the fluid diffuses with different dif-
fusion coefficients in different compartments. In those
cases, M(k, b,) is a sum of Gaussians, which can give rise
to a significant deviation from k behavior, but this is not
the kind of effect we are considering in the present paper.
As we have mentioned already, Callaghan and his co-
workers, z" zs studied systems where the fluid is confined
between lamella of aerosol or in biological tissues (wheat
endosperm) with tube-shaped pores. There the deviation
of quadratic behavior arises from locally anisotropic dif-

fusion. The diffusion is hindered in one (two) direction(s)
and free in the other direction(s). The directions of free
diffusion are randomly oriented in different parts of the
sample. In porous media, we have argued that a similar
combination of hindered and free diffusion will give rise
to the deviation of M(k, 4) from k~ behavior. It can be
seen that the data of Lipsicas, has a rather nonlinear
dependence on k2. The data at different times, 4 should
collapse onto a form similar to Eq. (5.5), but the data
was not available to test this idea.

There are several examples in the literature, where
the NMR has been used to study the morphology of mi-
croemulsions, especially the transition where one of the
components undergoes a change between being discon-
nected to being continuous. Callaghan et al. have used
the diffusion coefBcient to delineate such phase bound-
aries, but as we have argued above, the full k dependence
will be even more informative.

The subject of study in this paper, i.e., the momen-
tum dependence of the diffusion propagator in a porous
medium, can be observed experimentally by dynamical
light scattering experiments. 42 In these experiments, a
significant curvature is seen for In[G(k, t)j as a function
of k2 in the appropriate parameter ranges.

After we submitted this paper, it was brought to
our notice that the presence of microscopic structural
information in the pulsed-field-gradient amplitude has
been vividly demonstrated in experiments by Cory and
Garroway in isolated pores, and by Callaghan et
al.44 in packings of polystyrene spheres. It has been
emphasized that in these experiments the gradient
pulse plays the role of a wave vector probing the struc-
ture of the obstacles to the diffusion. The spatial Fourier
transform of the experimental profiles provide dramatic
illustration of the structural information present in the
signal. Callaghan ef al.44 present a model of weakly cou-
pled identical pores to interpret their data. Our analysis
for a connected geometry led us to a somewhat different
phenomenological expression, which will be considered
elsewhere.
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