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Nonlinear conductance fluctuations in quantum wires:
Appearance of two different energy scales
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Using a nonequilibrium Green-function formalism we study numerically the conductance fluc-
tuations in a quantum wire as a function of the applied bias. This system is represented by a
tight-binding Hamiltonian with random site energies and the current through the wire is expressed
in terms of a transmission coefBcient that can be computed by a recursive algorithm. We analyze the
fluctuations in the transmission and in the differential conductance for different degrees of disorder,
in the limit where the applied bias is much larger than the Thouless correlation energy E,. In addi-
tion to the expected fluctuations in the E, scale the conductance has also large random oscillations
in a second energy scale related to the motion in the transverse direction. Electron heating effects are
included in the model by means of an approximate self-energy, taking into account electron-electron
interactions. An estimate is given of the typical voltage scales at which the effects described in this
work might be observed in real metallic and semiconducting wires.

I. INTRODUCTION

The observation of universal conductance fluctuations
in 1984 (Ref. 1) was followed by many theoretical~ s and
experimentals ~o works showing that this phenomena was
a remarkable manifestation of quantum coherence.

The fluctuations can be observed in mesoscopic sam-
ples of size L much larger than the elastic mean free path
and smaller than the phase coherence length L@,, as a
function of an applied magnetic field or, in the case of
semiconducting devices, by varying the Fermi energy. It
was also shown that the shape of the fluctuation pattern
is extremely sensitive to small changes in the impurity
potential. '

The theoretical investigations of these effects include
diagrammatic perturbation approximations, 2 the the-
ory of random mat;rices, and numerical simulations.

On the other hand, the occurrence of random con-
ductance fluctuations as a function of the applied bias,
beyond the limit where linear response is expected to
be valid, has been the object of only a few investiga-
tions. In 1986 Larkin and Khmel'nitskii, ~ using dia-
grammatic perturbation techniques, predicted that the
current-voltage (I V) characteristi-c of a mesoscopic sam-
ple should fluctuate around its Ohmic behavior with a
typical voltage scale V, E,/e, E, being the Thou-
less correlation energy. Their work is based on the dif-
fusion approximation, valid in the limit of weak disor-
der, and they obtain an integral expression for the con-
ductance autocorrelation function. On the experimental
side, Webb et al. ts studied the conductance fluctuations
as a function of the injected current in small metallic
wires and rings, in a regime which corresponded to V ))
V, . Although their results for the Quctuations amplitude
are in qualitative agreement with the theory of Larkin
and Khmel'nitskii, the behavior of the current correla-
tion scale remains unexplained. In another experimental
work, de Vegvar et al. observed second-harmonic gen-

eration in quantum wires fabricated in GaAs-Al-Ga-As
heterostructures, in the limit eV && F, where nonlinear-
ities are small perturbations away from linear-response.

At this point, numerical work would be of interest in
order to analyze in detail the nature of the conductance
fluctuations when linear-response theory is no longer
valid.

In this paper we present a numerical study of the non-
linear conductance of a disordered mesoscopic wire, rep-
resented by a two-dimensional tight-binding model with
random site energies. Our results may illuminate dif-
ferent aspects of the problem that cannot be handled
analytically. For example, we are not restricted to the
limit of weak disorder but may consider the case of strong
disorder as well. Also, the validity of the hypothesis of
equivalence between energy and ensamble averages, used
in most theoretical works, may be tested.

In order to obtain the total current through the system
for a given applied bias we employ the Green-function
formalism adapted by Keldysh to deal with nonequi-
librium situations. This technique was used by Caroli et
al. to obtain the tunneling current through insulating
barriers and has been used recently by some authors
due to the feasibility of including many-body effects in
a relatively simple way. The model and formalism used
are described in the next, section.

The third section is devoted to the numerical results
and is divided into three parts. In the first we analyze the
fluctuations in the transmission coeKcient introduced in
Sec. II. In the limit of linear response this is equal to the
conductance, but the applied electric field produces some
differences from the expected universal behavior. The
second part describes the fluctuations in the nonlinear
conductance as a function of the bias and the degree of
disorder. The amplitude and the relevant energy scales
in the conductance fluctuations are analyzed. Finally, in
the third part we present an approximate description of
the inelastic effects, with particular attention to the role
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of electron heating induced by the applied bias.
In the last section we give the concluding remarks

where we discuss some scaling arguments relating our

numerical results to the nonlinear conductance fluctua-

tions that might be observed in real semiconducting or
metallic wires.

II. DESCRIPTION OF THE MODEL
AND METHOD

The sample is represented by a rectangular strip de-

fined on a square lat, tice. This strip is N sites long and
M sites wide and we shall consider only the case X &) M
for which a quasi-one-dimensional character is expected.

The system is described by a first-neighbors tight-
binding Hamiltonian with a constant hopping parameter
t taken as unit of energy. The disorder is introduced in

the site energies that are randomly chosen in the range
—W/2 to W/2 as in the usual Anderson model.

The ends of the sample are attached to semi-infinite

and wider regions on which the site energies are constant.
These represent the leads that fix the electrochemical po-

tential difference on the sample. A given bias V is im-

posed by taking the site energies on the left lead as zero

and equal to —eV on the right lead. On the disordered

central region the electrostatic potential is assumed to
drop linearly from zero to —eV. This is taken into ac-

count by adding a term eVj /N to—the site energies on

the transversal row j.
In the Keldysh formalism, besides the usual retarded

and advanced Green functions (G" and G'), two addi-

tional operators denoted by G+ and G + are defined.

These are related to the occupation probabilities in the

nonequilibrium state. The total current through the sys-

tem can be expressed in terms of the elements of G+
as"

(

—1
g~. (z) = z —H~~ —t' g~+g, j &j & N

where H&& is the projection of the Hamiltonian onto the

subspace associated with row j. The input for these equa-

tions are the Green functions for the uncoupled leads,
which are obt, ained from the conditions

go(Z) = Z —Hpo t go

gpf+y(z) = gp(z + eV)

(4)

that can be easily solved if the eigenvalues and eigenvec-

tors of Hpp are known.
On the other hand, the elements of Gl l+ needed to

solve (2) for G+&~ and Go+, are given by

Gpp = fl (go go) and GIy
+ = f&(gl gl)

where fI, and fR are the Fermi factors for the left- and

right-hand sides of the uncoupled system.
Taking into account Eqs. (1), (2), and (3) we obtain

the following expression for the total current at zero tem-

perature:

and Z+& ——0. As will be discussed later E+ is different
gk

from zero only when many-body interactions giving rise

to inelastic effects are considered.
The unperturbed functions G& ~ correspond to two iso-

lated regions which are in thermodynamic equilibrium

(the chemical potential takes the value p on the left lead

and p —eV on the rest of the system). Thus, these func-

tions can be obtained using the usual techniques for sys-

tems in equilibrium.
As in a previous work~0 we calculate G~ol"' using the

recursive equations:

G", ,'(z) =g, (z) = z —H„—~'g, j

2et

h
T«io —Goi 1

dE
2eI=-
h —eV

T(E, V)dE,

(5)

where Tr indicates trace operation over all sites in a row,

and the notation Gz~ denotes a M x M matrix whose

elements (G&q) are (jm ~
G

~

km').
At the steady state, the current must be equal on each

row and thus, for convenience, we choose to calculate it at
the interface between the left lead and the central region.

In order to obtain the relevant Green-function elements

the coupling between rows 0 and 1 may be treated as

a perturbation. The corresponding Dyson's equations
are

G+ = [1+G"2"]G + [1+2'G']+ G"2+ G',

(2)

Gr, a G(0)r, a [1 + gr, Gr, a]a
The appropiate self-energies in this case are

&, y
= t(~og~ix+ ~ig~ok)

T(E, V) = 2t Tr[Im(go)D&OIm(gf)DO~],

where D&t. = (1 —t g&gt. ) '. This expression is a gen-

eralization to the case of many quantum channels of the
known result for the tunneling current in 1D systems.

A similar formula was derived by Martin-Rodero, Fer-

rer, and Flores for a one-dimensional tight-binding sys-

tem with many orbitals per site. Note that the function

T(E, V) can be considered as a transmission coe%cient
from left to right, and thus (5) is equivalent to the usual

Landauer formula for nonlinear response.
It is worth mentioning that an equivalent but more

symmetrical expression, with respect to the left and right

leads, can be obtained assuming that the perturbation
involves the coupling between the central region and both

leads. In this case the resulting expression is

T(E, V) = 2& Tr[Im(go)GiwIm(g~+&)G&&] (6)

[see the Appendix for a direct proof of the equivalence
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between (5) and (6)). Also let us mention that the con-
ductance can be calculated taking the derivative of (5)
with respect to V, which gives

2c BT
G(V) = T(p —eV, V) ~ dE

p —eV

where the derivative & can be expressed in terms of
and ~&, which can be obtained using a recursive

algorithm similar to that of Eqs. (3). In the limit of small
applied bias we reobtain the well-known many-channel

conductance formula G =
&

T.
To keep a reasonable computational cost the main re-

sults presented in next section were obtained for the case
N = 10M with M = 10.

III. RESULTS

A. Fluctuations in the transmission coefBcient

The transmission coefficient T displays random fluctu-
ations as a function of the energy E and the applied bias
V. An example of the typical patterns obtained for T
is shown in Fig. 1. It can be observed that the fluctua-
tions amplitude is of order 1, as expected from the theory
of universal conductance fluctuations. 2 Also, in spite of
their complex structure, it is possible to distinguish wide
regions including several oscillations in a small energy
scale, separated by large dips in the transmission.

According to the ergodic hypothesis used in most the-
oretical approaches, 2 averages of any function of T over
the energy must be equal to an ensamble average over
many different realizations of the disorder. We thus start
our analysis by calculating the mean value (T) and the
mean-square deviation of T defined as

where the angular brackets denote ensamble averaging.
We consider about 200 random configurations in our av-
erages and study the dependence of (T) and T„m, on the
disorder strength 8' and the voltage V.

The results shown in Fig. 2 correspond to W in the
range 0.20 to 2.0 and values of V up to 2 (measured in
units of t/e). When W is small compared to V, both (T)
and Trrns are sensitive to the applied field and decrease
with increasing V. In this case the system is near the bal-
listic regime and the electric field introduces reflections
in the band edges that reduce the transmission. On the
other hand, when W is sufficiently large both (T) and
T,ms become independent of V. The values of T,ms for
1 & W & 3 are in good agreement with the value 0.36
predicted by the theory of universal conductance fluctu-
ations for a one-dimensional geometry. z

Another way to analyze the same results is to plot T„ms
against (T). This should reveal if there is a universal
relation between both magnitudes, regardless of the de-

gree of disorder or the energy, as expected from a single-
parameter theory of localization. This plot is shown in

Fig. 3, where three regions can be clearly identified. For
large (T) ((T) ) 3) there is no universal relation between

T„m, and (T) because the field acts to suppress the fluc-
tuations and reduce (T) in this region. In contrast, for
1 & (T) & 3, T„, is approximately constant and equal
to the theoretically expected value. Thus, this region
corresponds to what is called the diffusive regime.

Also for strong disorder ((T) & 1) the relation between

Trrn, and (T) seems to be universal, but here Trms tends
to zero almost linearly with (T), as was found in previous
numerical works. 7 s

Another important feature in the fluctuations of T is
the energy correlation scale E,. In order to estimate E,
we have calculated the autocorrelation function F(AE),
defined as

F(AE) = (T(E)T(E+DE)) —(T)2

but here the brackets include an average over the energy
for an energy range much larger than the expected E, .
The half width in the au tocorrelation peak at AE = 0
gives then a measure of E, .

The results for F(b,E) are shown in Fig. 4(a). As
expected E, decreases for increasing disorder, going from
0.042 for W = 0.5 to 0.008 for 8' = 3. Like Toms& Ec
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FIG. 1. Fluctuations in the transmission coefficient as a function of the energy (a) and of the applied voltage (b). These
results correspond to a given disorder configuration with W = 2, the system size being M = 10 and N = 100.
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was found to be rather insensitive to the applied field for

(T) & 3.
In this regime we also found a good agreement be-

tween the energy-averaged value F(0) and the ensemble-
averaged value T, , However, the dependence of T on E
is not completely random because, in that case, F(AE)
should tend smoothly to zero for AE & E, . In contrast,
as shown in Fig. 4(b), there are always some important
correlations on an energy scale much larger than E, and
a second peak clearly appears in F(4E) for AE )) E„
as indicated by an arrow in this figure, Let us call this
second energy scale E,, As will be shown in the next
subsection this has an important effect on the conduc-
tance fluctuations when V )) F, .

In the same sense as E, is related to the time of dif-

fussion in the longitudinal direction, we may associate
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FIG. 3. T, , against (T) for different values of the applied
bias V. The dashed horizontal line has the same meaning as

in Fig. 2(b).
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E„with the motion in the transverse direction. In a
perfect sample this gives rise to the appearance of one-
dimensional subbands with a typical spacing inversely

proportional to the sample width. We confirmed that
F„ is related to this effect by computing the autocor-
relation function for different number of sites M, while

keeping the ratio M jN constant. The larger energy scale
E„was found to behave roughly as M while E,jE„
remained almost constant.

0.00 B. Nonlinear conductance fluctuations
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FIG. 2. (a) Mean value of the transmission coefficient (T)
and (b) root-mean-square deviation T, ; against the applied
bias for different values of W. These results were obtained
averaging over 200 random configurations with F = 0. The
dashed horizontal line indicates the universal value expected
for a 1D geometry.

In order to obtain the differential conductance we carry
out the numerical integration of Eq. (5) giving the total
current, at two nearby bias conditions such as AV « E, .

A good accuracy is obtained taking the integration step
much smaller than F, . Alternat, ively, the conductance

may be obtained computing directly T and & and using

Eq. (7), but we found that both procedures give the same

accuracy and are similarly time consuming.
In the region of small V (V « E,), where linear re-

sponse is expected to be valid, the conductance must

behave as the transmission coeFicient. The more inter-

esting effects appear for large V, where the fluctuations
of G(V) are qualitatively different from those observed

in T.
In Fig. 5 we show some examples of the typical traces

obtained for G as a function of V for a particular dis-

ordered configuration and different values of W. In all

cases the main features of these curves are random oscil-

lations on a voltage scale corresponding to E,„and with

an amplitude that increases for increasing V. I'rom the
curves in F'ig. 5 and also from the autocorrelation of the
transmission coeScient, E„can be estimated to be 10
to 20 times larger than the corresponding E, .

On the other hand, when the disorder is large enough

((T) & I) and when U )) E, we find regions of
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2etI=
h ) Tr [G"„Z+ G;o —Go, Z+ G;, ] dE

To proceed further we follow the prescriptions given in
Ref. 17 and neglect the energy and site dependence of E",
E', and E+ . This should be valid for a small applied
bias as compared to the total bandwidth. In this way,
the inelastic effects are included in our model by means
of a single parameter il, such that Z" = E' = ig and

fic contribution given by expression (5), but with the
retarded and advanced propagators in T corrected by a
term Z,".; and Z;, respectively added to the site energies.
This represents a mean-Geld potential giving a Gnite life-

time to the electronic states. Second, an inelastic contri-
bution due to the K+ term in Eq. (3) for G+, given

by

transmission coefficient and, consequently, of the conduc-
tance, will be damped due to the energy-level broadening
introduced by g.

In Fig. 7(a) we show the rms value of T as a function of
V when inelastic effects are included. It can be observed
that T,~, remains almost constant when V is such that

q « E, and decays roughly as V i for larger values of
V.

The incidence of inelastic effects on the conductance
is rather similar. The dashed line in Fig. 6 represents
the conductance as a function of V when inelastic effects
are included. We observe that, except for the small-V
region, the oscillations are substantially reduced. The
rms value of G however has a smoother decay with V
than T,m, has, as can be seen in Fig. 7(b). The arrows
in this figure indicate the values of V for which rl E,
and tl E„, respectively. Only when rl E„we find

that G,~s is of the same order as Tr~s.

2et2I=
h —eV

Tr ) (G"„.G;., )Imgo dE.

U2 V2

W3
b

where U is the on-site electronic repulsion and Wb is the
total bandwidth. For a metallic system U/Wb may be
assumed to be of order 0.1. Thus, as V increases the
inelastic contribution to the total energy increases and,
for strong disorder, it may be even larger than the elastic
contribution. At the same time, the fluctuations of the

Note that q is nothing but an average of the self-

energies over t,he energy range between p, —eV and p.
We are interested in the dependence of this parame-

ter with the applied bias. This can be estimated by an
approximate calculation to second order in the electron-
electron interaction. Assuming a rectangular density of
states this calculation yields

IV. CONCLUDING REMARKS

The main physical result of this work is the identifi-
cation of a second energy scale E„ larger than E„ that
plays an important, role on the conductance fluctuations
when V )& E, .

In order to relate our model calculations to real exper-
imental situations, an estimate of E„and E„/E, in real
devices must be given. An upper bound to E,, is cer-
tainly given by the typical subband spacing in a perfect
wire. For a metallic wire like those used in Ref. 13, as-
surning that the number of occupied channels is approx-
imately given by N,h (I t/AF) (where I b, the trans-
verse length, is of order of 300 A, while A~, the Fermi
wavelength, is about 1 A), we obtain E„20peV. This
has to be compared with the estimation of E, given in
the same reference, that is 1—2 peV. On the other hand,
the typical subband spacing for quantum wires fabricated
on Si MOSFET devices have been measured giving 2—4

meV, while typical values of E, in these systems are
0.1 meV. 9
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FIG. 7. T, , (a) and G, , (b) for W = 2 with (triangles) and without (squares) inelastic effects as explained in text. The

solid curve in (a) is a numerical fit that yields T, ; V + ' . The arrows in (b) indicate the values of V for which ri E,
and E„,respectively.
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Thus, both estimations lead us to the conclusion that
E„/E, is between 10 and 20 in metallic and semicon-
ducting wires, in agreement with our numerical results.
The nonlinear regime that we have studied in this work

might correspond to a bias voltage larger than 20 peV in
metallic wires as those used in Ref. 13, and larger than
5 meV for semiconducting wires as those of Ref. 22. In
fact, the experimental data presented in Fig. (a) of Ref.
13 strongly suggests the appearance of the second energy
scale.

We must indicate that the occurrence of fluctuations in
two energy scales has recently been reported in a different
context, corresponding to large silicon inversion layers in
the variable-range hopping regime.

We have also shown how to include electron heating ef-
fects in our model, the main conclusion being that these
do not suppress the conductance fluctuations in both en-

ergy scales unless V is much larger than E, and E„,
respectively. This is due to the small factor U/Wb that
relates V with the imaginary part of the self-energies.

Further experimental work would be of interest, espe-
cially on Si MOSFET quantum wires, in order to confirm
the qualitative results presented here.
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APPENDIX

in the coupling parameter t. However this is masked by
their diHerent mathematical form and thus a direct proof
of the equivalence should be desirable.

To proceed with the proof we first show that (6) may
be written as

+( ~) 2t ~ Im(SO)G1N'im(SN'+1)+N'1

2it Img,'+, ——,g,
" — g,', 1 & Z & N. (A2)

We also make use of the following relations:

GiN —«iN-igN

GN1 ~gN GN-11'
(A3)

Replacing (A2) and (A3) in (6) we obtain (Al) for
N' = N —1. The same procedure may be applied re-

cursively to go from (Al) with N' = N —1 to the same
expression with N' = 2. Using (A2) this may be written

+(E I ) = 'Tr Im(go)Gii [gi] [Si]

(A4)

Now the equivalence between (5) and (A4) [and there-
fore between (5) and (6)] is straightfoward if we first no-
tice that

2 ( N'(N (Al)

Let us consider the case N' = N —1. From (3) it is
easy to show that

In this appendix we demonstrate the equivalence be-
tween Eqs. (5) and (6). This equivalence is warranted by
the fact that both expressions are exact to order infinity

G11 010g1 &

all g1 01'

(A5)
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