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We have reported a relativistic treatment of electrical conduction in a one-dimensional disordered sys-

tem consisting of a finite number of potential barriers. Our treatment is based on (i) a relativistic gen-

eralization of a nonrelativistic approach of Landauer [R. Landauer, Philos. Mag. 21, 863 (1990)] for
electrical resistance of a one-dimensional disordered system and (ii) an averaging procedure due to Erdos
and Herndon [P. Erdos and R. C. Herndon, Adv. Phys. 31, 65 (1983)]. We have carried out exhaustive

quantitative analyses of our analytical results and indicated, thereby, the circumstances under which the

relativistic effects on electrical resistance in disordered systems may be quite significant.

I. INTRODUCTION

Electronic states and related properties of condensed
matter consisting of heavy atoms need to be studied rela-
tivistically. Several authors have studied the relativistic
features of the electronic properties of condensed matter
during the past three decades or so. The aspects which
have so far received relativistic (R) treatments are the
following: (1) bulk states of three-dimensional (3D) crys-
talline systems (2) bulk states of one-dimensional (1D)
crystalline systems; " (3) surface states ' (4) interface
states (5) electronic states of disordered systems. "'

The relativistic studies concerning electron motion in
disordered systems are recent in comparison with those
related to aspects (1)—(4) mentioned above. The works
which have appeared so far with regard to relativistic
electrons in disordered systems are those mentioned in
connection with aspect (5). All these works have treated
only the nature of relativistic electronic states in 1D
disordered systems. Some of them"' ' have dealt with
the exploration of methods while others ' ' have focused
on both methods and the quantitative analysis of the rela-
tivistic effects. Now, a worthwhile display of relativistic
effects on electron motion in disordered systems can be
well provided by relativistic treatment of electrical con-
duction through such systems. As we indicated earlier,
the works Refs. 11 and 15—21 have remained confined
only to (relativistic) electronic states in 1D disordered
systems without any attention to relativistic effects on
electrical conduction in such systems. A relativistic
treatment of the phenomenon of electrical conduction in
disordered systems is thus very desirable. The purpose of
the present paper is to report our work in this direction.
It may be noted here that, although several nonrelativis-
tic (NR) works have been reported about electrical
conduction in disordered systems, we know of no relativ-
istic study to have been reported so far.

For our analysis of relativistic effects on electrical con-
duction in disordered systems, we have derived the rela-
tivistic resistance of a finite 1D disordered system. Our
treatment is essentially based on (i) relativistic generaliza-
tion of Landauer's NR approach toward resistance of a
finite 1D disordered system, and (ii) application of an
averaging procedure due to Erdos and Herndon. For

our treatment, we require some essential features of a 1D
Dirac equation and related transfer matrices; these issues
are discussed in Sec. II. The aspects related to the model
of our study are presented in Sec. III. First, we formulate
a generalized model for the treatment of relativistic resis-
tance; then we reduce this model to a special form for the
purpose of quantitative analysis. The basic formulas per-
taining to relativistic resistance are derived in Sec. IV.
The averaged form of relativistic resistance is obtained in
Sec. V and the NR forms of the main results of this sec-
tion are presented in Sec. VI. The numerical analyses
pertinent to our important analytical issues are elucidat-
ed in Sec. VII. Finally, the results are discussed critically
in Sec. VIII; this discussion primarily focuses its atten-
tion on (i) exposing the circumstances under which rela-
tivistic effects on electrical conduction in disordered sys-
tems can be quite significant, (ii) comparison between rel-
ativistic resistance of ordered and disordered systems, (iii)
indicating the utility of the form of potential chosen for
our quantitative analyses, and (iv) discussing the
relevance of our results to systems we come across in
practice.

II. SOME FEATURES OF 1D DIRAC EQUATIONS
AND RELATED TRANSFER MATRICES

A. 1D Dirac equation

The starting point of the relativistic treatment of elec-
tron motion in 1D condensed matter is the following
time-independent Dirac equation for an electron of mass
m moving in a potential V(x):

difico„+me —o, + V(x) P(x)=Etta(x), (1)

where o„ is the component of the Pauli spin matrix

0 1
~x=

1 0

a, is the z component of the Pauli spin matrix

1 0
0 —1

45 14 293 1992 The American Physical Society



14 294 C. L. ROY AND CHANDAN BASU

Ez is the relativistic energy eigenvalue, c is the velocity
of light, and P is a two-component spinor

(iv) With proper choice of xo, we can obtain a form

M„ for Wz, where Mz has the following properties:

The general solution of Eq. (1) for a constant potential V

appears as ' '

MII (2,2) = [M~ (1,1}]*,
M„(2, 1)= [MII (1,2) ]*,
detM~ =1,
ReMz(1, 2)=0 .

(Sa)

(5b}

(Sc)

(5d)

P= A exp(iPx )+B exp( i—gx ),1 . 1

.y. r.
where

(2) Mz is given by (4), with the condition that xo is chosen
so as to make (Sa)—(5d) valid. Thus, we have

B. Relativistic transfer matrix for a single barrier

We consider a potential V(x) which is real, symmetric,
and single valued, and has the following properties:

V(x) =0 for x (x I and x )x2,
%0 for x, (x (x2,

where —~ &x& ~x2 & ~. A potential of this kind is
called a localized potential. The relativistic transfer ma-
trix W~ is defined as

A» = 8'~
» I

where A» and 8» are the amplitudes of spinors in the re-
gion to the right of x2, and AI and BI are the amplitudes
of spinors in the region to the left of x &.

Using the time-reversal symmetry and the space-
reversal symmetry of the Dirac equation for a symmetric
potential, we obtain the following properties of the ele-
ments of W~.

(i) W2I is independent of A „B„A»,and B„.
(ii) We have

WR(2, 2) = [ WR(1, 1)]*,
WR(2, 1)=[ WR(1, 2)]*,
det8'~ =1 .

(3a)

(3b)

(3c)

2 (e —V)(e —V+2mc )

(A'c )

c —V

ficP

E, =Eg plC 2

The constants A and 8 are the amplitudes of spinors
moving along the directions of positive and negative x
axes, respectively.

C. Relativistic transfer matrix
for a rectangular potential barrier

As we shall see later, our relativistic treatment of resis-
tance is concerned with a chain consisting of a finite
number of rectangular barrier-type potentials. Conse-
quently, we require some features of a relativistic transfer
matrix for this type of potential, shown in Fig. 1. The
spinors p„{})I„andpI« in the regions I, II, and III in Fig.
1 can be obtained from (2), with use of relevant forms of
y and P. In order that the relativistic probability density
may be continuous, these spinors are required to satisfy
the boundary condition given by (9) and (10):

NI«I ) =ALII(x I »
III(x 2 ) IIII(x 2 )

With the help of (9) and (10) we obtain

2 +2

MR (1, 1)=exp( i pIb ) cos—h(gb )+
2f )cx

sinh(gb )

(9)

(10)

V(x)

M„=D(xo )WIID '(xo ) .

In general, xo is dependent on pI. However, for sym-
metric potential, xo is independent of pI and is the same
as the position of the line of symmetry of the nonzero re-
gion of V(x). For a symmetric potential, the elements of
Mz can be expressed in terms of two independent param-
eters A, and v, as follows:

Mz (1,1)= (cosh'. )exp( i v)—,

MII (1,2)= —isinhA. .

The properties of Wz and M~ are formally the same as
those of the corresponding NR matrices.

(iii) With the help of W„, we can obtain the transfer
matrix W~ in the coordinate system x'=x —xo, as fol-
lows:

W„' =D(xo) W~D '(xo),

where

Region Region
II

Region

I II

D(xI) ) =
exp(i PIxo }

exp( iPIxo )— X) Xp
b-

FIG. 1. Model of rectangular potential barrier.
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pi+ex
Mz(1, 2)= —i sinh(gb ),

2f i'
(12)

(c) The position disorder corresponds to a rectangular
distribution, g(lp„), as given below:

where

( V—s)(E—V+2mc )

(Pic )

(V—E)

(ficg )

e(e+2mc )

(Pic )

E

(Pic f3] )

g(1]M„)= for —5&(lp„)&fi,1

=0 for i/p

where 5 is the maximum disorder,

( I + Ip,„)=(x„—x„]),
and I is the mean interpotential distance.

IV. BASIC RELATIVISTIC FORMULA
FOR RESISTANCE

(13)

(14)

III. THE MODEL

We consider a chain of N lattice points x &,x2, . . . , xN,
where x, (x2 & &xz. We place N symmetric,
nonoverlapping potential barriers V(x —x„) around x„.
The system, in general, has both shape and position dis-
order, the latter being only short ranged. We denote the
combined distribution function for shape and position by
F. F is dependent on the locations x„and the two param-
eters A,„and v„ for the nth potential barrier; the parame-
ters X„and v„are defined by (7}and (8). We thus have

Our relativistic treatment of resistance consists of two
stages, namely (i) derivation of a formula for relativistic
resistance (Qi] ) of N potential barriers located at specific
positions, and (ii) an ensemble average of Qz. In this sec-
tion, we derive the formula for Qz, while its ensemble
average is carried out in Sec. V.

In deriving the formula for Q]], we follow the NR ap-
proach discussed by Erdos and Herndon. To begin, let
us consider a beam of electrons incident on the first bar-
rier to the left of the system of X potential barriers. The
following equations obviously hold true:

F F( ]xyA]yv]y ~ ~ yxNyANyvN)
no=

JR+JR
(15)

We now make the following assumptions.
(i) The shape and location of potential barriers are in-

dependent. Thus,

F(x]iA])v]y jxNi)]N)vN )

F, (x], . . .,—xN)F2(A], v], . . . , AN, vN) .

(ii} There exists no shape correlation between poten-
tials, so that we have

n, = JR

JR
PR= JR

l

JR
R JR

PR+&R =
&

(16)

(17)

(18)

(19)
F2(~]tv]9 ' P~NtvN } h](~]lv]) hN(~NtvN }

(iii) The function h„(A,„,v„) is spatially homogeneous.
This means

h„(A,„,v„)=h(A,„,v„); n =1,2, . . . , N .

(iv) The short-range order is such that (x„+1—x„)is an
independent random variable. This gives

1(X]& ' ' ' &XN} g2(X2 X1 gN(XN XN —1} '

(v) The space is homogeneous, so that

g„(x„—x„])=g(x„—x„]); n =1,2, . . . ,N .

We have mentioned above some general features of our
model. We shall first carry out our relativistic treat-
ment in terms of these general features. For quantitative
analysis, we shall, however, follow additional assump-
tions.

(a) There is no shape disorder.
(b) The potentials are represented by rectangular bar-

riers of height V and width b.

where J;, J„, and J, are the incident, reflected, and
transmitted (relativistic) currents, respectively. no is the
density of electrons on the left of the system, n, is the
density of electrons on the right of the system, u is the ve-
locity of electrons, e is the electronic charge, PR is the
(relativistic) refiectance, and i.]] is the (relativistic)
transmittance.

From (15)—(19),we obtain

5n =(n, no) =(2pJ]—J;")/Ue . (20)

where 5v is the potential difference across the system.
Using (20) and (21), we have

2PR J
dn dA
dp] dE

(22)

If the electrons change their energy by 5c while passing
through the system, we have

5c=e 5v,
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Subjecting the spinors P to periodic-boundary condition,
we obtain

N

w,' '=p g w,„,
n=1

(26)

dn

dP,
(23)

Combining (22) and (23) and taking note of the form of P&

given earlier, we obtain the resistance Qz of the system as
follows:

5V 2+4 SR Jg P R
e

(24)

where

PRSR=
R

(24a)

The factors before SR are all constants and it is cus-
tomary to take SR itself as a measure of the resistance of
the system.

V. ENSEMBLE-AVERAGED RESISTANCE

The formula for resistance given by (24) corresponds to
specific locations of potential barriers. Following the
usual practice, we now carry out an ensemble averaging
of this formula. The procedure we follow for this pur-
pose is that of Erdos and Herndon; this procedure is
quite general in the sense that it accommodates arbitrary
distribution of atoms in the disordered system.

We first discuss some features of the relativistic
transfer matrix, WR ', for N barriers at specific positions.
Then we obtain SR in terms of a particular element of
8'R '. Finally, we carry out an ensemble average of SR
by carrying out an averaging of the element of WR
relevant to SR. The ensemble-averaged form of SR,
which will be denoted as (S„), is taken to be the
ensemble-averaged resistance of the system.

where WR„ is the transfer matrix for the nth barrier and
(PQ ) denotes the ordered product of matrices ( Wz„),
with n decreasing from left to right.

The elements of WR„satisfy the properties given by
(3a)—(3c). Also, the elements of Wz' ' would satisfy these
properties. Hence, we have

'(2, 2)= [ W~ '(1, 1)]",
W~ '(2, 1)=[w~ '(1,2)]*,
det(wz ')=1 .

Further, in view of (6) and (26), we can obtain the matrix
W( )a

N
W' '=PgD '( „)M„D( „),

n=1

where

Mrt„=D(x„)Wq„D '(x„),
and x„ is the point of symmetry of the nth barrier.

B. Form of S& in terms of elements of' 8'~

The defining equation for Sz is (24a). pz and r„ in
this equation can be obtained from (17) and (18), keeping
in mind the expression for relativistic current density J
as given below:

JR

Using Eqs. (24a), (17), (18), and (25), the form of Jz, and
the fact that there is no reflected spinor beyond the Nth
barrier (i.e., B~=0), we have

A. Some aspects of FVz '

WR 'is defined as

s, =
I

w'"'(1, 2) I'. (27)

AN W(N) 0
R (25)

In (25), 3 o and Bo are the amplitudes of the incident and
reflected spinors at the first barrier on the left while AN
and B~ are the corresponding entities after the last (Nth)
barrier on the right. We obviously can write

C. Ensemble average of S&

The matrix WR
' and other matrices relevant to it have

all the properties similar to their NR counterparts dis-
cussed in Ref. 26. Hence, the ensemble average (Sz ) of
SR can be written straightforwardly in analogy with the
corresponding NR entity (result 7.4.3 in Ref. 26).
Specifically, we have

(Sz ) = —
—,'+ —,'(detTz) '[(az&) Tz(1, 1)IT+(2,2)T+(3,3)—Tz(2, 3)T+(3,2)I

+(azz) Tz(1,2)IT+(2, 3)T&(3,1)—Tz(2, 1)T+(3,3)I

+ ( a~ )T3~ ( 1, 3 ) I T~ (2, 1 ) T~ ( 3, 2 ) —T~ (2, )T2~ (3, 1 ) I ], (28)

o.'R &, aR2, and aR3, and three eigenvalues of the 3 X 3 ma-
trix Gz. Tz(1, 1), etc. , are elements of the matrix T~,
which diagonalizes GR to GR, say,

GR —TR 'GRTR .

I

The elements of GR are as given below:

(29)G& (1,1)= I qg (1, 1)I'+
I q~ (1,2) I',

G (1 2)=v'2q&(1, 1)[q&(1,2)]*Ca U& =[Gg(1,3)]
(30)
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Gz(2, 1)= ~2qz(1, 1)[q„(1,2)]'=[Gz(3,1)]',

G (2,2)=q (1,1)q (1,1)C„U„=[Gg(3,3)]

G, (2, 3}=—Iqg(1, 2) I'Cz U~ = [G~(3 2}]*

(31}

(32)

(33)

++2 I ++2 I exp(i4 ) )

T~(1,2}[[Ta(2, 1)]'[T„(3,2)]' —T„(2,1)[T2t(2,2)]']
T~(1,1)[IT, (2, 2) I' —

I T, (3,2)I']

42e"P('43}

Cz =exp( 2iP, I ),
Uz = f g(l p„)exp(2iP, Ip„)d(!p,„),
qz(i,j }=f Mz„(i,j )h(A, „,v„)dk„dv„.

The eigenvalues az; can be either all real or one real

and two others a complex-conjugate pair. VA'thin certain
ranges of energy c, all three eigenvalues a&; are real;

these ranges of energy are called overdamped regions.
For these regions, we have, from Eq. (28),

1 1 ~1( Rl) +2( R2) +~3( R3)
N N

(s„&= ——+—
R 2 2 N~+N2+N3

o 1 1 1+42cos(N4i+43}
1+42cos(43)

For overdamped regions we have, from Eq. (34),

(36)

4„42, and 43 are all real. The regions of e for which
Eq. (35) is valid are called underdamped regions.

The results expressed by (28}, (34), and (35} all corre-
spond to relativistic resistance of disordered systems un-
der various conditions. It is worthwhile to compare
(Sz ) for disordered systems with the corresponding enti-
ty (S„)for periodic systems.

With the help of (35) we have the following form of Sz
for underdamped regions:

where

co, = T&(l,i )Im[ T&(2,k )[T&(2,l )]

N &1, (34) 2( ~2)"+~3(~Z3)"s'= ——+- , N&1. (37)
2 2 N&+N2+N3

(i,k, I ) is the cyclic permutation of (1,2,3).
If az, is real, and a+2 and a+3 are a complex-conjugate

pair, again from Eq. (28) we get

1 (~a)) +42ltrR21'cos(N4i+43)
(s~ &= ——+—

2 2 1+42cos(43)

N&1, (35)

where

VI. ENSEMBLE-AVERAGED RESISTANCE
FOR THE NR CASK

For comparison between (Sz ) and the corresponding
entity, denoted by (SN„), for the NR case, we require
the form of (SNR ). The general form of SN„was report-
ed by Erdos and Herndon. The (SNR ) for our model is
obtainable from this general form by incorporating in it
the various entities relevant to our model. Specifically,
we have ( SNR ) as given below:

(SNR &
= p+ 2det(TNR) [(&NR$) TNR(1 1}ITNR(2,2)TNR(3, 3)—TNR(2, 3)TN„(3,2)l

NR2) NR(1, 2) I TNR(2, 3)TNR(3, 1)—TNR(2, 1)TNR(3, 3)l

+(+NR3) TNR(1 3)ITNR(2, 1)TNR(3, 2) —TN (2, 2)TNR(3, 1)l] N& 1 (38)

where

GNR(1 1)= lqNR(1 1)I'+ IqNR(1 2) I'

GNR(1, 2)=&2qNR(1, 2) [qNR(1, 2) ]'CNR UNR

=[GNR(1 3}l*

GNR(2, 1)= —V2qNR(1, 1)[qNR(1, 2) ]~

GNR(2, 2) =qNR( 1, 1 )qNR( 1, 1 )CNR UNR

= [GNR(3, 3}]*,
G„,(2, 3)= —IqN, (1,2) I'C„*„UN,

= [GNR(3, 2)]*,

(39)

(4O)

(41)

(42)

(43)

CNR =exp(2ik, l ),
UNR= f d(lp, „)exp(2ik, lp„)g(lp, „),,

qNR(), g)= f MNR(&, g)h(l, „,v„)dl,„dv„,

2 2m&
1

aNR&, aNR2, and aNR3 are the eigenvalues of GNR. TNR is
the matrix that transforms GNR to the diagonal form

GNR'

TNRG+R TNR
—1

The form of MNR for the rectangular barrier-type poten-
tial appears as
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k2& k22

MNR(1, 1)=exp( —ik1b ) sinh(k2b )
2 1 2

+cosh(k2b )

= [MN„(2,2)]',

k +k
MNR(1, 2)= —i sinh(k2b ) = [MNR(2, 1)]*,

2 1 2

where

k = (V—E).2m

fi

The forms of (SNR) for overdamped and under-
damped regions are given, respectively, by (44) and (45):

+1( NR1) +~2(+NR ) +~3( NR3}
N N

2+2

1 1 (t2NR1) +CNR2(trNR2) cos(N(NR1+(NR3)(s „)=——+-
NR + (NR2 ( (NR3 }

where

o; = TNR( l, i )Im[ TNR(2, k ) TNR (2, 1 )],
(i,k, I ) is the cyclic permutation of (1,2,3),

+NR2 +NR21 exP(4NR1)

and

TNR(l 2)[[TNR(2 1)] [TNR(3 2)] TNR(2 1)[TNR(2 2}] ]

TNR(1, 1)[ITN„(2,2) I' —
I TNR(3, 2}12]

(44)

(45)

VII. NUMERICAL ANALYSES

Our numerical analyses are pertinent to elucidating the
following aspects: (A) relative features of (Sz ) and Sz,
(B) general difference between (Sz ) and (SNR ), and (C)
quantitative impacts of various parameters on the
difference between (S„)and (SNR ).

There are essentially three main stages of our numeri-
cal calculations.

(i) Finding Gz and GNR. We can find Gz from

(29)—(33) and GNR from (39)—(43).
(ii) Finding the eigenvalues az and aNR. az and aNR

are obtained by numerically solving the characteristic
equations (46a) and (46b), respectively.

~ Gz a+I I
=o, —

I GNR HENRI I
=o .

(46a)

(46b)

(iii) Finding (Sz ), (SNR), and Sz. With the help of
various entities under (i) and (ii), we obtain (S„) from
(34) and (35), for overdamped and underdamped regions,
respectively. To get (SNR), we use (44) and (45) corre-
sponding, respectively, to overdamped and underdamped
regions. Finally, Sz is computed from (36) and (37) for
underdamped and overdamped regions, respectively.

Throughout our numerical analyses, we have made use
of (13) and (14) for g(li2„) and the two assumptions [(a)
and (b)] preceding them. Our results are shown in Tables
I and II and the graphs of Figs. 2 —6. The values we have

adopted for various parameters are shown in the tables,
as we11 as in the graphs and their captions; these values

are close to the ones employed previously by many au-

thors. '
VIII. RESULTS AND DISCUSSION

—1(t~ (1,
where

(47}

t„=cosh(yb )cos[P,(l b)]—
CX

2p )cx
sinh(yb)sin[P, (l —b)] .

The graphs and tables throw light on all three aspects
(A), (B), and (C), mentioned in the following section.

(A) Relative features of (Sz ) and Sz. (Sz ) and Sz
for underdamped and overdamped regions are shown in
the graphs of Figs. 2 and 3, respectively. Looking at the
graphs in Fig. 2, we see that, for underdamped regions,
SR oscillates with N; these oscillations are due to the
presence of oscillatory terms in S„. On the other hand,
(Sz ) for underdamped regions oscillates with N only for
low values of N, the amplitudes of oscillations diminish-
ing with increase of N and increasing almost exponential-
ly with N for high values of N.

The solution of (46a) leads to the following criterion in
order for c, to lie in the underdamped regions:
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TABLE I ~ Shown in this table are results that correspond to the following values of various parame-

ters: 1=5X10 ' m, 5=5X10 "m, N=500. These results are concerned with the difference between

&SN„& and &Sz & for various energies.

V
(eV)

30

b (m)

1X10-"

Eorms
(eV)

10
15
20

&S.R&

0.7872 X 10
0.2978
0.9331X10 '

&s, &

0.7873 X 10
0.2977
0.9331X 10

0.1783X 10-'
—0.2143X10-'

0.7836 X10-'

30 5X10 10
15
20

0.1705X10'
0.5740 X 10'
0.2990X 10'

0.1706X10'
0.5727 X10'
0.2991 X 10

0.3291 X 10
—0.2396

0.2500 X 10-'

30 10X10 " 10
15
20

0.7321 X 10
0.2787 X 10
0.3571 X 10

0.7321X 10'
0.2762 X 10
0.3574 X 10

0.5501X10-'
—0.9026

0.7118X 10

CR1
2'

(integer); N ) l .

Coming to the graphs of Fig. 3, we note the following
features of (Sa ) and Sa for overdamped regions.

(i) Both ( SR ) and Sz increase with N, nearly exponen-

tially.
(ii) (Sz ) is generally higher than Sa.
(iii) (Ss ) increases quite substantially with increase of

5, the disorder parameter.
(iv) e for Sa in the overdamped region falls within the

forbidden region of an ordered system with potential bar-
riers of width b and periodicity l, the criterion relevant to

Criterion (47) corresponds to allowed regions of an or-
dered system with potential barriers of width b and
periodicity l. Erdos and Herndon reported earlier the
NR criterion for underdamped regions for an ordered
system with 5-function potentials; the inequalities in (47)

correspond to a generalization of this criterion in two

respects, namely, (i) they are relativistic and (ii) they are
involved with (rectangular) barrier-type potentials.

The minimum value of Sz is seen to be zero or nearly

zero for certain N values. These X values correspond to
total transmission. From (36), we can obtain the follow-

ing criterion for total transmission:

the case being

it„ i
) l .

(B) General difference between (Sa ) and (SNR). The
general differences between (Sa ) and (SNa ) for under-

damped regions are shown in the graphs of Figs. 4 and 5,
while the corresponding general differences for over-

damped regions are shown in the graphs of Fig. 6.
Looking at Fig. 5, we see that the difFerence between

(Sa ) and (SNR), manifested through 5, oscillates for
underdamped regions up to some critical value (N, ) of N;
beyond N„ the difference between (Sa ) and (SNR ) as-

sumes a constant value. With increase of 5, the value of
X, slightly decreases, and the amplitudes of oscillations
increase noticeably.

The graphs in Fig. 6 show the following features for
overdamped regions: (i) 5 has no oscillations with N; (ii)
ib, i shows a minimum for some value (N ) of N; (iii) with
increase of 5, 4 increases; (iv) with increase of 5, N
slightly decreases.

(C) Quantitative sects of various parameters on (Sz )
and (S~a ). In order to demonstrate the relative quanti-
tative effects of various parameters on (Ss ) and (SN„)
more clearly than the graphs in Figs. 2-6 can do, we
have computed Tables I and II. The results in these

TABLE II. Shown in this table are results that correspond to the following values of various param-
eters: l=5X10 ' m, 5=5X10 " m, IV=500. These results are similar to those of Table I for a
different value of V.

V

(eV)

40

b

(m)

1X10

c or E
(eV)

15
20
30

0.6616
0.1770
0.1598

&s„)

0.6615
0.1771
0.1591

-0.2543 X10-'
0.8230

—0.2321 X 10

40 5X10 15
20
30

0.1668X 10"
0.6692 X 10
0.5375 X 10

0.1661X10"
0.6695 X 10'
0.5373 X 10'

—0.4385
0.3954 X 10-'

—0.2235 X 10

40 10X10-" 15
20
30

0.3872 X 10"
0.4591X10"
0.8305 X 10"

0.3826 X 10
0.4596 X 10"
0.8294 X 10'

-0.1175X 10'
0.9769X 10

—0.1287
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FIG. 6. Variation of 6 with X for overdamped regions. The
values of 5 are shown alongside the graphs and other parame-
ters are the same as those in Figs. 2-5.

which are more realistic than 5-function potentials and
are being used in recent times. Hence, our results for
both (Sa ) and (SN„) are likely to conform more to
realistic systems than the NR results of Erdos and Hern-

don or the form of (Sz ) with 5-function potentials.
(b) Finite disordered systems like the model we have

treated are close to "thin films. " Hence, our results are
likely to be of importance in regard to the properties of
thin films.

(c) The magnitudes of 6 shown in Tables I and II are
generally comparable to, and sometimes higher than, the
relativistic impacts on aspects like band structures and
surface states. ' Hence, the study of relativistic impacts
on electrical conduction in disordered systems deserves
serious attention.

(d) The model we have treated is essentially a finite
disordered system and this kind of model is of consider-
able importance in regard to electrical conduction in
disordered systems.

(e) The present study is an effort towards exploration of
relativistic effects on electrical conduction in disordered
systems. The primary objective behind this study is to
bring forth some results which will pave the way for stud-
ies about the problem that are more realistic than ours.
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