
PHYSICAL REVIEW B VOLUME 45, NUMBER 24 15 JUNE 1992-II

Weak-localization efFects in a resonant-tunneling junction
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We study the effect of disorder in the metallic contacts on the conductance of a resonant-tunneling

junction. The reason for the effect is that the resonant tunneling involves multiple virtual transitions be-

tween the impurity state in the barrier and the extended states in the contacts. The diffusive motion of
the electron between subsequent visits to the impurity results in a weak-localization correction to the
conductance of the junction. The magnetoresistance of the junction, which is caused by the suppression
of this correction, is shown to be directly expressed, in the weak-disorder approximation, via the magne-

toresistance of the contacts. If the conductance of the junction is dominated by only a few impurities, it
exhibits random mesoscopic fluctuations with the magnetic field. A typical amplitude of the fluctuations

turns out to be much higher than in the case of the universal conductance fluctuations.

I. INTRODUCTION

Observation of resonant tunneling through impurity
states in the insulating barrier has been reported in
several experimental papers. ' Resonant tunneling
occurs when the energy position co of the impurity state
is close to the Fermi level cF in the metallic contacts.
Under perfect resonance conditions (an impurity is strict-
ly in the rniddle of the barrier and co=a~) the value of
conductance provided by the impurity reaches e /M.
This is a maximal possible value for the conductance of
an ideal channel.

Various derivations of the expression for resonant con-
ductance were based on the assumption that the con-
tacts are ideal metals. However, the methods of fabrica-
tion of the experimental structures described, e.g., in
Refs. 1 and 10 suggest that the contacts, either deposited
films' or heavily doped semiconductors, ' are partially
disordered. A question thus arises about the influence of
the disorder in the contacts on the resonant tunneling. It
is well known that disordered metallic samples at low
temperature are anomalously sensitive to very low mag-
netic fields due to weak-localization effects. " Then the
question may be reformulated as whether the weak-
localization effects reveal themselves in the resonant
transport, and in particular in the rnagnetoconductivity?
Since the voltage applied to the junction drops entirely in
the barrier and not in the contacts, the effect might be ex-
pected to be absent. However, as we shall demonstrate
below, this is not the case. The reason is that the
resonant-tunneling process implies the multiple virtual
transitions of electrons between the impurity state in the
barrier and the extended states in the contacts. In the
presence of the elastic scatterers in the contacts, the
motion of the electron between subsequent visits to the

impurity is diffusive. This diffusive motion allows the in-
terference between time-reversed closed trajectories,
which-is responsible for the weak localization. " A weak
magnetic field suppresses the interference, causing there-
fore the magnetoresistance of the junction to be of the
same nature as the magnetoresistance of the disordered
metal.

In the present paper we calculate the conductance of
the resonant-tunneling junctions with elastic scatterers in
the contacts. We show that the disorder-induced correc-
tion to the conductance depends anomalously on the
magnetic field and, to the lowest order in the weak-
disorder parameter, can be directly expressed in terms of
the magnetoconductance of the contacts.

In the case when the area of the junction is so small
that the conductance is dominated only by few resonant
impurities in the barrier, we show the conductance to ex-
hibit random oscillations with magnetic field. These os-
cillations have the mesoscopic origin similar to that for
the well-known conductance fluctuations in the disor-
dered metals. ' '

II. CALCULATION
OF THE WEAK-LOCALIZATION CORRECTION

To study the role of weak-1ocalization effects on the
resonant-tunneling process we extend the derivation of
the expression for the resonant conductance proposed in
Ref. 8 for ideal contacts to the case of the disordered con-
tacts. Let %&,cl and +,„,c„„be exact wave functions
and energies of the electronic states v and p in the left
and in the right contact, respectively, and Oo, co be the
exact wave function and the energy of the impurity state
in the barrier. One can express the exact time-dependent
wave function of the system as
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%(r, t)= g Al„(t)+l,(r)

+ g A,„(t)'P„„(r)+Ap(t)+p(r),

where the coefficients A (t) satisfy the following system of
equations:
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FIG. 1. Schematic of the barrier described here.

Tl„=pi'pi (
—a/2, 0),

pl=—exp[ —k(a/2+zp)] f d"r V(r)+p(r) .

Similarly one defines

Here T&„ is the matrix element connecting the state v in
the left contact and the localized state in the barrier

T„„=P„%',„(a/2, 0),
P„—:exp[ —k(a/2 —zp)] f d r V(r))Ilp(r) .

(6)

T,„=f d"r )pi'(r)V(r)+p(r)

=(Il&„(zp,0) f d r V(r))pp(r), (3)

The rate of the electron transfer from some state vo in the
left contact to some state po in the right contact can be
expressed as

where V(r) is the short-range impurity potential and zp is
the displacement of the impurity from the midplane in
the barrier (Fig. 1). Since the wave function %l„decays
exponentially under the barrier, one can write

(Ill,(zp, 0) =)Ill (
—a /2, 0)exp[ —k (a /2+zp )], (4)

where )pi„( —a/2, 0) is the wave function at the edge of
the left contact, a is the width of the barrier, and k is the
inverse decay length. Combining Eqs. (3) and (4) one has

W(l vp~rpp) = lim
~ A„„(t)~

d
dt

where A,„(t) is the solution of the system of equationsre
(2) with the initial conditions

Al„(0)=5, , A,„=O, A()(0) =0 .

The solution is easily found and leads to

=2~
W(lvp~ rpp) =

T 2

&lv, &tv+ & & Br@ Grp+1rpo

(9)

The expression for the resonant conductance 6 provided
by the impurity in the barrier is obtained by summing Eq.
(9) over all the initial and all the final states at the Fermi
level

G(sp, zp)=2e g W(lv()rp, )5(EF e(„) . — (10)

p2p2( g+ g
—

)( g+ g
—

)

—p'g+ —p~g+~' '

where the exact retarded (advanced) Green's function for
the disordered left contact is introduced:

)pi*„(r)%i„(r')
g,*(r,r';to) = g CF+CO —

Cl +i5

g,—=—gl*( —a/2, —a/2;0) .

(12)

(13)

On substituting Eq. (9) into Eq. (10) and making use of
Eqs. (5) and (6) for the matrix elements Tl, T„„one can
rewrite Eq. (10) as

2 r, r,
Gp(ep zp) = ~ (.F—.p)'+-,'(l., +r„)' '

where

2 + 2~l( ) 2~l( )Imgl( ) 2~vi( Pl( )

(14)

is the coupling of the impurity to the left (right) contact
and vl[„~ is the density of the electron states in the ap-
propriate contact.

If there are several impurities in the barrier and they
are sufBciently far apart, the total conductance of the

A similar definition for g„* is implied.
Expression (11) could also be derived from the Kubo

formula for the conductance, if we express the amplitude
of the transition from the point r in the left contact to the
point r' in the right contact directly in terms of the elec-
tron Green's functions of the corresponding contacts.

In the absence of the disorder in the contacts, Eq. (11)
reduces to the standard Landauer-like expression for the
conductance caused by the resonant impurity
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G, = g Go(cozo) .
Eoy Zo

(16)

This quantity is self-averaging, if the number of impuri-
ties is large. On averaging over the positions z0 and ener-
gies c0 of the impurities, one finds

junction G, is calculated by summing up all the contribu-
tions (14),

It is seen that the correction is negative, i.e., disorder in
the contacts diminishes conductance of the junction. The
quantity (59&(„)5Qi(„) ) which is the characteristics of the
left (right) contact is similar to that appearing in the cal-
culation of the weak-localization correction to conduc-
tivity of disordered metal. " However, it is expressed (in
the first order in the small disorder parameter) as a sum
of diffusion and cooperon contribution'

e' ~'ps ~o
G, = M, M=

2k
(17)

21TV1( )(59(+ 59i ) = (Ci(„)+2)i(„)) (23)

Here the effective number of the resonant-tunneling
channels M is defined where p is the density of the im-
purity states in the barrier, S is the area of the junction, k
is the inverse decay length entering Eqs. (5) and (6), and
1 o is the coupling constant (15) for the impurity placed in
the middle of the barrier.

In the disordered case we define the coupling constants
as in Eq. (15) with

5S+;,„,=—e;,„,
—( e;,„,)

and expand the conductance (11) in series over 59,

(19)

G (E(),z() ) =G()(E(),z() )[1+P(5Qi +P„59„+P('59i+

where ( ) stands for averaging over the realizations
of the disorder in the left and right contacts. The mean
electron density of states V is well known to be insensitive
to weak-localization effects. Thus the value of the cou-
pling constants remains unchanged as compared to the
case of pure contacts (15). However, the conductance
(11) depends on the Green's functions nonlinearly and
thus should depend on the disorder. Assuming the disor-
der to be weak we define

while the weak-localization correction to the conductivi-
ty of the contact is expressed via the cooperon contribu-
tion only:"

5O 1(r)

7TAV 1 ( r)

(24)

Here the cooperon contribution Cl(r) is defined as"

(2ir)" D((„)q +r~ ' (25)

where Dl(, )
is the diffusion coefficient of the electron in

the left (right) contact and r& is a dephasing scattering
time. In absence of magnetic field the diffusion contribu-
tion 2)((„) in Eq. (23) is defined in the same way as the
cooperon one. ' The dimensionality of the integral (25)
depends on the geometry of the contacts. It is d =2 if
the contact is a thin film [with a thickness less than the
coherence length L&=(Dr&)'~ ] and d =3 if the contact
is a bulk metal.

Combining Eqs. (22) —(24), we can express the relative
value of the weak-localization correction to the conduc-
tance of the junction in terms of the relative values of the
weak-localization corrections to the conductances of the
contacts:

+P„*59„+Q,5@i+ 59i

+ Q„5Q„+59„+ ] (20)

6G
G

s~„+
4 Ol Or

(26)

with coefficients

1
~l (r)

27Tl Vl(r)

l
E,—E,+ —(r„„,—r„„,)

l
s —e ——(r+r )F 0 2 1 r

27TV1 ( «)

r, r„
(E,—s, )'+ -„'(r, +r„)'

(21)

&5a,+ 5C; ) (5a„+ 5C„- &6G= —G, 2
+

(4~v, ) (4m v„)
(22)

To find the disorder-induced correction to the conduc-
tance (11) of the junction one should average Eq. (20)
over positions and energies of the impurities in the bar-
rier and, independently, over the realization of the disor-
der in the contacts. Up to the first nonvanishing after the
averaging terms we get ( G ) =G, +5G, where G, is given
by Eq. (16), and the disorder-induced correction reads as

Note that this relation holds only in the weak disorder
approximation (i.e., in the first order of expansion in
powers of 2) and C). This approximation is sufficient,
however, for the present considerations.

The temperature dependence of 5o 1(r) results from that
of the dephasing scattering time r& in Eq. (25). The latter
is given by v.

&
~ T ~, where p depends on the mechanism

of inelastic scattering, " which results in 5o. ~lnT for
d =2 and 5o. ~ T for d =3. Then, as follows from Eq.
(26), the conductance of the junction turns out to be sen-
sitive to very low temperatures in just the same way.
Another reason for the temperature dependence of the
resonant conductance is the spin correlation between the
electron at the impurity and the electrons in the con-
tacts. ' ' As shown in Refs. 16 and 17, the destruction
of this correlation with T leads to the correction
6o. ~ —lnT of the opposite sign to the correction originat-
ing from the weak-localization effects. Note that
broadening of the distribution function of the electrons in
the contacts does not lead to a temperature dependence
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(27)

where b, o&~„~
=—5a&~„~(H)—5o&~„~(0) can be presented as a

function of the ratio H/H' with

Ac

eL~
(28)

The exact form of this function is given in Ref. 11. For
H =H', the relative magnitude EG/G, of magnetoresis-
tance of the junction is of the order of fi/szr for two-
dimensional contacts, and of the order of fi /e~r
for three-dimensional ones. Here ~ is the elastic-
scattering relaxation time.

III. MESOSCOPIC FLUCTUATIONS
OF CONDUCTANCE

In the case when the area of the junction is so small
that the number of channels M defined by Eq. (17) is of
the order of 1, the conductance is dominated by only a
few resonant impurities. The conductance provided by a
single impurity is sensitive to the interference of the am-
plitudes of different diffusive trajectories within the re-
gion of the size L& around the impurity. In magnetic
field each amplitude acquires some phase factor so that
the interference pattern changes. This change will reveal
itself in the amplitude of the resonant tunneling. There-
fore, the conductance of the junction with a small num-
ber of resonant channels will exhibit random fluctuations
with magnetic field which are similar to the universal
conductance fiuctuations (UCF) in small metallic sam-
ples. ' ' %e will show, however, a typical relative ampli-
tude of the fluctuations to be considerably greater than
that of the UCF. The reason is that the fluctuations of
the tunneling conductance reveal the fluctuations in the
local densities of states rather than in conductances of the
contacts. The local density of states is known' to fluctu-
ate much stronger than the conductance or the global
density of states characterizing a sample as a whole. '

To estimate the amplitude of the fluctuations we calcu-
late the variance

(varG) =&G ) —&G) (29)

Substituting Eq. (20) into Eq. (29) we get in the first non-
vanishing after the averaging order

(varG) =2G ( oz e)o[~Po~I'&5&; 5&( )

+ ~~„~'& 5e„+5S„-) ] . (30)

of the average conductance 6, .
The suppression by magnetic field of the cooperon con-

tribution to the disorder-induced correction to the con-
ductance (22) causes the negative (in the absence of the
spin-orbit scattering) magnetoresistance of the junction.
It follows from Eqs. (22)—(25) that it is expressed directly
in terms of the negative magnetoresistance 60.

&~„~ of the
left (right) contact

AG (H) 5G (H) 5G—(0) 1 ~o, (H) ho „(H)

6,
—

6, 8

Using Eqs. (14) and (20) we can rewrite this expression as

I'/I' [(Ep EQ) +—(r$ r ) ]
(varG) =2

[(s,—.,)'+-,'(r, +I.„)']'

&5~,+ 5e;)
(2nvi .)

&5C+ 5S„-)
(2m.v„)

(31)

The relative amplitude of the fluctuation may be ex-
pressed directly in terms of that for the local densities of
states in the contacts. Indeed, both spatial arguments of
the Green's functions in Eq. (31) are stuck at the left (ot
right) edge of the contact, Eq. (13). The variance of the
fluctuation (varv) =&v ) —v of the local density of
states is expressed' via the same averages (23):

&(varv((„)) ) = &5Q((„)5Q((„)) .+
2%2

(32)

Thus, one finds the relative amplitude of the resonant
conductance fluctuations as

(„„G)2 (eF eo)'+-.'(rl r. )

G,' (e —s,)'+ —,'(I, + I „)'

(varv&) (varv„)
—2 —2

+-
V( ~r

(33)

It is seen from Eq. (33) that the amplitude depends
strongly on the location and the energy of the resonant
impurity. In particular, under the perfect resonant con-
ditions (I &=I „and Eo=sz) we obtain varG =0 in the
leading order. It is quite natural that there are no
sample-to-sample fluctuations: all samples reach the
maximal possible value of conductance ez/M. But, with
the same accuracy, there are no random fluctuations with
magnetic field in a particular sample. Such a suppression
of the fluctuations results from the fact that all the types
of the diffusive trajectories making the interference pat-
tern (e.g., those passing through the left contact only,
those visiting the right contact once, twice, etc.) have the
same relative weight under the perfect resonant condi-
tions. It causes the fluctuations to be insensitive to
changing the magnetic field. A difference in weight of
trajectories appears in the higher order of perturbation,
and the relative amplitude of the fiuctuations (33) in such
a case does not exceed that of the UCF. However, under
typical conditions for the resonant tunneling when either

~ I,—I „~
—I' or

~ so —E~ ~

—I, the relative amplitude of
the resonant conductance fluctuations is of the same or-
der of magnitude as that of the amplitude of the local
density-of-states fluctuations which is much greater than
that of the UCF. Let us estimate this amplitude.

The sum in the last set of brackets in Eq. (31) has the
same form as in Eq. (22), and can also be expressed as the
sum of diffusion and cooperon contributions, Eq. (23).
These contributions differ, however, from those calculat-
ed directly from Eq. (25). The difference is due to the fact
that the products of two Green's functions in Eq. (31)
correspond, in contrast to Eq. (22), to an averaging of
two independent measurements. [On calculating these
products in the temperature diagram technique, one finds
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var G varv

(G)
trt

ln
lCF7

(34)

where l =vF~ is the length of the mean free path for elas-
tic scattering. The relative amplitude of the UCF is of
the order of A'/e~r, which is much smaller than (34) un-

der the weak-disorder condition. In the three-
dimensional case, Eqs. (33) and (25) predict the relative
amplitude of the fluctuations being of the order of
A'/(EFr) while the relative amplitude of the UCF is pro-
portional to the second power of this small parameter.

Note finally that Eq. (33) describes the amplitude of the
fluctuations for a single resonant-tunneling channel.
With the increase of the number of channels M, Eq. (17),
this amplitude falls off as M

that the two Green's functions in the angular brackets
have the same Matsubara frequency in Eq. (22), but
different ones in Eq. (31).] It is well known from the
theory of UCF (see, e.g., Ref. 19) that in such a case
diffusion and cooperon contributions are sensitive to the
temperature broadening of the electron Fermi distribu-
tion functions. The "energy averaging" results in depen-
dence of these contributions on both the coherence length
L&=(Dr&)'~ and the thermal length LT=(DA/T)'
Roughly speaking, one can say that the lower cutoff in
the singular integral (25) should be taken at
q -/=min(L&, LT). On taking this into account and
substituting Eq. (23) into Eqs. (32) and (33), one finds the
typical relative amplitude of the resonant conductance
fluctuations at d =2 as

1/2

G( V)= —,'[Go(eF+eV/2)+Go(eF —eV/2)] . (35)

For eV )&T we have ~& ~ V~. This leads to the singular
voltage dependence of the disorder-induced correction
5G ( V) ~ ln V for d =2 and 5G ( V) ~ V"~ for d =3. Note
that a similar correction originates from the electron-
electron interaction in the disordered contacts. ' The
latter correction, however, is not sensitive to a weak mag-
netic field.
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