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Inelastic Coulomb scattering in a diffusive two-band system
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A calculation of the inelastic scattering rate resulting from Coulomb scattering of conduction ("s")
electrons coupled to a narrow "d band" is given for a disordered system. The general analysis is carried
out by extending the Keldysh formalism for nonequilibrium processes to the situation of two overlap-

ping bands, including both intraband and interband elastic scattering, and interband Coulomb coupling.
The general result is applied to the case of two overlapping bands, the s band by itself being in the ballis-

tic regime. Then, when the interband elastic scattering vertex u,d is negligible, the inelastic rate of the

conduction electrons, at two dimensions, changes from the well-known T 1nT behavior at very low tem-

peratures into a T law at higher ones. In three dimensions it behaves like T, the ususal result for a

ballistic band. When u,d is sufficiently strong to render the motion of the s electrons diffusive, the inelas-

tic rate is proportional to T" at low temperatures, for d =2 and 3, as in the case of a single band. The
implications of the results to the temperature-dependent resistivity of a two-band system and to experi-

ments involving two quantum wells in heterostructures are discussed.

I. INTRODUCTION

The picture of two electronic bands coupled together
by interband Coulomb interactions has been used quite
extensively in condensed-matter physics. The model usu-

ally describes a system of two types of electrons with
widely different effective masses, i.e., a wide conduction
band coupled to a much narrower one. ' It has been re-
cently applied also to two, spatially separated electron
systems (e.g. , two quantum wells in a heterostructure ).
The two species of electrons will be denoted here, for
convenience, the "s"and "d" band, respectively.

The two-band picture is very intriguing in the context
of high-transition-temperature superconductivity, as it
leads to nonphononic mechanisms for attraction between
electrons. In this respect one should distinguish among
different types of interband Coulomb couplings. ' In par-
ticular, there is the pair transfer Coulom-b vertex (a
transfer of two electrons from the s to the d band, and
vice versa), which was proposed to explain the supercon-
ducting properties of some transition metals and the A 15
compounds. It may be relevant to the high-T, oxides as
well. ' A different interband Coulomb coupling is de-
scribed by the s-d vertex, in which each of the electrons is
scattered within its respective band. It leads to a collec-
tive motion of the two types of electrons that may, under
suitable conditions, result in a well-defined low-frequency
mode ("acoustic plasmons"). The s dcoupling app-lies

also to two spatially separated electron gases.
Interband Coulomb coupling may be manifested also in

the inelastic scattering rate of the conduction electrons.
When two coupled bands are considered, there is in addi-
tion to the intraband scattering the inelastic rate due to
interband scattering. This additional scattering is of par-
ticular interest when the temperature dependence of the
resistivity (due to the s electrons) is examined. The
reason is that when umklapp scattering is unimportant,

single-band electron-electron scattering does not contrib-
ute to the resistivity. The additional interband inelastic
scattering has recently received considerable attention be-
cause of the linear temperature dependence of the in-

plane resistivity (above the superconducting transition
temperature) exhibited by several copper oxides.
Among the various attempts to explain this behavior
within the Fermi-liquid theory, several concentrate upon
interband processes. Thus it was found that inelastic
Coulomb scattering of extended electrons by localized
ones gives rise to an unusual temperature dependence of
the electron-electron scattering rate [T (lnT) at two di-

mensions] that appears as linear over a significant tem-

perature region. Another explanation invokes the s-d
vertex discussed above, claiming that it leads to an inelas-

tic rate linear in T, at two dimensions. ' However, it was

shown that this is not the case: when the two bands are
ballistic, the T lnT behavior characterizes the tempera-
ture dependence of the inelastic electron-electron scatter-
ing rate for both the s-d and the pair-transfer coupling
mechanisms, at two dimensions (for the case of two over-

lapping bands). There are indeed experimental indica-
tions" for a T ln T dependence in the resistivity of
electron-doped Cu oxides. We believe that this finding

provides a strong support for a two-band model for these
materials, since in a single band without umklapp scatter-
ing the T lnT behavior would not show up in the resis-

tivity.
However, the question still remains whether a different

temperature dependence can be obtained when elastic
scattering by defects is added, as is known for the single-

band case. ' ' This paper is devoted to exploring
consequences of the two-band picture in situations where
the narrow d band is much more sensitive to disorder
than the wide s band. We have in mind systems in which

the elastic scattering of the conduction electrons by itself
is weak, but that of the narrow-band electrons is strong
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enough to make the two-band inelastic scattering
diffusive. The extreme limit of this idea is that of a ballis-
tic band coupled to a localized one. This question
may also relate to experiments carried out on two
spatially separated electron gases in the layered
GaAs/A1 Ga& As structure. The setup allows the in-
jection of current into one of the electron systems and the
detection of an induced current flow or a small drag volt-
age in the other. The effect is explained by momentum
transfer between the two electron systems due to mutual
Coulomb scattering. ' The explicit comparison of the
data (in particular, the temperature dependence) invokes
"interband" electron-electron interaction of the s-d ver-
tex type.

We present in the next section and in the Appendixes a
general derivation of the electron-electron inelastic rate
in a system of two overlapping bands, having a common
Fermi level. We use the Keldysh formalism' for non-
equilibrium processes, and allow for elastic scattering
within each band, as well as interband elastic scattering.
The Coulomb coupling of the two bands is assumed to be
of the form of the s-d vertex, as the pair-transfer vertex
does not develop a diffusion pole due to repeated elastic
scattering events. (The inelastic rate due to that vertex in
the case of ballistic bands is discussed in Ref. 7.) In Sec.
III we use the general expression to consider the situation
in which the elastic scattering within the s band is weak.
We distinguish there between two cases: (i) a weak inter-
band elastic scattering; (ii) a strong interband elastic
scattering. In the first case we have the situation of a
ballistic wideband coupled to a narrow diffusive one by
the Coulomb interaction alone. We find that under such
conditions, the temperature dependence of the electron-
electron scattering rate, at two dimensions, shows a cross-
over from the T 1nT behavior into a T dependence,
depending on the relative magnitudes of the unscreened
Coulomb vertices. In the second case the elastic coupling
between the bands renders the conduction band to be
diffusive. Then the temperature dependence of the inelas-
tic rate behaves like T ~ (d =2, 3), as is the case for a
single band. ' ' ' Section IV includes some conclusions.

G,"~(p,E)=1/[E E—, &(p)+i /2r, &],
G~A~( E)—[GR ( E)]»

(2.1)

(Units in which fr=i are used. ) In Eqs. (2.1) and (2.2),
E, z(p) denotes the dispersion relation in each band (en-
ergies are measured from the Fermi energy, common to
both bands) and N, and N& are the densities of states at
the Fermi energy of the s and d band, respectively.

We shall calculate the energy relaxation of the elec-
trons in the s band. Denoting their nonequilibrium distri-
bution function by f, (E), the Keldysh formalism yields
for the time derivative the equation'

B,(E)
[F (gA gR) Q (GA GR)]

S

(2.3)

where the functions in the square brackets depend upon p
and E. Here

F,(p, E)=[2f,(E)—1][G,"(p,E)—G,"(p,E)] . (2.4)

Since in the Keldysh technique it is convenient to work
with a Green's-function matrix,

0 GA

(2.5)

(and similarly for the d-band Green's function), the self-
energy part is a matrix as well

0, X,
(2.6)

S

which defines Q, in Eq. (2.3). The self-energy part of the
s electrons is presented in Fig. 1. It is given by

but the mean free (elastic) times of each band, r, and rz,
include the effect of interband elastic scattering

1 =27TNs us +27TNg use[
S

(2.2)

=2m'Ngug+2aNsusg .

II. DERIVATION OF THE KINETIC EQUATION
IN THE TWO-BAND PICTURE

f, (p, E)=f . g f",( q, co, E to)C—,(p q, E——co)—8co

7Tl

X f',"(q,co, E)V,"'(q, co), (2.7)

In the case of a dirty system, it is convenient to use the
Keldysh diagram technique for nonequilibrium process-
es. ' The derivation of the kinetic equation in this for-
malism, for the single-band case, has been carried out by
Al'tshuler and Aronov. ' Here we extend their treat-
ment for two bands.

The elastic scattering in the system is characterized by
elastic scattering within each band, of matrix element
squared u, and u&, respectively, as well as interband elas-
tic scattering with matrix element squared u,&. The re-
tarded and advanced Green's function in each of the
bands, averaged over impurity scattering, has the usual
form'

where repeated indices (i, k) are summed over. In this
equation t); is the screened Coulomb interaction within
the s band. In the Keldysh formalism it is again a 2X2

FIG. 1. The self-energy part of the s electrons. The hatched
triangles represent the vertices, the curly line is the screened
Coulomb interaction within the s band, and the solid line is the
s-electron Green's function, averaged over impurity scattering.
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FIG. 2. The vertex corrections. (a) The equation for I „(b)
the equation for I z. The dashed lines represent impurity
scattering, within and in between the two bands.

matrix (see below). Hence t/', ' is its ki matrix element

(k, i=1,2). The vertex corrections due to multiple im-

purity scattering are denoted by f", , i =1,2. In the fol-

lowing we calculate the various terms that appear on the
right-hand side (rhs) of Eq. (2.3), and use that equation to
obtain the electron-electron rate. The final result (in the

I

FIG. 3. The screened Coulomb interaction. (a) The intra-
band interaction within the s band; (b) the interband interaction
between the two bands. The "bubbles" are the polarization
parts.

low-temperature limit) is given in Eqs. (2.24) and (2.25)
below.

In the two-band picture there are s- and d-vertex
corrections. They are shown in Fig. 2. The equations for
them have the form'

f, (q, cd) =y"+u, g &„C,(p q, E cv—)f',"—(q, cv, E)G, (p, E)& +u,„g&„G~(p q, E cv—)f'k~(q—, cv, E)C~(p, E)&„,
P P

(2.8)

and a similar equation for f'z, obtained by interchanging
the roles of s and d. In this equation k takes the values 1

and 2, where

and

ft„= (2.12)

yI
—

(
] )]/2Q y2 (

] )]/2(y ) (2.9)

are the bare vertices and 0 is a Pauli matrix. We list the
explicit expressions for the vertex corrections in Appen-
dix A.

Next we consider the screened Coulomb potential. Its
equations are plotted in Fig. 3. In the two-band picture,
the screening mixes the intraband Coulomb vertices,
v, (q) and vz(q), with the interband Coulomb interaction,
v,z(q ) [v,z(q ) = vz, (q )). Explicitly, the equations
presented in Fig. 3 read

[in accordance with the Green's function matrix, Eq. (2.5)
and the self-energy matrix, Eq. (2.6), respectively], we
find for the screened Coulomb interactions

V]] ~= [v (1—v II]] ~)+v2 11]] ~]1

E

(2.13)
V, =

z „[V,&Il&+~v, —(v, vz
—v,z)II& ~

II, ],
E' E

and

f', (q, cv) =v, (q)&„+v,(q)&, ft, (q, cv) P;(q, cv)

+v,~(q)&„fthm(q, cv) 0'~, (q, cv),

Vz, (q, co) =vz, (q)o „+vz,(q)&, ft, (q, cv) f/;(q, cv)

(2. 10)

yR A Sd

7

Vq, =
z „ I [v, —

( v, vz
—v,z )11& ]II,

E' E'

(2.14)

+v~(q)o „ft~(q, cv) P~, (q, cv) .

p VA

yR y

S

VR V & ds
S S

(2.11)

Here V, and Pz, are the s-band intraband and the inter-
band screened Coulomb interactions, respectively. ft,
and fthm denote the polarization parts of the s and d
bands, respectively (a 2 X 2 matrix in the Keldysh formal-
ism). They are represented by the vertex-renormalized
bubbles in Fig. 3, and their determination is discussed
below. Introducing the notations

p yA

Here e ' "(q,cv) denotes the dielectric function

(q co)=(1 v 11 '~)(1 v 11 ' ) v

(2.15)

We note that in the absence of the interband Coulomb
coupling, ( v,~ =0), the results reduce to those of Ref. 18.

The last ingredients in the calculation are the polariza-
tion parts, ft, and fthm. These are determined by the
equation (see Fig. 3)
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IP,"d(q, co) =Tr f g f', d( q—,E —co}C,d(p —q, E —co)y"0, d(p, E),
7Tl

P

(2.16)

where j,k = 1,2. The renormalized vertices f', d are given by Eq. (2.8) and the bare vertices by Eqs. (2.9). We present in

Appendix B the explicit expressions for the polarization parts.
Having determined the vertex corrections and the screened Coulomb interactions, it is straightforward to obtain the

self-energy 2, [Eq. (2.7)] and the kinetic equation (2.3). After a considerable amount of algebraic manipulations one

finds

&f, (E)
at 8mNs 2a/

q 1 Qs s 1 Qs s 1 Qs s l Qs s

X [[2f,(E)—2f, (E co)]—V, + [4f,(E)f,(E co) —2f, (—E) 2f, (—E —co)]( V,
"—V,")] .

In this equation the quantities V„V," ",g„g,"'",ad, and ad " are functions of q and co. Here (see Appendix A)

g, (q, co) = g G,"(p—q, E co)G,"(p,—E),
P

pit, A(q ~)—y GR, A(p q E )GR, A( E)
P

ud 0d +usd 0d
ad(q, co) =(1—u, g, )

ud0d )(1 usks } usdkskd

ud 0d usd 0d
z-z~-z~(1 u, gd

—)(1—u, , —u„g,

(2.17)

(2.18)

The functions gd and gd' "are given by the first two equations of (2.18), with s and d interchanged.
The result (2.17) can be simplified considerably when co is smaller than E and the elastic rate smaller than the Fermi

energy. ' In this case g
'" are negligible compared with g, and u, d g, d" « 1. As a result, the large parentheses in Eq.

(2.17) yield approximately —2Re[adg, /(I —u, g, )]. Using the same approximation for the polarization parts [Eqs.
(Bl)—(B3)] and inserting Eqs. (2.13) for the screened Coulomb interactions into (2.17), we obtain

df, (E)
at

dE) ad(
2 Re

i 2m i

X v,d 2 Re
'

[f,(E co)fd(E& )[—I f,(E)][1 f—d(E~ —co)]-a,4
&d d

f, (E)fd(E, co)—[1 f—,(E—co)][1—fd(E, )]]—

+ lu, (v, vd
—u,d )lid l

2 Read
1 —u, g,

X [f.« ~)f.«1)[1—f,«)][1—f,«1 —~)]

f,«)f,«i —~)[1——f,« —~))[l—f,«i ))] (2.19)

Here e"e"=le"
l is the absolute value squared of the dielectric function [Eq. (2.15)]. In the absence of the interband

Coulomb interaction (v,d =0},Eq. (2.19) reduces to the corresponding single-band expression of Al'tshuler and Aro-
nov (note that ad [Eqs. (2.18)] is unity in the absence of interband elastic scattering). In the present case, the kinetic
equation for the s electrons consists of two contributions: The collision term due to the screened interband Coulomb in-
teraction [the first term in (2.19)] which involves, as expected, both f, and fd, and a collision term due to the screened
intraband Coulomb interaction [the second term in (2.19)]. Note that the matrix element squared of the inelastic in-
teraction in the latter is indeed the screened intraband Coulomb vertex, Eqs. (2.13).

To obtain an expression for the inelastic rate we write for the occupation numbers in Eq. (2.19)
f, d(E)=f, d(E)+5f, d(E), where f is the equilibrium Fermi distribution. To first order in 5f, the term on the rhs
proportional to —5f, (E) gives the inelastic rate of the s electrons at energy E. It is convenient to average this rate over
the Fermi surface, so that the inelastic rate will be obtained as a function of temperature. This is accomplished by mul-
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tiplying with the factor [ d—f, (E)/dE] and integrating over E. The result for the averaged inelastic rate, 1/r;„, is then

dc' 2 Re
(2') N, (e~ 1—)(1—e ~") 1 —&,g, E e"

t

X v,d 2 Re
1 Qd

+
l u, —(u, ud

—v,d )lid I
2 Re

1 —Q,
(2.20)

The form (2.20) shows that the inelastic rate of the s electrons is due to Coulomb scattering within the s band (second
term in the large square brackets) and into the d band (first term in the large square brackets). However, the interband
Coulomb vertex, v,d, appears in both contributions, because of the complicated nature of screening in the two-band pic-
ture. In order to separate out the contribution originated from the interband coupling we proceed as follows. Firstly,
the first equation in (2.13) is used to obtain

ImV, =—
& [u, (11,"—11„")+~v,—(v, v„—u,', )ll„'~'(ll,' —II,")] . (2.21)

Secondly, it is noted from Eqs. (Bl) and (B2) that in the
limit co &E II,"(q,co) = f [f,(E) f, (E ——co)]

dE
S S

II —II = — . 2Re
2ni 1 —u, g,

(2.22) +f, (&)(g, g, )— (2.26)

and an analogous expression for IId —IId. Inserting
these relations into Eq. (2.20) we find

1 1
d Pro

m N, (e~ —1)(1—e ~ )

X +Re ImV,
1 —u, ,

(2.23)

which in the low-temperature limit can be written as

1 2 1

~indigo

Re ImV,
r;„ AN P 0 co 1 —u g,

(2.24)

This form shows that the interband Coulomb coupling,

U,d, affects the inelastic rate of the s electrons through the

screening of the intraband Coulomb vertex. Explicitly
[cf. Eqs. (2.13)]

Im V, = Im ——II, —
( u,d /v, )

S

gR

1 —(u, ud
—u,d )IId /v,

(2.25)

In the absence of the interband Coulomb coupling,
Eqs. (2.24) and (2.25} reproduce the inelastic rate in a sin-
gle band, ' ' apart from the elastic coupling (u,d) be-
tween the two bands, which changes the single-band form
g, /(I —u, g, ) into ad/, /(I —u, g, ) [see Eq. (2.18)]. The
same modification occurs in the polarization parts (Ap-
pendix B). Using Eq. (Bl) we find

and an analogous expression for IId. The last term here
is ——N, (where N, is the density of states at the Fermi
energy of the s electrons). Treating the first term in the
small-co limit, we obtain

co +d0
II, (q, co) = N, ——

2rri 1 —u, g,
(2.27)

III. TEMPERATURE DEPENDENCE
OF THE INELASTIC RATE

In a clean one-band system, the Coulomb inelastic rate
is proportional to T at three dimensions and to T lnT
at two dimensions. ' The question we address is how this
behavior is changed by coupling of the conduction elec-
trons to a narrow band which is diffusive. We shall dis-
tinguish between two situations. (1) A ballistic s band,
coupled to a diffusive d band by the interband Coulomb
vertex solely. This may be the case when the two elec-
tron gases are spatially separated. Here we shall assume
that u, and u,z vanish [cf. Eqs. (2.2)]. (2) When the two
electron gases are not separated in space, the interband
elastic scattering (of matrix element squared u,z} may
render the s band to be diffusive as well. This is because
it contributes to the s-electron elastic rate the term Nd u,d
[see Eqs. (2.2)], which may be large due to the high densi-
ty of states of the d band. In this situation both bands are
diffusive. In the following we consider the two cases sep-
arately.

Thus, in order to determine the temperature dependence
of the inelastic rate, one needs to obtain the co and q
dependence of the quantities ad(, /(I —u, g, ) and

a, gd/(1 —udgd). In the next section we carry out this

analysis for two possible configurations of the static dis-
order.
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A. A ballistic s band coupled to a diffusive d band ( u,~ =0)

In the absence of elastic coupling between the bands,
ad=a, =l [Eqs. (2.18}]. Since the d band is in the
diffusion regime, we have the usual expression'

have

vr N, m, /ppq, 1=3
2vrN, m, /p q, d=2, (3.2}

=2miNd
C0+ IDgq

iDdq
IIg(q, co) =Nd

co—lDdq

where Dd is the diffusion coeScient of the d band. These
expressions hold at two and three dimensions. For g, we

where in both dimensions m, ~ &pzq, and p+ is the Fermi
wave vector of the s electrons. Inserting (3.2) into (2.27),

II,"(q,co)= N,—+iN, rom, /pzq (3.3)

(we omit here the nonimportant difFerence between two
and three dimensions}.

The inelastic rate is found by inserting Eqs. (3.1)-(3.3)
into Eqs. (2.24} and (2.25). This yields

'2
Nl mq Ddq

Psq ~o + [D&q'[I+(u, u& u,'„}N—d /u, ]j'
(3.4)

Here we have introduced the notations

U,db=
u,

(3.5)

I

is the distance of the Fermi level from the bottom of the s
band. At higher temperatures the temperature depen-
dence is changed and is given by

N& (K/q }, d =3
K/q d=2 .

S q,
(3.6)

Thus K ' plays the role of an effective "Thomas-Fermi"
screening length. When u, —ud —u,d (as estimated in Ref.
1), K is very small, whereas when the coupling parameter
b « 1, K is of the order of the inverse screening length of
the narrow d band, and can be rather large.

At two dimensions we find

D,q'

q q aP+Dg~(q~+Kq)

I /(DzK ) for ro «DzK
(3.7)

+1/roDd for r0»DdK

It therefore' follows from Eq. (3.4} that

m, m, 4E,
(T) ln +

N, P~ T KDdPF
T «D„K2

(3.8)

so that at very low temperatures the inelastic rate is
governed by the intraband Coulomb scattering. Here E,

The first term in the square brackets of Eq. (3.4) is the in-

elastic rate of a single ballistic band. The second term
gives the inelastic rate due to the interband Coulomb
coupling, and is proportional to the coupling parameter
b. We now evaluate the latter contribution at two and
three dimensions. To this end we define

4E
ln +ar

PF

T»DdK' . (3.9)

1 Ddq 1

q ro +Dd(q +K )
(3,10)

because in this case the q integration is governed by the
upper limit. Therefore both terms in Eq. (3.4) yield T,
the Baber law.

B. Strong interband elastic scattering ( u,q+0)

When the interband elastic scattering is strong enough
such that roe„qV, v; «1 [where v; is given in Eqs. (2.2)
and V, is the s-electron Fermi velocity], then the motion
of the s electrons becomes diffusive. In such a situation

2m.iN,
(1 ~,D,q }, —

co+ 1 /'rz
(3.11}

where D, denotes the diffusion coeScient of the s band.
An analogous expression holds for gd. Using these forms
in Eqs. (2.18) we obtain

We note that for b —1 [which renders K to be small, see
Eqs. (3.5} and (3.6)], the interband Coulomb scattering
dominates the intraband one for ( V, /Vd ) » T~d, where

V, and Vd are the Fermi velocities of the s and d elec-
trons, respectively.

At three dimensions we find

r0+iDdq +2miu, z(N, +N„) 1=2~iN,
(a)+iD, q )(a)+iDdq )+2vriu, d[ro(Ng+Nd)+iq (N, D, +NdDd)] ro+tDq

(3.12)
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where

DsNs +Dd NdD=
N, +Nd

(3.13)

The last approximate equality in Eq. (3.12) holds under the conditions that the s band is diffusive due to the interband
elastic scattering (i.e., cur„qV, r, «1, where r, '=2nNdu, d) and for (qVdrd) «u, d(N, +Nd)/(udNd+u, dN, ). Using
(3.12) in Eq. (2.27) for II," (and the analogous equation for IId) we find

HR N,
EDq',

, IIR N /Dq

co —iDq co —iDq

It is now straightforward to obtain from Eq. (2.23) the expression

co 1 (Dq ) [(K/q) 'l(1+b)]
N, Dq 1+b co +(Dq ) [1+(K/q) 'l(1+b)]

(3.14)

(3.15)

Here b is the dimensionless coupling describing the interband Coulomb interaction [Eq. (3.5)] and K is the effective
screening wave vector introduced above [Eq. (3.6)].

Using Eqs. (3.12) and (3.15) in the expression for the inelastic rate [see Eq. (2.24)] it becomes

1 1 1 imp 1 (Dq ) [(K/q) 'l(1+b)]
N, P 1+b o oi2+(Dqz)2 [ r02+(D qz) 2][co +(Dq ) [1+(K/q) 'l(1+b)] ]

The first term in the large parentheses yields the inelastic rate in a diffusive single-band system, ' ' ' ' i.e., ~;„'—T
with two modifications: it is renormalized by the factor (1+b )

' and it includes the modified diffusion coefficient D [see
Eq. (3.13)]. The second term in the large parentheses in Eq. (3.16) gives the contribution due to the interband Coulomb
scattering. In order to study the latter, it is convenient to redefine the effective screening wave vector to be K

K l(1+b), d=3
K/(1+b), d=2 . (3.17)

At two dimensions we find

b/Dr@ for co «DK
bK /co for co))DK

(Dq ) (K/q)
[oi +(Dq ) ][co +(Dq ) [ I+(K /q)] 2]

Hence the co integration is dominated by the lower cutoff, both at low temperatures, T «DK, and at higher tempera-
tures. The temperature dependence of the inelastic rate is therefore the same as for a single diffusive band,
r,„'~T/DN, .

At three dimensions

(Dqz)2(K/q)4 b(1/coD )' for co«DK

[co +(Dq ) ]leo +(Dq ) [1+(K/q) ] ]

(3.19)

It therefore follows that at low temperatures, T «DK,
the inelastic rate assumes the single-band form' ' '

' 3/2
1 1 T T «DK 2

N, D
(3.20)

At higher temperature, T»DK, the inelastic rate ac-
quires a correction term linear in the temperature

1 1 [(T/D) i +bTK/D], T))DK . (3.21)
&in Ns

However, to leading order, ~;„'~T as in the single-
band situation.

IV. DISCUSSION

The interband inelastic electron-electron rate of con-
duction electrons coupled to a narrow band is interesting

for two reasons: firstly, because of the contribution of
this process to the resistivity. When umklapp scattering
is unimportant (e.g. , in a disordered system), single-band
electron-electron scattering does not contribute to p. The
observation" of T ln T behavior in some high-T, super-
conductors supplies therefore a strong support for a two-
band description [cf. Eqs. (3.8) and (3.9)]. The second
reason is the possible relevance for experiments involving
two quantum wells in heterostructures. '

In a previous work, the interband inelastic rate in a
clean system was investigated, for the case of two over-
lapping bands. It was found that the T lnT behavior
characterizes its temperature dependence, both for the
"s-d" and "pair-transfer" interband inelastic scattering
mechanisms, at two dimensions. It was suggested there
that by introducing elastic scattering into the system this
temperature dependence may change, as happens in the
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single-band case, even when the s band by itself is ballis-
tic. In the present work we have investigated in detail
this possibility. Our main findings are as follows: (i)
Multiple elastic scattering events affect the s-d vertex,
leading to the appearance of diffusion poles. ' This does
not happen for the pair-transfer vertex. Therefore, in the
impure system one can distinguish between the scattering
rate due to the s-d vertex and the one due to the pair-
transfer vertex, because they have a different temperature
dependence. (ii} The temperature dependence is deter-
mined by two factors, the interband elastic coupling and
the relative strengths of the bare Coulomb vertices. This
leads, at two dimensions, to a change from the T lnT be-
havior to a T law, when the s band is ballistic. This is
a behavior which may be observed, e.g. , in experiments
on two quantum wells in heterostructures. It relies on
the complicated nature of screening in a two-band picture
and suggests the possibility of experimental manifesta-
tions of this screening in transport measurements.
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APPENDIX A: EXPRESSIONS
FOR THE VERTEX CORRECTIONS

Here we list the expressions for the vertex corrections
in the two bands, f'," and f'z, k =1.2 (see Fig. 2}. These
are obtained by solving two algebraic equations, Eq. (2.8)
and the one obtained from it by interchanging s and d.
To this end it is convenient to introduce the following no-
tations:

g, (q, ~)= g G,"(p q, E co—)G,~(p—,E),
P

g,
"'"(q,~)= g G," "(p q, E c—o)G," "—(p, E),

P

and similarly for the d band. %e further define

(A 1)

fund for basic research administered by the Israel
Academy of Sciences and Humanities, the U.S.—Israel
Binational Science Foundation, the German-Israel Foun-
dation for Scientific Research and Development, and the
National Science Foundation under Grant No. PHY89-
04035.

1 uu4+ us—~4a, (q, ~)=(1—u, g, )
(1—u~(~ )(1—u, g, ) u,'qg, gq—

gR, A+ gR, A
(A2)

and the analogous quantities obtained by interchanging s and d. It 1s noted that in the absence of the interband elastic
scattering (i.e., for u &

=0) the quantities az and af " are equal to 1. In terms of the functions defined in Eqs. (Al) and

(A2), the vertex f", to leading order is
' 1/2

1

2

1/2
1

2

1/2

CKdr.,22=1

1 —u, g,

~R
dr., 12=1 [2f,(E—co ) —1]

1 —u, g, 1 —u, g,
A
d CXdI,,21

=1

r,'„=0,

[2f,(E)—1]
1

s
1 —u, g,

1/2 1/2
1 CXd 1 Qd

[2f,(E )
—1][2f, (E—co ) —1]2Re

2 1 —u, g, 2 1 —u, g,

Here we have omitted the E, q, and co dependences for brevity. The vertex correction f'i
and d in Eqs. (A3). The vertex correction f', is given by

(A3)

~A
d

1 —u, g,
"

is obtained by interchanging s

1/2 R
CXd1

2

1/2
1

2

(A4)

r2
s, 11

1/2 A
1 CXdr' , r'

s, 12
1 —up" '

CXd
R
d

a*
d

A

[2f,(E)—1] — „—[2f,(E—co) —1]
d

1 —u, g,
*

1 —u, g,
"

1 —u, g,
*

1 —u, g,
"

Again, the vertex correction f'z is obtained from (A4) by interchanging s and d. The results (A3) and (A4) reproduce
those of Ref. 18 in the absence of interband elastic scattering.
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APPENDIX B: EXPRESSIONS FOR THE POLARIZATION PARTS

II, (q, io) = f [2f,(E)—1]
4ni '

1 —u g*

Here we list the expressions for the polarization parts of the two bands, ft, and Az [see Eq. (2.16)]. Using the nota-

tions (2.12) and the definitions (Al) and (A2), a straightforward calculation yields

R

+ [2f,(E—to) —1]
1 —u, g, 1 —u, g,

"

R A

dE CXd CXd CXd

II,"(q, to) =f . [2f,(E—co) —1] g,
— g, + [2f,(E)—1]

4@i '
1 —up, 1 —u, g,

" (B2)

II, (q, co) = f . [1—[2f,(E)—1 ][2f,(E to)—I]—} g, +dE CXd

4+i 1 —u, g,
'

1 —u, g;
(B3)

Here we have made use of the explicit expressions for the vertex corrections (Appendix A). The expressions for the ma-

trix elements of ftd are obtained by interchanging s and d in Eqs. (Bl)—(B3).

See, e.g. , H. Gutfreund and Y. Unna, J. Phys. Chem. Solids 34,
1523 (1973).

~P. M. Solomon, P. J. Price, D. J. Frank, and D. C. La Tulipe,
Phys. Rev. Lett. 63, 2508 (1989); T. J. Gramila, J. P. Eisen-
stein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West,
ibid. 66, 1216 (1991);U. Sivan, P. M. Solomon, and H. Shtrik-
man, ibid. 68, 1296 (1992).

H. Suhl, B.T. Matthias, and L. R. Walker, Phys. Rev. Lett. 12,
552 (1959);J. Kondo, Prog. Theor. Phys. 29, 1 (1963).

4K. Yamaji, Solid State Commun. 64, 1157 (1987); K. Yamaji
and S. Abe, J. Phys. Soc. Jpn. 56, 4237 (1987).

50. Entin-Wohlman and Y. Imry, Phys. Rev. B 40, 6731 {1989).
H. Frohlich, J. Phys. C 1, 544 (1968); H. Gutfreund and W. A.

Little, in Highly Conducting One-Dimensional Solids, edited

by J. T. Devereese, R. P. Evrand, and V. E. Van Doren (Ple-
num, New York, 1979);J. Ruvalds, Adv. Phys. 30, 677 (1981).

70. Entin-Wohlman and Y. Imry, Phys. Rev. B 45, 1590 (1992).
S. W. Tozer, A. W. Kleinsasser, T. Penney, D. Kaiser, and F.

Holtzberg, Phys. Rev. Lett. 59, 1768 (1987);T. Penny, S. von

Molnar, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev. B
38, 2918 (1988); M. Gurvitch and A. T. Fiory, Phys. Rev.
Lett. 59, 1337 (1987); S. Martin, A. T. Fiory, R. M. Flem-

ming, L. F. Schneemeyer, and J. V. Waszczak, ibid. 60, 2194
(1988).

9Y. Imry, Phys. Rev. B 42, 972 {1990).

C. P. Enz, Mod. Phys. Lett. 3, 919 (1989); Z. Phys. B 80, 317
(1990).
C. C. Tsuei, A. Gupta, and G. Koren, Physica C 161, 415
(1989).

' A. Schmid, Z. Phys. 271, 251 (1974).
E. Abrahams, P. W. Anderson, P. A. Lee, and T. V. Ramak-
rishnan, Phys. Rev. B 24, 6783 (1981).

~B. L. Al'tshuler, A. G. Aronov, and D. C. Khmel'nitskii, J.
Phys. C 15, 7367 (1982).

' B. Laikhtman and P. M. Solomon, Phys. Rev. B 41, 9921
(1990).

'6L. V. Keldysh, Zh. Eksp. Tear. Fiz. 47, 1515 (1964) [Sov.
Phys. —JETP 20, 1018 (1965)].

' B. L. Al'tshuler, A. G. Aronov, D. E. Khmel'nitskii, and A. I.
Larkin, in Quantum Theory of Solids, edited by I. M. Lifshits
(MIR, Moscow, 1982).

' B. L. Al'tshuler and A. G. Aronov, Zh. Eksp. Teor. Fiz. 75,
1610 (1978) [Sov. Phys. —JETP 48, 812 (1978)]; B. L.
Al'tshuler and A. G. Aronov, Pis'ma Zh. Eksp. Teor. Fiz. 30,
514 (1979) [JETP Lett. 30, 482 (1979)].

'9B. L. Al'tshuler, Zh. Eksp. Teor. Fiz. 75, 1330 (1978) [Sov.
Phys. —JETP 48, 670 (1978)].
W. G. Baber, Proc. R. Soc. London Ser. A 158, 383 (1937).

'C. Hodges, A. Smith, and J. W. Wilkins, Phys. Rev. B 4, 302
(1971);G. F. Guiliani and J.J. Quinn, ibid 26, 4421 (19.82).


