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Electromigration in stressed thin films
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Multilayered thin-film circuits in microelectronic devices are confined in dielectrics for insulation be-

tween layers. The confinement produces mechanical stress in the circuit. During operation, the stress
can enhance or retard electromigration. This interaction has been analyzed using thermodynamics of ir-
reversible processes and the result applied to short-stripe electromigration experiments. It is shown that
the calculated critical length of Al stripes, below which no electromigration damage occurs, agrees well

with observation. The critical length is temperature insensitive and allows the effective

electromigration-charge number to be determined independently, uncoupled to the diffusivity. In the
analysis, a simple expression is given for calculating the effective electromigration-charge number of
nearly-free-electron metals on the basis of the ballistic model of scattering.

I. INTRODUCTION

II. BACK STRESS IN ELECTROMIGRATION

The effect of stress on electromigration has been ob-
served in the stripe experiment by Blech as depicted in
Fig. 1, where a short Al line was deposited on a TiN line
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FIG. 1. A sketch of the cross-sectional view of morphologi-
cal changes due to electromigration in a short Al stripe deposit-
ed on a long TiN line.

Electromigration is a coerced mass flow in a circuit
driven by a direct current when the current density is
high, around 10 A/cm2. It is a subject of serious con-
cern in microelectronics because of the reliability failure
of interconnecting lines. ' As device miniaturization
needs a multilayered structure of metallization to in-
crease circuit density on semiconductor chips, the layered
conducting lines which are embedded in dielectrics are
subject to stresses. The stress comes from thermal
mismatch between the dielectrics such as Si02 and the
metal such as Al. A stressed metal film tends to relax by
creep. Under an applied electrical field, the atomic
motion in the stressed film is driven simultaneously by
electrical and mechanical forces. Since these forces are
directional and their rates of response (the electromigra-
tion rate and creep rate) are comparable, they interfere
with each other. Owing to the fact that the stress can be
tensile or compressive, the interference can enhance or
retard electromigration. The interference is analyzed
here using the thermodynamics of irreversible process-
s 5,6

III. IRREVERSIBLE PROCESSES
AND DRIVING FORCES

The joint effect of electrical and mechanical forces on
mass and current transports in a pure metal is analyzed
by a pair of flux equations, '

J1 L 11X1+L 12X2

J2 —L21X1+L22X2,

(la)

(lb)

where J, is the flux of atoms and J2 is the flux of carriers;
X1=—Vp is the mechanical force represented by the
chemical potential gradient in a stressed solid and
Xz= —VP is the electrical force represented by the ap-
plied electrical field 6 = —VP; and L, are the linear phe-"
nomenological coefficients. L» represents the atomic

on an insulating substrate. The electrical current makes
a detour from the TiN to the Al because the latter is a
path of lower resistance. At the passage of a high current
density, depletion of Al at the cathode end and extrusion
of Al at the anode end occur. The morphological
changes are due to electromigration. The direction of
mass flow in the Al is the same as the flow of electrons.

Specifically, Al stripes of length of 10, 20, 40, and 85
pm were tested at 3.7X10 A/cm and 350'C. After 15
h, all stripes showed damage due to electromigration ex-
cept the shortest one. In addition, the longer the stripe,
the greater the damage. The observation was explained
by the counteraction against electromigration from a
back stress. Electromigration pushes atoms to the anode
and builds up a compressive stress there. The vacancy
concentration in the anode becomes less than the equilib-
rium vacancy concentration according to the Nabarro-
Herring model of point-defect formation in a stressed
solid. Hence a gradient of vacancy concentration exists
in the stripe and the gradient increases with decreasing
stripe length. The direction of the gradient is such that it
acts against the atomic flux of electromigration, and its
magnitude can be large enough to stop electromigration
in a very short stripe.
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motion in creep under a normal stress (e.g., pressure)
without electrical field. L22 is the conductivity of a nor-
mal metal without stress. L&2 and L2, are coefficients of
the interference terms; in particular, L,2 is responsible
for electromigration and L2& for deformation potential
(as in a piezoelectric solid under compression, for exam-
ple). In the following, we shall first discuss the forces,
then the coefficients.

For the mechanical force, we consider a thermodynam-
ic process at constant temperature T,

(b

BF
BV

where p and V are pressure and volume, respectively, and
F is Helmholtz free energy. We regard the pressure as an
energy density, so the change of energy in an atomic
volume Q is

BF
BN

FIG. 2. A sketch of the di6'usion of the shaded atom to a
neighboring vacancy. The pair have four nearest neighbors in

common, including the two drawn in dashed circles (a) before
di8'usion, and (b} midway during difFusion.

where N = V/0 and pQ is by definition the chemical po-
tential in a solid under pressure (or o 0 under a normal
stress o ). So the driving force

X)=—V~A . (4)

where Z,I can be regarded as the nominal valence (Z) of
the metal when the dynamical screening effect around the
ion is ignored and is responsible for the field effect, and

Z,&e8 is often called the "direct force"; and Z~d
represents the momentum exchange effect between the
carriers and the ion, and Z„"deb is commonly called the
"electron wind force" in metals.

To envisage the electron wind force, Fig. 2 depicts the
configuration of a shaded atom and a neighboring vacan-

cy in a face-centered-cubic structure initially and at the
midpoint of exchanging their positions along a (110)
direction. The pair have four nearest-neighbors in com-
mon, including the two shown by the dashed circles, one
on top and one on the bottom of the close-packed atomic
plane as shown in Fig. 2(a). At the midpoint of diffusing
towards the vacancy, the shaded atom sits on the saddle
point as shown in Fig. 2(b) and it is out of the lattice
periodicity. Hence it imposes a stronger resistance to
electrical current than a normal atom, in other words, it
experiences a greater electron scattering or a greater elec-
tron wind force. The diffusion of the atom is found to be
enhanced in the direction of the electron flow, so the
momentum exchange effect is much greater than the elec-
trostatic field effect for electromigration in metals. Z*d
has generally been measured to be of the order of 10 for
nearly-free-electron metals such as Al.

For the electrical force, Xz=@. The corresponding
force on an electron and an ion are e 8 and Z 'e 8, respec-
tively. Z* is called the effective charge number of an ion
in electromigration and consists of two parts, '

Z Z +Zel md

Using a semiclassical ballistic model of scattering,
Huntington and Grone" obtained an expression of Z*d
in terms of a specific resistivity ratio

Pd

Nd mo
Zwd

—Z
m

where pd /Nd and p/N are specific resistivity of a
diffusing atom and a normal atom, respectively, and mo
and m ' are the free-electron mass and effective electron
mass, respectively. There have been several attempts to
use quantum-mechanical treatments' ' for refining the
scattering of the diffusing atom and its surroundings. A
recent review of these treatments has been given by Ver-
bruggen. ' It will not be repeated here and for the pur-
pose of the present analysis the result of the ballistic
model is used.

If the specific resistivity of an atom in a metal is as-
sumed to be proportional to the elastic cross section of
scattering, which in turn is assumed to be proportional to
the average square displacement from equilibrium, or
(x ), the cross section of a normal atom can be estimat-
ed from the Einstein model of atomic vibration in which
the energy of each mode is

'mao &x )=—'kT—
where the product men is the force constant of the vibra-
tion, and m and co are atomic mass and angular vibration-
al frequency, respectively.

To obtain the cross section of scattering of the
diffusing atom, (xd ), we assume that the atom and its
surrounding as shown in Fig. 2(b) have acquired the
motion energy of diffusion, hH, which is independent of
temperature,

—,'mes'&xd') =AH

Then the ratio of Eq. (7) to Eq. (8) gives the ratio of cross
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TABLE I. Comparison of the measured and calculated values of Z*. Data of measured Z* taken

from Huntington (Ref. 13), where the correlation factor is ignored. Data of hH taken from Gupta
(Ref. 20).

Metal Measured Z Temp ('C) hH (eV) Calculated Z*

Monovalent
Au
Ag
Cu

Trivalent
Al

Quadrivalent
Pb

—9.5 to —7.5
—8.3+1~ 8
—4.8+ l.5

—30 to —12

—47

850 to 1000
795 to 900
870 to 1005

480 to 640

250

0.83
0.66
0.71

0.62

0.54

—7.6 to —6.6
—6.2 to —5.5
—6.3 to —5.4

—25.6 to —20.6

—44

section of scattering,

(x„') 2 aH
(x2) kT

(9)

It shows that the ratio varies inversely with temperature.
This dependence comes from Eq. (7) which bears the
well-known fact that the resistivity of a normal metal
varies linearly with temperature above Debye tempera-
ture. Substituting Eq. (9) into Eq. (6), combined with Eq.
(5), we have

AH moZ*=—Z —1
kT m* (10)

Ref. I I
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FIG. 3. Plot of Z* against T for electromigration in Au.

In Eq. (10), the numerical factor of —,
' has been canceled

when the probability of averaging jumps in a given direc-
tion (i.e., the direction of electron flow) from among the
12 (110) paths in a fcc lattice is taken into account.
Since hH for most of the fcc metals has been mea-
sured, ' ' we can calculate Z* at a given temperature by
using Eq. (10). The calculated values of Z' using Eq. (10)
agree quite well with those measured for Au, Ag, Cu, Al,
and Pb, see Table I. For example, at 480'C, the mea-
sured and calculated Z* for Al (b,H =0.62 eV) are
about —30 and —26, respectively. The temperature
dependence of Z* calculated for Au is also found to
agree well with the measured values; see Fig. 3.

IV. THE PHENOMENOLOGICAL COEFFICIENTS

In essence, the phenomenological coefficients in the
Aux equations consist of a concentration term and a rno-

bility term. We rewrite Eq. (1) as

J = NV—o II —N Z'e V$,D D
kT

J,= ne p, N ' Vr—r 0 ne p, V P . —

(1 la)

(1 lb)

—b, 0.0hx=
Z "eC„

(12)

where 8„ is the component of electrical field in the x
direction. If we assume that the stress gradient is linear
in the stripe, Eq. (12) presents the critical length which
has been given by Blech and Herring to show no elec-
trornigration damage in their experiment.

If we consider a short stripe of metal deposited on an
insulating substrate and let J, =0 in Eq. (11b), we have

N*= ——1 dP (13)0 do. J =o

where (dP/do. )J 0 is deformation potential defined as
e

the electrical potential difference per unit stress difference
with zero current. By using Onsager's reciprocity rela-
tion, L,2 =L2, , we obtain the expression of

dO' J =0

—Z*Dpe
kT

(14)

In the equation for J (flux of atoms in units of
atoms/cm sec), N is concentration of atoms per unit
volume, D/kT is atomic mobility with D being the
diffusivity. The first term in J is known as the creep
term and the second term the electromigration term. In
the equation for J, (flux of electrons in units of
C/cm sec), the second term describes the conduction of a
normal metal and (nep, ) '=p, is resistivity in which
n =NZ is the number of conduction electrons per unit
volume, e is the electron charge, and so ne is the concen-
tration of charges per unit volume, and p, is electron mo-
bility. The first term has a parameter X* which will be
discussed later.

If we limit our consideration to the x direction and let
J =0 in Eq. (1 la), we have
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The dimensions of (dP/der)J o and N* are cm /C and
e

C ', respectively.

V. DISCUSSION

A. Measurement of the critical length

By taking Z*=—26 for bulk Al, we have hxA, =3 pm,
which is of the right order of magnitude, yet shorter than
the experimental value found in between 10 and 20 pm.
Since the Al stripes are polycrystalline thin films, grain-
boundary difFusion might have played a dominant role in
electromigration and Z* for atoms diffusing in grain
boundaries might be different from those in the lattice. It
seems that for the polycrystalline Al thin films, Z* lies in
the range of 4—8.

Note that the critical length can be measured experi-
mentally by extending the time of electromigration to a
sufficiently long period until the mass transport in the
strip ceases. An interesting question about the measure-
ment is whether hx depends on temperature or not.

The temperature dependence of hx can be examined by
substituting Eq. (10) and 8 =J„p into Eq. (12); we have

aa mo—Z —1 eJ, pkT m*

(15)

For normal metals whose electrical resistivity increases
linearly with temperature above Debye temperature, Eq.
(15) shows that bx is rather insensitive to temperature
provided Z' of the stripe obeys Eq. (10) and b,H ))kT.
This means that it applies to single crystal stripes or
those stripes having grains larger than the width of the
stripe. For fine-grained polycrystalline thin films, the
temperature dependence of Ax is inAuenced by the tem-
perature dependence of Z*.

We use Eq. (12) to calculate bx of Al stripes. If we as-
surne that the extrusion at the anode is accompanied by a
certain amount of plastic deformation, the stress change
is taken to be the value corresponding to the elastic limit.
In fact, the stress measured by Blech and Herring was
very close to the elastic limit value. So the compressive
stress OA~= —1.2X10 dyn/cm; 0~~=16X10 cm;
e =1.6X10 ' C; and 6„=J,p=1.54 V/cm where

J, =3.7X10 A/cm and p~~=4. 15X 10 0 cm at
350 C. Substituting these values into Eq. (12), we obtain

—78 pm~x Al

C. Measurement of the deformation potential

To calculate (dP/do )J 0 of Eq. (14), we take
eZ*= —26 for Al at T=500'C, kT=0.067 eV, lattice

diffusivity of Al to be about 2X 10 ' cm /sec, and resis-
tivity about 4. 83 X 10 0, cm, and we obtain

do J =p
e

=3.7X10 ' cm /C .

However, we expect the order of magnitude of deforma-
tion potential to be close to 0/e, which is 10 cm /C or
10 ' V/Nm . It seems what we have calculated on
the basis of Eq. (14) is too small. This is because the de-
formation involved in Eq. (14) is by creep which depends
on long-range atomic diffusion and is a very slow process.
On the other hand, the mechanical deformation in the
usual sense does not involve thermally activated atomic
diffusion, rather the atomic displacement under stress
proceeds by the acoustic mode of motion, i.e., at the
speed of sound which equals apv, where ap=3X10 cm
is an interatomic distance and v=10' sec ' is an atomic
vibrational frequency. Then, in Eq. (14) if we take
D =apv we have

dCT J =P
e

=0.2X 10 ciT1 /C,

ment is that it determines Z* alone rather than a product
of Z* and another parameter. This is because the other
conventional methods of determining electromigration in
a pure metal measure either the amount of mass trans-
port or the drift velocity and render a product of Z* and
D. ' ' To separate them an independent measurement
of the diffusivity is required. Equation (16) enables the
product of DZ* to be checked by knowing Z* and D in-
dependently.

At present, very little is known about the effective
charge number of grain-boundary electromigration. The
difficulty of measuring the Z' which corresponds to
grain-boundary diffusion is linked to the lack of under-
standing of the atomistic mechanism of grain-boundary
diffusion. In turn it becomes difficult to separate out the
effective charge number from grain-boundary diffusivity
if the latter is not known accurately. Since electromigra-
tion in thin films is technologically important, a systemat-
ic measure of Z* in polycrystalline thin films as a func-
tion of rnicrostructure, composition, and temperature is
of interest. Knowing the effective charge number of
grain-boundary electromigration, we might use Eq. (10)
to investigate the motion energy of grain-boundary
diffusion and grain-boundary creep.

B. Measurement of the effective charge number

Rearranging Eq. (12), we have

—Ao.Q
Exes„

(16)

which is of the expected order of magnitude. Hence the
deformation potential due to creep is indeed very small.
This is also true for electr omigration as implied by
Onsager's reciprocity relation; electromigration is negligi-
ble in a household extension cord.

It shows that we can calculate Z* by measuring Ax and
Acr. The latter can be determined by x-ray diffraction of
the change in lattice parameter between the ends of the
stripe. The advantage of using Eq. (16) for Z* measure-

D. Criterion of the linear flux equations

To use the linear equations in Eq. (11), we should ex-
amine the experimental conditions and check if the cri-
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(17)

and X, = —Bo.Q/Bx. In general, the stress gradient is
sma11 in a long line, yet we sha11 take the extreme case in
which the length is the critical length and the stress is at
the elastic limit. We estimate that aoX, IkT= 10 —at
500'C, so the linear criterion is satisfied and the non-
linear effect is insignificant. Similarly, the experimental
condition of the electrical field is about 1 Vjcm, which is
not high, so again the linear criterion is satisfied.

VI. CONCLUSION

Thermodynamics of irreversible processes has been
used to analyze electromigration in stressed thin films.

terion of linearity is fulfilled. We consider the atomic flux
equation and the driving force of stress, where the linear
criterion is '

aoX) «1
kT

The interference between electromigration and creep in
short stripes has been examined. The calculated and ob-
served critical lengths of Al stripes agree well with each
other. The critical length is found to be temperature in-
sensitive and can be used to determine the effective
charge number independent of diffusivity.
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