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EfFects of width increase in the ballistic quantum wire
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We investigate the effects of a width increase on the electronic properties of ballistic quantum wires by
evaluating the local density of states and the conductance. A local widening of the quantum wire intro-
duces dip structures in addition to the well-known steplike structures of the conductance. The mode
coupling between the bound state and the extended state is the origin of these structures. The quasi-
bound and the complete backscattering state are clearly shown to arise as a result of mode couplings.
We also point out that a smooth variation of the width of the quantum wires does not remove these
quasibound states.

Conductance quantization in the quantum point con-
tact was discovered in 1987.' Because of its fundamental
interest and practical importance in device application,
transport characteristics of quasi-one-dimensional wires
with various structures have been extensively investigat-
ed. ' Past work has shown that the widening of the
boundary of the quantum wire has an intrinsic effect on
the electronic transport properties. Sols et al. found
that the dip structure appears in the conductance when
the wire has a stub. Kasai et al. examined a quantum
wire with a similar structure and claimed that the dip
structure occurs when the electron energy coincides with
that of the bound state. Nakazato et al. showed that in
the double-constriction geometry the virtual bound state
couples with the lower mode and that this is the origin of
the resonant or antiresonant peaks. As the method of
Nakazato et al. is restricted to the case where no real
bound state exists, it is still not clear when the quasi-
bound state or bound state arises and how it affects the
conductance. Chu et al. , Bagwell, and Tekman et al.
examined the effect of impurities introduced into the
wire. They showed that a similar dip structure arises
when the potential is attractive. But their explanations of
the dip structures are rather qualitative and the existence
of quasibound states has not yet been clearly shown.
Moreover, the relation between the introduced potential
and the width increase is still not clear.

In this paper we investigate the effects of a width in-
crease on the electronic transport properties of ballistic
quantum wires. The system that we treat is single width
increase, which may be regarded as a simple model of
width fluctuation. We show that the dip structures seen
in such quantum wires are the result of mode couplings
and clarify the properties of the arising quasibound state
and of the complete backscattering state by evaluating
the local density of states. We show that the mode cou-
plings associated with width increase govern the lifetime
of quasibound states and the width of the dip structure.
Finally, we briefly discuss what happens when the width
is changed adiabatically.

For numerical analyses we employed the (recursive)
tight-binding Green-function method introduced by Sols

et al. This method is a slight modification of the con-
ventional recursive Green-function method' and is more
efficient than the conventional one for analyzing the
structures made up of simple parts in which the Green
function can be analytically determined. The formula-
tion is based on a one-electron picture and any many-
body effects or inelastic scattering as well as impurity
scattering are ignored.

Since electron transport is ballistic inside the wire, the
Hamiltonian is given by the kinetic-energy term, p /2m,
in the wire. In a two-dimensional tight-binding lattice,
the Hamiltonian is expressed as

I=—V g (lt &&jl+Ij&&il)+Eogl~ &&~I,
(NN) l

where li & is the state of the electron on the ith site
[i =r =(r„,r ) ], and the sum in the first term is over all
nearest-neighbor pairs of i and j. V [=A' /(2m*a )] is
the transfer energy and Eo (=4V) is a constant, where
m * is the effective electron mass and a is the lattice spac-
ing of the tight-binding lattice. Here, the tight-binding
Hamiltonian is not only the simplest model to include the
essential physics of electron propagation, but also a good
approximation when the lattice is fine enough compared
with the electron wavelength.

The calculational procedure is as follows. An example
of the system is the T-like structure as shown in the inset
to Fig. 1(a). This system is divided into three parts —a
box and two leads —as indicated by the dotted lines. The
unperturbed Hamiltonian corresponds to the transfer
terms within each of the three parts. The perturbation
Hamiltonian corresponds to the transfer terms which
connect these three parts. The exact (unperturbed) Green
functions for each part are calculated analytically, and
they are connected to construct the Green function for
the total system by using the Dyson equation twice. The
transmission matrix is then evaluated from the Green
function, " and the Landauer formula' is used to obtain
the conductance for the system. Note that to calculate
the local density of states at any slice in the wire, the sys-
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where fmz(r~) is the eigenfunction with respect to the
transverse mode. In the tight-binding model,
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FIG. 1. (a) Conductance profile, (b) local density of states per
unit length D (r„,E) (the arrow shows the position of the real
bound state), and (c) local density of states per unit length for
each mode p (r„,mv, E) of asymmetric wire. (a) Inset: asym-
metric wire structure.

= ——ImI G+(r, r, E)], r =(r„,r~),
7T

(2)

where P„(r ) and E„are the complete set of orthonormal
eigenfunctions and eigenvalues of the Hamiltonian H, re-
spectively. The spin degeneracy is not included in the
calculation of the local density of states.

We define the local density of states per unit length of
the wire D (r„,E) and local density of states per unit
length for modes at r„,p (r„,m, E) as

D&(r„,E)= fdr p(r, E)= g p(r, E)

= gp (r„,m, E),
V

tern is divided at that slice and the Dyson equation has to
be used once more.

The local density of states is directly related to the
imaginary part of the diagonal element of the Green
function in the coordinate representation. ' Denoting the
retarded Green function by G+(r, r', E), local density of
states p(r, E) is given by

p(r, E)=+5(E E„)P„(r)P„*(r)—

where N is the number of sites in the transverse direc-
tion. p (r„,m, E) is directly obtained from the Green
function, whose elements are expressed in terms of trans-
verse modes at r, .

It should be noted that when the translational symme-
try along the propagation direction does not hold,
D (r„,E) is position dependent and different from the to-
tal density of states of the wire. We expected it to reflect
the positional variation of the density of states in the
manner we observed in 1D systems. Moreover,

p (r„,m~, E) can also be used to investigate the electron
properties of the quasi-one-dimensional wire.

In the present study, the units of length and energy are
taken to be the width of wire W and E
[=Pi /(2m*W )], respectively. When the width of the
wire W is SO nm, the unit of energy is about 0.23 meV for
the effective mass m' of GaAs (0.067mo), where mo is
the electron rest mass. The unit of the local density of
states per unit length is thus ( W 'E~ ')
=(8.7X10 cm 'meV '). Note also that the energy is
measured from the minimum of the two-dimensional
tight-binding band, which is located under the propaga-
tion threshold in the lead. In the tight-binding lattice, we
used 40 lattice spacings for the width of the semi-infinite
leads. We confirmed that there is no considerable change
in the result even for a finer tight-binding lattice in the
low-energy range of the energy band.

We employed both asymmetric [inset to Fig. 1(a)] and
symmetric [inset to Fig. 3(a)] structures to investigate the
e6'ects of geometry on the transport properties of the
quantum wire. In all cases, the mismatch of width is as-
sumed to be small so that only the transverse wavelengths
of modes, which have the same mode index, have consid-
erable matrix elements at the connection. Thus mode
mixing is small and the picture that transverse modes
propagate independently holds approximately.

First, we investigate the asymmetric widening of the
wire [see inset to Fig. 1(a)]. The discontinuity of width is

5%%uo the width of the wire ( W). This structure may be re-
garded as a short stub with width 8', attached to the
wire. The width of this stub W, is equal to W. The cal-
culated conductance, g, for this structure is plotted in
Fig. 1(a). A few narrow dips are observed in the conduc-
tance profile in addition to the well-known steplike struc-
ture due to the conductance quantization. The origin of
these dips can be explained by examining the local densi-
ty of states. The local density of states D (r„E) at L is
plotted in Fig. 1(b). A few sharp peaks in addition to the
quasi-one-dimensional subband spectrum are seen at the
energies where the dips in Fig. 1(a) are located. The local
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density of states for mode p (r, m„,E}is also shown for
each mode m [see Fig. 1(c)]. There exists an almost
discrete spectrum under the threshold energy of the con-
tinuous spectrum, which is proportional to (s—E„)
(s„ is the threshold energy of the nth subband). This is
similar to the case described by Economou, ' in which at-
tractive impurity is placed in the purely one-dimensional
wire. The attractive impurity makes the bound states
split off from the continuous spectrum. In our work, the
fact that the increase of the width lowers the energy lev-
els for each transverse mode corresponds to the attractive
potential he described.

It is very important to note that the discrete spectrum
has a finite width [see Figs. 1(b) and 1(c)], which
represents the intrinsic difference from the one-
dimensional case and implies that the state in this spec-
trum is the quasibound state, and not the real bound
state. This width becomes narrower as the stub length
becomes shorter. As described above, the independent
propagation of modes is an approximation and there is a
finite coupling (matrix elements) between modes. There-
fore, the bound states (if modes decouple) of the upper
modes have finite probabilities of decaying to the extend-
ed states of 1ower modes and thus have a finite lifetime
and are not perfectly localized. Considering the lower
mode, the extended state becomes a complete back-
scattering state. This is the source of the dip structure in
the conductance profile. The lifetime of the quasibound
state is thus governed by the size of the mode coupling.
As the mismatch of width becomes smaller, the size of
the coupling to the other modes becomes smaller and the
resulting lifetime becomes longer. The exception is the
lowest mode. Because the bound state of the first mode
does not have any lower mode to decay to, the bound
state still remains as a real bound state, not the quasi-
bound state. ' These real bound states are what Schult
et al. ' and Sols et al. described. The energy of the real
bound state is evaluated from the singularity of the real
diagonal part of the Green function and shown by an ar-
row in Fig. 1(b) just below the threshold of the first prop-
agating mode. The reason real bound states are not seen
in the profile will be explained below.

Around the stub region, the quasibound state has a
dominant amplitude compared with the other states. The
properties of these states become clear when

p~(r„,m~, E) is plotted along the propagation direction.
For the peak of the discrete spectrum (E =38.03) in Fig.
1(c), p (r„,m~, E) for m =1 and m =2 are plotted in
Fig. 2(a). Note that the r„ is me~"!!red from the center of
the stub and the stub region is —

—,
' &r ~

—,'. For the
second mode (m =2), the amplitude of p (r„,m, E} is
almost localized around the stub region. For the first
mode (m~ =1), the state is a standing wave with nodes.
It is now clear that the second mode is the quasibound
state and the first mode is the complete backscattering
state. For comparison, p (r„,m, E) for the continuous
spectrum (E =40.00) is also plotted in Fig. 2(b). The
states have finite amplitudes throughout the wire and
have no nodes.

The effects of mode couplings discussed above become
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clearer when one considers a symmetric stub structure as
shown in the inset to Fig. 3(a). The mismatch of the wire
width is 5% and is the same as that of the asymmetric
case considered above, which means 2I.,'=I, 8', is
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FIG. 3. (a) Conductance profile and (b) local density of states
per unit length D (r„,E) of symmetric wire. (Arrows show the
position of real bound states. ) (a) Inset: symmetric wire struc-
ture.

FIG. 2. Distribution of local density of states per unit length

p (r„,m~, E) about the position r„ for two energies: (a)
E =38.03 and (b) E =40.00, both for m~ =1 (dotted line) and
m„=2 (solid line). Note that the scale is different for the left
and right sides and that the stub region is —

—,
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equal to 8'. The conductance and the local density of
states per unit length is shown in Figs. 3(a) and 3(b), re-
spectively. The apparent difference from the asymmetric
structure is the absence of the dip in the first step in Fig.
3(a). The quasibound state of the second mode is also ab-
sent in Fig. 3(b). In this structure, symmetric modes
(m~=1, 3,5, . . . ) do not couple with antisymmetric
modes (I =2, 4, 6, . . . ) in the absence of a magnetic
field. Therefore, the bound state of the second mode has
an infinite lifetime and sti11 remains as a real bound state,
though it has the same energy as the extended state of the
first mode. The extended state is not affected and thus
conductance has no dip structures in the first step. The
locations of the real bound states for the first and second
modes are shown by the arrows in Fig. 3(b). When the
magnetic field is introduced in this structure, symmetry
breaks down and a quasibound state appears again as re-
ported by Kasai et al. and Schult et al. '

A similar situation occurs when a flat potential well is
introduced inside a uniform ballistic wire. If the form of
the confining potential is the same throughout the wire,
the modes are well defined and they do not couple. As a
result, a bound state of each mode cannot decay into
another mode and it also remains as a real bound state.
Therefore, no dips are found in the conductance profile
and the conductance is given by the sum of each propa-
gating mode. If the introduced potential makes mode
couplings, however, dip structures appear. As the attrac-
tive potential becomes weaker, mode couplings become
smaller and the dips become sharper as described by Chu
and Sorbello.

We would like to comment here on why the real bound
states are not found in the calculation of the local density
of states D (r„,E) directly. In the tight-binding Green-
function calculation, the continuous function is used for
both real and imaginary parts of the retarded Green func-
tion for the continuous spectrum (infinite leads). For the
discrete spectrum (the box of the tight-binding lattice),
however, just the real part 1/(E E, ) is used f—or the re-
tarded Green function, instead of 1/(E E, +i5)—
This difference has an effect only when the pole of the
Green function is located exactly on the real axis in the
complex energy plane, because otherwise the 5 can be
taken to be 0. This is the reason real bound states are not
found in this calculation. The existence of rea1 bound
states, however, can be verified from the singularity of
the real diagonal part of the Green function, as indicated
by the arrows in Figs. 1(b) and 3(b).

Finally, we would like to discuss the smooth variation
of wire width. In a point-contact geometry, smoothing
the change of the width of the wire results in the adiabat-
ic mode conversion that makes conductance profile a
clear steplike structure. ' In case of an increase, the mode
coupling becomes smaller as the variation of the width
becomes slower. The width of the quasibound state then
decreases and the lifetime becomes longer, and those
states become close to the real bound states. This means
that smooth variation of the width never removes either
the quasibound states or the real bound states, though the
lifetime of quasibound states becomes infinitely long in
the limit of adiabatic variation. This situation is analo-
gous to the case of a one-dimensional potential well; that
is, no matter how smooth the potential well may be, the
bound states cannot be removed as long as the potential
has a finite depth. Moreover, it is well known that a
bound state exists for infinitesimal attractive potential in
one dimension. ' Thus bound and quasibound states exist
for an infinitesimally increased wire.

Our evaluation of the local density of states per unit
length and the conductance permits a comparison of the
static and dynamic electronic properties in a quasi-one-
dimensional system, and it will also be very useful when
other geometries, such as the point-contact or the
double-constriction structure, are considered. We also
investigated the longer-stub structure and found that the
quasibound states are also well defined when the propa-
gating modes are not defined even approximately through
the wire. "

In conclusion, we have investigated the electronic
properties of ballistic quantum wires with a small width
increase. The local density of states per unit length and
the conductance were calculated by the tight-binding
Green-function method. Our examination of the local
density of states in the quantum wires clearly reveals that
the quasibound state and the complete backscattering
state arise as a result of mode coupling and that this is
the origin of the dip structures in the conductance. We
also conclude that smooth variation of the wire width
cannot remove quasibound or real bound states.
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