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Transverse magnetoresistance in quantum wells with multiple subband occupancy
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The low-field magnetotransport properties of a two-dimensional electron gas are calculated for a situa-
tion in which more than one subband is occupied. The theory is formulated in terms of a Boltzmann
transport equation in which only elastic impurity scattering is taken into account. The possibility of in-

tersubband scattering is included and its effect on the transverse magnetoresistance and Hall coefficient
is determined. We find that intersubband scattering plays an important role and its neglect can lead to
erroneous conclusions regarding the values of the subband mobilities extracted from fits to experimental
data.

I. INTRODUCTION

Semiconductor heterostructures are ideal systems to
study electronic transport in situations that are not
directly accessible in metals. The fact that their fabrica-
tion, and hence physical characteristics, can be con-
trolled, facilitates the systematic investigation of the
effects of various parameters on the transport properties.
GaAs/Al„Ga, „Asheterojunctions are particularly at-
tractive because of their near-perfect interfaces and sim-
ple electronic band structure. In addition, the electronic
density in these systems can be varied continuously by
different means with the interesting possibility of occupy-
ing several electronic subbands. Carriers in each of the
subbands comprise distinct, but coupled, two-
dimensional electron gases (2DEG's) which contribute to
the total conductivity.

The dominant scattering mechanism in such systems at
low temperatures is elastic scattering from remote ion-
ized impurities. The impurity potential induces transi-
tions within subbands (intrasubband) and between
different subbands (intersubband), and it is of interest to
determine the rates with which these processes occur.
This information can be obtained from conventional
transport measurements that yield transport lifetimes, or
alternatively, measurements of Shubnikov —de Haas
(SdH) oscillation amplitudes, which provide quantum
lifetimes. These two lifetimes represent different averages
of microscopic transition rates and therefore provide
complementary information which is useful in confirmin
the nature of the scattering mechanisms and the electron-
ic subband structure of the junction.

Recently, measurements of the low-field transverse
magnetoresistance in a GaAs/Al Ga& „Asheterojunc-
tion were made in an attempt to determine transport life-
times. ' The sample in question had two occupied sub-
bands and a positive magnetoresistance was observed.
For a single subband with an isotropic scattering rate,
classical theory predicts no rnagnetoresistance since the
Hall field exactly compensates the Lorentz force and the
carriers drift in the direction of the applied field. In actu-
al fact, single subband systems typically exhibit a nega-

tive magnetoresistance which is attributable to quantum
corrections arising from the effects of weak localization
or electron-electron interactions. ' However, if the car-
rier density in such a sample is increased to the point
where a second subband is occupied, a positive magne-
toresistance always seems to be observed. ' This
change in behavior is clearly related to the occupancy of
more than one subband, and it is natural to invoke the
classical theory in which the carriers are assumed to
comprise distinct groups with different physical attri-
butes. The essential physical idea is that the different
subbands constitute parallel conducting channels which
are independent apart from the fact that the currents are
driven by common macroscopic fields. The situation can
be realized when the channels are separated spatially as
in a heterostructure or energetically as in a bulk serni-
conductor. The conventional classical theory for this sit-
uation indeed predicts a positive rnagnetoresistance
which varies quadratically with magnetic field 8 at low
fields and then saturates at higher fields.

A fit of the observed magnetoresistance with the classi-
cal formula in principle allows one to extract the lifetimes
or mobilities for each subband. This procedure was fol-
lowed by van Houten et al. ,

' who came to the conclusion
that the mobility of the second subband in their sample
was a factor of 4 smaller than that of the first. The quali-
ty of their fits also led them to conclude that it was un-
necessary to invoke intersubband scattering in the inter-
pretation of their data. However it is not obvious a priori
what changes intersubband scattering wi11 make to the
classical formula, which is derived with the assumption
of two independent parallel conducting channels. That
intersubband scattering should not play a role is a bit
surprising since there is a clear signature of its efFect in
the observed decrease in mobility associated with second
subband occupancy. " It is therefore clear that the
effect of intersubband scattering must be analyzed before
any definitive conclusions regarding its relevance can be
made.

In this paper we present a Boltzrnann transport-theory
formulation of the transverse magnetoresistance, which
explicitly takes into account the possibility of intersub-
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band scattering. This theory should be valid in the low-
field regime below the onset of SdH oscillations that arise
from the Landau-level quantization of the electronic
states. Formulas are derived for both the magnetoresis-
tance and the Hall coefficient, and the effects of intersub-
band scattering are explicitly isolated. We find that in-
cluding these effects can have important implications for
the interpretation of the experimental data. In particu-
lar, the relative magnitude of the mobilities in the two
subbands can be reversed when intersubband scattering is
included as compared to when it is not.

II. BOLTZMANN TRANSPORT

direction of the electric field. The right-hand side of this
equation can be simplified by making use of the energy-
conserving 5 function in the definition of the transition
rate. The wave vectors in the two subbands (k„—=k,
k„.=k') are then related by

f2

Performing the sum over k', Eq. (5) becomes

Bf (e„),) ()g„(k„,)t )

We take the 2DEG to lie in the x-y plane with a static,
uniform magnetic field B in the z direction and a uniform
electric field E oriented in the x direction. The transport
properties of the multiple-subband system are obtained
following the theoretical formulation of Siggia and
Kwok. ' The subband states Ink) are labeled by a sub-
band index n and a two-dimensional wave vector k, and
the corresponding subband energies are given by

A' k
&nl =&n+ (1)2'

where c,
„

is the position of the nth subband edge. The
nonequilibrium electron distribution in each subband
f„(k)is assumed to satisfy the Boltzmann transport
equation

——(E+v„),XB) V) f„(k)

x [g„(k„,P) —g„(k„,)I)') ],
where the angular transition rate is defined as

(7)

We note that this quantity is only a function of the mag-
nitude of the momentum transfer q=k' —k which is
given by

q =k„+k„,—2k„k„cos(P—P') .

The angular dependence of P„„(P—(t)') arises through its
dependence on q.

To solve Eq. (7) it is convenient to introduce a Fourier
expansion in the angular variable. In particular we write

= —g u)„),„),[f„(k)—f„(k')], (2)
n', k'

g„(k,)I) ) = gg ( )(k)e™ (10)

where v„&is the electron velocity and w„&„.&. is the tran-
sition rate from state (n'k') to the state (nk) due to elas-
tic impurity scattering, which is given by the golden-rule
formula

with

g„' '(k) = f dP e ' ~g„(k,g) .
2K 0

(3)

Here V(r) is the screened impurity potential due to the
ionized donors near the heterojunction interface. The bar
denotes an average over impurity configurations. We
need not specify the transition rates further at the present
time.

Introducing the deviation of the electron distribution
function from its equilibrium value

f„(k)=f '(e„),)+g„(k), (4)

where f (e„),) is the Fermi-Dirac distribution function,
the linearized Boltzmann equation takes the form

()f (c,„„)()g„(k)„E.k +co,

~(p(0) (m) p(m) (m)
)nn'gn nn' gn'

n'
(12)

It is clear that only the m =+1 components of g™are
finite and that these components are independent. The
final form of the transport equation is obtained by ex-
pressing the nonequilibrium distribution in the form

(*() ex Ek
ef' (~)

gn g n g n

The scattering rate can be expanded in a similar way.
Since P„„(PP') is an even func—tion of its argument, the
expansion coefficients satisfy P„'„.' =P„'„.'. The Fourier
transform of Eq. (7) then yields

0Ek„(5)+5

()+imago,

g(
2m

= —g u)„)„.),.[g„(k)—g„(k')].
n'k'

(5)
where ~'„—' is the subband transport lifetime. Substituting
this expression into Eq. (12) then gives

co, =eB/m* is the cyclotron frequency, and the angular
variable P is the angle between the wave vector k and the n'

(14)
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The magnetic field appears explicitly only in the term in-
volving co, . Setting this term equal to zero recovers the
form of the multiband transport equation derived by Sig-
gia and Kwok. ' In this limit the two transport lifetimes
~(„*)are equal.

Once the distribution functions are known the trans-
port properties follow immediately. The current density
is given by

m* 1p„= Re
e TrN(K —iso, I)

(26)

m 1

e TrN(K —iso, I)
(27)

These expressions simplify for a single occupied subband.
In this limit we find

d kJ= —2e f g v„„f„(k).
(2m )

(15)

and

m
Pxx

ne ~
(28)

Using Eqs. (4) and (13) and defining the complex current

J~ =J„+iJy, (16)
1

p = — 8
ne

(29)

we find

equiJ = —E+
2m f—"dkk' f r(').

7T 0 (}en)
(17)

f dg(1 —cosg) I (1,&I Pl I,&+q) I' .
2R

(30)

where n is the electron gas density and ~ is the transport
lifetime

At zero temperature the k integration can be performed
with the result

(18)

These are the expected results. In particular, Eq. (28)
shows that classically there is no transverse magnetoresis-
tance for a single band.

where the lifetimes are now evaluated at the Fermi ener-

gy and n,. =k~, /2m are the subband densities. Equation
(18) defines the complex conductivities

(19)

III. MAGNETORESISTANCE

The transverse magnetoresistance is conventionally
defined as (p„„—po) jpo, where po is the zero-field resis-
tivity. In terms of the quantities defined previously, we
have

which are related to the Cartesian components by

~+ 0 xx —'~yx .+ (20)

~Pxx Pxx Po TrNK= Re
po po TrN(K —ice, I)

(31)

The solution to Eq. (14) is given by

k, r,")= y(K*i~,l)-',,k, ,
J

(21}

m'
Po

1

TrNK
(32)

where we have defined the scattering matrix

yP(~0)fi P( 1 )

k

(22)

Although Eq. (31) can be used for any number of sub-
bands, we now consider the special case of only two occu-
pied subbands (i =1,2}. The K matrix then has the form

E1 E3
From Eq. (19), the conductivity tensor is

2cr+=, gk;k (K+ia), I)
2am*

2

TrN(K+i co, I )m* (23)

(24)

We now define the complex resistivity by

where Tr stands for the trace of the matrix product and
the matrix N is defined as

J( 3 K2

p(o) p(1) +p(0)
11 11 12

p(1)
12

p(1)
12

p(0) p(1) +p(0)
22 22 12

(33)

We note that intersubband scattering terms appear both
in the diagonal and off-diagonal matrix elements. The di-
agonal elements contain p', 2', which is the average inter-
subband scattering rate, while the off-diagonal elements
contain the average scattering rate weighted by the
momentum transfer.

We now introduce the eigenvectors and eigenvalues of
the E matrix:

—1
P+ Pxx + 'Pyx O +

from which we obtain the resistivity components

(25}

where the eigenvalues are given explicitly by

(34)
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(K] +K2 ) y(K] K2 ) +4K 3 (35)
2

~]r2+~2r]=,
& &

(~'+)ll')
2' m ~1~2

We have used the eigenvalues to define the characteristic
lifetimes ~1 z, which will be used later. Defining the two-
component column vectors

and

ne ~c

z
(46)

v( —+)
kz

(36) ~]~2(r]—r»'= e2
2 2 2~c a/ ap

the solution to Eq. (14) is

v' —'=(K+ico, I) 'k . (37)

2

277m

CO c

k =cxu] +Pu2, (38)

we find

If the vector k is now expanded in terms of the eigenvec-
tors of K,

X [(pu] —au2) K 'k j

2
1 2 2 2

(]]2]—P2) B
1 2

Here we have introduced the subband mobilities p,

(47)

v' +]=a(—A]+ir0,, ) 'u, +f3(A2+ico, ) 'u2 . (39)
e7)

Pi= (48)

e2oy-
27Tm

k v'~'

2 +2 p2+
A, ]+]CO~ A2+]C]]~

The complex conductivity is now given by

(40)

Ap„

Po

]&2(P] P2) B

Oo+(renP]P, 2B )
(49)

with

which are related to the conductivities by o, =n, ep;. We
finally obtain

and the zero-field conductivity is obtained simply by set-
ting ~, equal to zero. Thus

+1+2
r=(z]r]X2r2) '=

7 17 2

(50)

2 2 p2

27Tm

=&1+02 (41)

n;e ~,.o)—
m

(42)

where ~,. is the zero-field limit of ~';+—'. !n terms of o, we
have

where

CT1 O2+1+iy1 1+iyz

CO

'Vi = ~~~c-
I

The partial conductivities defined by this equation are not
the conductivities of each subband, however they are use-
ful for algebraic purposes. The actual subband conduc-
tivities are given by

The magnetoresistance has been expressed in a form that
resembles as closely as possible the classical expression
derived for two independent conducting channels. This
limit is recovered by setting the intersubband scattering
matrix elements in Eq. (33) to zero, in which case the K
matrix is diagonal and its eigenvalues are in fact the re-
ciprocal of the zero-field transport lifetimes. The factor r
in Eq. (50) is then l. It should be emphasized, however,
that the e6'ect of intersubband scattering appears not only
through the factor r but is also contained implicitly in the
transport lifetimes that determine the subband conduc-
tivities o.; and mobilities p;.

The magnetoresistance in Eq. (49) has the characteris-
tic form hp„„lpo=aB /(1+bB ) and is therefore deter-
mined by the two constants a and b. The curvature at
low fields is

01O 2
]2 =r(P, P,)'—

cTo

while the saturation value at high fields is

The expression for the magnetoresistance can now be
written in the form

]2 n ] n2 (]L] ] ]]]2)
2

b rn p1pz
(52)

Ap„
Po

&]~2(r ] r2)'—
+0+ ( ~ ]r 2+~2r 1 )

This equation simplifies further using

(45)
It is seen that the low-field behavior is scaled by the fac-
tor r relative to the classical expression, while the satura-
tion value is scaled by 1/r. As a result, a fit of the mag-
netoresistance to experimental data will in general lead to
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IV. HALL COEFFICIENT

A similar analysis can be given for the Hall resistivity

p„.From Eq. (27) we obtain the intermediate expression

Using

I+ I+ F2+2+ Yll 2(3 1+2+1 2~1)

(+1++2) +(vi+2+7 2+1)
(53)

e3B ~2 P2
»~ &+»~2 +q q

+
277m X1 A,2

e 8 (K 'k) (K 'k)
277m

=eB(n,pf+n2p2)

and Eq. (46), we find

(p')+(.p,p,,B)' B
pxy (p )'+(rp,p,B )' ne

'

where the average mobility is defined as

n )p(+npp2
p

n&+n2

(54)

(55)

(56)

with a similar definition of (p ) . The Hall coefficient
RH(B) =p~„/Bhas the limiting values

RH(0) =- (p')
(57)

2 ne

different values of the subband mobilities depending on
whether intersubband scattering is or is not taken into ac-
count.

From Eq. (33), the magnetoresistance can be seen to
depend on three independent constants E&, Kz, and E3.
If K3 is set equal to zero, intersubband scattering is ig-

nored, and the two remaining constants define the sub-

band lifetimes ~, and ~2. These could be used to fit the

experimental a and b parameters, but the lifetimes must

also determine the zero-field resistivity po. Taking this

constraint into account does not leave a sufficient number

of free parameters to independently fit a and b unless oth-

er parameters such as the subband densities are also al-

lowed to vary. Of course this freedom is not available if
the densities are fixed by the SdH oscillation frequencies.
On the other hand, allowing for intersubband scattering
provides a third parameter that will obviously permit a
superior fit to a, b, and po to be achieved. It should be

emphasized, however, that the additional parameter is

physically based. An example of this fitting procedure
will be given shortly.

ing the field at which the Hall coefficient makes the tran-
sition from the low- to high-field values.

V. DISCUSSION

We have used our results for the magnetoresistance to
reanalyze the data of van Houten et al. ' Their sample
was a GaAs/Al Ga, As heterojunction in which two
subbands were occupied and in which the density was
varied by means of persistent photoconductivity. The
original analysis was based on Eq. (49) with r =1. A fit
to the data is obtained by varying the subband mobilities
subject to the constraint that the zero-field conductivity
o.a=en&p&+en2p2 has the observed value. We have re-
peated this fitting procedure (E3=0), and our results for
both the dark and illuminated samples essentially repro-
duce those obtained previously. We find p &

=39.7
m /Vs and pz=10.2 m /Vs for the dark sample and

p ~
=60.0 m /V s and p2= 15.9 m /V s for the illuminated

sample. The main conclusion one comes to if intersub-
band scattering is neglected is that the second subband
mobility is considerably smaller than that of the first sub-
band. The fits to the magnetoresistance data obtained
with these values are indicated by the dashed lines in Fig.
1 and are seen to be quite good. The usual explanation'
for the relative magnitude of the subband mobilities is

based on the observation that the Fermi wave vector of
the second subband is a factor of 5 smaller than that of
the first. The impurity scattering rate is a strongly de-

creasing function of the momentum transfer so that
scattering at 2k+2 is expected to be stronger than at 2k~, .
However this argument is incomplete since the scattering
matrix elements also depend on the subband wave func-
tions. Since the higher subbands extend further away
from the interface, they are further removed from the
ionized impurities, and as a result, the intrasubband
scattering matrix elements decrease with increasing sub-

band index. Thus the relative magnitude of the Fermi
wave vectors and the distance from the interface are com-

0. 10

0,05

C]

0.00
and

RH( oo )=—1
(58)

—0.2 —0.1 0.0 0. 1 0.2

Since (p ) ) (p), ~RH(0) ~
) ~RH( 0D ) ~. Neither of these

limits involve the factor r, but the effect of intersubband
scattering is implicitly contained in the zero-field mobili-
ties. The factor r, however, does play a role in determin-

FIG. 1. Magnetoresistance as a function of the magnetic
field. The solid points are the experimental data from Ref. 1:
squares (dark) and circles (light). The dashed curves are the
theoretical fits assuming no intersubband scattering, and the
solid lines assume intersubband scattering.
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TABLE I. Transport parameters obtained by fitting Eq. (49) to the magnetoresistance data of Ref. 1. Dark and Light refer, respec-
tively, to before and after illumination of the sample.

Dark
Light

n&

4.9
7.1

n2

0.16
0.45

0.96
0.75

K~
1011 —l

3.1

1.6

—0.85
—0.60

0.29
0.52

10
—11

72

1.5
2.3

38
55

m /Vs

66
97

peting effects and it is not a priori obvious which effect
will be dominant.

As discussed at the end of Sec. III, the fit obtained
without intersubband scattering is not the optimal one of
the form bp„„/po=aB/(1+bB ) since the a and b pa-
rameters are prescribed functions of the mobilities and
cannot be varied independently. The optimal fit can be
obtained by allowing for intersubband scattering and is
shown as the solid lines in Fig. 1. These were obtained by
treating the I(:-matrix elements E&, 12, and E3 as free pa-
rameters constrained by the zero-field conductivity. The
fit obtained is seen to be an improvement over the fits
neglecting intersubband scattering. The subband mobili-
ties for the dark sample are now found to be p&=37.9
m /V s and hz=66. 0 m /V s. The first subband mobility
is only slightly changed from the earlier value. This is re-
lated to the fact that the first subband electrons dominate
the conductivity because of their higher density. The
second subband mobility, however, is increased from 10.2
m /V s to 66.0 m /V s and is now roughly twice the first
subband mobility. Thus the conclusion one comes to re-
garding the relative magnitudes of the subband mobilities
is completely different depending on whether or not inter-
subband scattering is taken into account.

The quality of the fits to the data is not the only cri-
terion to use in judging the reasonableness of the results.
In Table I we also show the values of the E-matrix ele-
ments which according to Eq. (33) are defined in terms of
microscopic scattering matrix elements. Considering the
dark sample again, we find K

&

=9.6 X 10' s
K2=3.1X10"s ', and K3= —8.5X10' s '. Since the
intersubband term P', z' is a common contribution to E,
and K2, it is clear that the intrasubband scattering rate
for the second subband (P~zz' —Pizz'} is in fact consider-
ably larger than that of the erst subband as might be ex-
pected on the basis of the relative magnitude of the sub-
band Fermi wave vectors. Nevertheless, the second sub-
band mobility turns out to be larger than the first. The

reason why this is possible is that the transport lifetimes
are determined by the full complement of the I(-matrix
elements as a result of the inversion in Eq. (21). The ma-
trix element K3 according to Eq. (33} is given by —P', z'.

The fit, therefore, indicates that P &z' is a positive quanti-

ty, which is expected in view of the dependence of the
scattering matrix elements on the momentum transfer
given in Eq. (9).

The values of the various E-matrix elements obtained
from the fits are not unreasonable when compared with
those calculated for similar samples under similar condi-
tions. In particular we previously found" that the trans-
port lifetime for the second subband can be larger than
that of the first for a sample that is illuminated with red
radiation. Apparently, the sample being considered in
the present paper is behaving similarly.

Finally we note that despite the improvement, the fit to
the data in Fig. 1 is not perfect. The experimental data
exhibit a saturation with increasing field which is more
rapid than can be achieved with the derived field depen-
dence of the magnetoresistance. Thus we cannot claim
the results for the subband mobilities obtained in this pa-
per to be conclusive. However the main point we are try-
ing to make is that inferences drawn from the analysis of
magnetoresistance data are sensitively dependent on the
assumptions made about the presence or absence of inter-
subband scattering. We have shown how the classical ex-
pression for the magnetoresistance can be generalized to
take intersubband scattering into account. At the very
least, this effect should be allowed for when analyzing
data in those situations where intersubband scattering
might be expected to occur. '
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