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The properties of the semiconducting phase of heavy-fermion systems are examined within the frame-
work of mean-field theory. The theory exhibits the possibility of a transition from a high-temperature
local-moment state to a low-temperature, semiconducting state. The low-temperature, semiconducting
state has an indirect band gap that is reduced by many-body renormalizations. The magnetic properties
of this system are examined within this mean-field approximation and are compared with the results of

recent inelastic-neutron-scattering experiments.

I. INTRODUCTION

Heavy-fermion systems form a class of materials that
are all characterized by extremely strong electronic corre-
lations,! ~* as evidenced by large enhancements of the
low-temperature specific heats and static magnetic sus-
ceptibilities above the values expected from local-density
approximation (LDA) electronic-structure calculations.
Even though the properties of heavy-fermion systems are
generically similar at moderately low temperatures, the
class of systems encompasses a wide variety of different
ground states, including superconductivity, spin density
waves, charge density waves, and simple itinerant
paramagnetism. Recently, another class of such systems
has emerged,’ '? namely that of heavy-fermion semicon-
ductors. Their properties may be characterized as usual
heavy-fermion systems at moderately low temperatures,
but at very low temperatures they enter into a ground
state in which the electronic excitations have a minimum
or threshold excitation energy.

In this paper we shall investigate the properties of the
standard model of heavy-fermion systems,* !¢ in the
mean-field slave-boson approximation,'”~2¢ and outline
schematically how such a semiconducting ground state
may evolve. Although fluctuation effects are expected to
yield important corrections to the mean-field approxima-
tion, we expect that the qualitative nature of the mean-
field state will be maintained.

We shall explicitly evaluate the dynamical susceptibili-
ty in this model, and then compare the results of the
theory with data from inelastic-neutron-scattering experi-
ments® on Ce;Bi,Pt;, which is an example of a low-
temperature semiconductor,>’ which is subject to
moderate many-body enhancements.

The paper is structured as follows: In Sec. II, we shall
describe the theoretical model for the cerium-based
heavy-fermion systems and introduce the electronic
correlations via the technique involving slave bosons. In
Sec. III, we shall present the mean-field approximation to
the solution of the model. This involves a phase transi-
tion in which the slave bosons form a condensate.!®”%2
In the low-temperature phase found in the mean-field ap-
proximation, the f excitations weakly hybridize with the
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conduction band and form a semiconductor with renor-
malized bands. Whereas at high temperatures, the f ex-
citations are completely decoupled from the conduction
band. Both the complete decoupling found at high tem-
peratures and the sharp phase transition are unphysical
artifacts, but are expected to be corrected by treatments
that incorporate the effect of fluctuations. We shall
present the electronic structure calculated within the
mean-field approximation. In Sec. IV we examine the
magnetic properties and compare them with experiments.
We discuss and summarize our results in Sec. V.

II. THE PERIODIC ANDERSON MODEL

The properties of cerium heavy-fermion systems are
unusual due to the following facts: The 4f orbitals in the
lanthanide series have a small spatial extent, but the 4f
shell is only partially filled. Due to the small radius of
the 4f orbitals, the electrons in the 4f level experience
strong Coulomb interactions with the other electrons in
the 4f shell. In cerium ions the 4f° and the 4f!
configurations have almost the same energy, due to the
stability of closed atomic shells. In the solid, these neigh-
boring configurations can be mixed by the potential due
to the other atoms, thereby allowing a 4f electron to es-
cape into the conduction band. These peculiarities are
incorporated in the simplest model of cerium heavy-
fermion systems, the Anderson lattice Hamiltonian.

The total Hamiltonian is written as the sum of three
parts,

H=H;+H;+H;, . (1)
The f electrons are governed by H, where

H;=3 Effifmfi,m +3 3 Ufffii,-mf:nfi,nfi,m
i,m

iym,n

(1a)

and f ,-:‘rm and f; ,,, respectively, create and annihilate an f
electron in the 4f shell at lattice site i, in the orbital la-
beled by the set of quantum numbers n. The degeneracy
of the 4f level is N=2I(/+1)=14. The term proportion-
al to E, represents the binding energy of the 4f electrons,
while the term proportional to Uy, is the Coulomb repul-
sion between pairs of electrons in the 4/ shell of the same
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ion. The Pauli exclusion principle leads to the exclusion
of the term where m =n.

The conduction band is governed by the Hamiltonian
H,,

Hy= 3 e(k)d],.dy (1b)

k,m

where d lym and d; ,,, respectively, create and annihilate
electrons in the conduction-band state labeled by Bloch
wave vector k and degeneracy index m.

The f-d mixing term is

Hf_d=N5_l/2 z [VeXp(ik-Ri )fi',rmdk,m

i,k,m
+V*exp(—ik-R)d{ nfim].  (l0)

The first term takes an electron out of the d band and
places it in the 4f orbital at site i, and the second term
represents the opposite process. In the above expression
the number of lattice sites in the crystal is denoted by N;.
Thus, apart from the term proportional to Uy, the Ham-
iltonian is quadratic in the fermion operators, and the
terms of (1b), and (1c) provide dispersion to the 4f levels.
The term proportional to U, is local and quartic in the
fermion operators.

In general dimensions, this model is intractable and
only possesses two exactly soluble limits, the weak cou-
pling limit and the atomic limit. We shall, therefore, ex-
amine this model within a mean-field approximation,
which has its validity based on the limit of large degen-
eracy N. We shall then specifically examine the situation
in which the system is in a semiconducting phase at low
temperatures.

The Coulomb interaction U, , is the largest term in
the Hamiltonian, and often it is considered to be infinite.
In this case normal perturbation theory is not appropri-
ate and other techniques have to be utilized.!>~!® Since
cerium compounds usually have an average of less than
one 4f electron in the f shell of each ion, in the large-Uy,
limit it is reasonable to project out states in which the 4f
shell is occupied by more than one electron, leaving only
the 4% and 4f! configurations. This projection must be
performed for all states involved in the calculation, in-
cluding intermediate states. This minimizes the Coulomb
interaction part of the Hamiltonian; in fact this pro-
cedure leads to the term proportional to Uy, vanishing.
When this minimization is performed the terms quartic
in the fermion operators, in the above Hamiltonian, will
be eliminated but only at the expense of introducing a
new boson field. We shall now outline the method of pro-
jection that we shall follow.

Slave-boson Hamiltonian

The projection of the multiply occupied configurations
is accomplished by the introduction of slave bosons intro-
duced by Barnes!” and independently rediscovered by
Coleman.'”® A slave-boson creation and annihilation
operator b;r and b, is introduced for each lattice site. At
each site the constraint

13985
0, =bini + ZfiTm im =1 @)

is to be enforced. Due to the positive definite nature of
the slave-boson number operators, this restriction en-
forces the number of f electrons on each site to be less
than unity.

The number of bosons represents the number of 45°
configurations. The second term is the number of 4f!
configurations. The constraint (2) enforces the condition
that each 4f ion is in either one configuration or the oth-
er. The 4f configurations are represented by

472> =b10)
and
laft, ) =rfl.10) .

Thus, in this restricted part of Hilbert space the physical
f operators are formed by the product of a quasiparticle
f operator and a slave-boson operator, the latter factor
represents the charge fluctuations of the f shell. The hy-
bridization or mixing term is then replaced by

H}4=N;"2 3 [Vexplik-R,)f], dy mbi

i,k,m
+V*exp(—ik-R)bJAY fim] (3

since it has to take an electron out of the band and
change the 4f ionic configuration from |4f7) to |4f},,)
and vice versa.

The partition function Z is given by

Z=Trexp(—H /kpT), 4)

which is projected onto the manifold of singly occupied
4f sites via

Z=TrI,8(Q,— 1)exp(—H'/kzT) , (5)

where the Hamiltonian H' represents the Hamiltonian H
in which the hybridization term (1c) has been replaced by
the expression given in Eq. (3). Using the integral repre-
sentation of the & function yields

Z=TuI1, [ dnexp [i S ,(Q,—1)—H'/kzT) (6)

and on setting 7, to the saddle-point values n; =iA; /kgT,
we obtain an effective Hamiltonian with the constraint
automatically built in.

The projected Hamiltonian H,, which includes the
constraint, finally becomes,!” 2

HP= zEffiJ,rmfi,m + 2 e(k)dl,mdk,m

iym k,m

+H 4+ 3SA(1—-0)) . ¥

This Hamiltonian has the same matrix elements as the
initial one, as long as one stays within the manifold of
states, which satisfies the constraints. This Hamiltonian
is quadratic in the fermion operators as the Coulomb in-
teraction term has been projected out, however the hy-
bridization term in (3) is of cubic order in the number of
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operators. The effect of the slave bosons is to prohibit an
electron hopping onto an f orbital if it is already in a 41
configuration. This is accomplished by the presence of
the local boson destruction operator, which when it acts
on the 4f! configuration, yields zero, since this state cor-
responds to the vacuum state for the local boson.

The slave bosons satisfy the equation of motion

i#,b()=[b](1),H, ()]

=16/ ()— VN, 1> S exp(ik-R;)

k,m
Xfldy (). (8

Note that the Hamiltonian commutes with the con-
straints and with the number operator then, as found
from the Heisenberg equations of motion

i#3,0,=[0;,H,]_=0. (9)

The constraint is conserved and so it only has to be im-
posed at just one instant of time. Thus, the slave bosons
impose a dynamical constraint on the f electron charge
fluctuations.

The boson operators are replaced by the sum of com-
plex number a, and an operator B, representing the
remaining fluctuations,

b/=at+B]
and
b,=a,+B,; .

The phase of the complex number could have been
chosen to be different at different sites, however, this
could be gauged away in all physical quantities by also
performing a local gauge transformation on the f quasi-
particle operators. That is, the complex boson field and f
are operators that could be replaced according to the
rules

ag=agyexp(+iy;)
and
fi=fiexp(+iy;). (10)

Thus, the local gauge field neither enters into the Ham-
iltonian nor any other physical quantity, but the fluctua-
tions of the global phase do represent a soft mode that
could smooth out any mean-field phase transition for
finite values of N. However even in this case, it may be
argued that the qualitative behavior found within the
mean-field approximation does remain unaltered.’®?!

III. THE MEAN-FIELD APPROXIMATION

The mean-field slave-boson approximation corresponds
to neglecting the fluctuating parts B; of the boson opera-
tors. Thus, we consider the state found by utilizing the
approximation,

b/ =b,=a, .

This corresponds to a macroscopic occupation of the uni-
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form k=0 state of the slave bosons if ag is finite. Thus,
the state with a nonzero a, is a bose-condensed phase
where fluctuations in the number of bosons may be
neglected. It also corresponds to the semiclassical ap-
proximation for the boson field, which is often used in
electrodynamics. Thus, the boson field is replaced by a
classical field. Since a, is assumed to be time indepen-
dent, then the expectation value of the equation of
motion becomes

i#d,a,=0 , (11a)

which yields the equation

agh; =VN, "2 S explik- R fL wdy ) - (11b)
k,m

In this mean-field approximation the Hamiltonian has
become quadratic in the fermion operators, and the bo-
son operators have been approximated by scalars, al-
though their values are still to be determined. Therefore,
the fermion part of the Hamiltonian can be diagonalized,
yielding the electronic structure. This is performed by
calculating the single fermion Green’s functions.

Electronic structure. The one-electron Green’s func-
tions are defined by

Gl io ()= = /BT (Of L (0)) (12a)
for the f electrons and similarly for the d electrons

G o ()= —(i /AN Tdy ,,(1)d}. ,.(0)) . (12b)
The f-d Green’s function is given by

G e ()= —(i /BN Tdy p (Df Lo e (0)) ,  (12¢)

where T is Wick’s time-ordering operator, and the angu-
lar brackets indicate the average.

The one-electron Green’s functions are found from the
equations of motion, which result in the pair of coupled
differential equations

(i#1d, —E )G/ .0 ()=8(1)8; .1
+ VN, 23 ajexp(ik-R;)
k

XGY (1)

k,m;i',m’
(13a)
and

[i#d, —e(K)IGW, .o ()=V*N'/?
X ¥ agexp(—ik-R
J

XGH .. (). (13b)

7>

The equations of motion are then Fourier transformed,
leading to the coupled set of algebraic equations

(fio—E)G{ o (@)=8y 8, e
+VaoG¥ o (@) (142)
and

[fiw—e(k)]GH v m(@)=V*aEG{L, .k (@) .  (14b)
k,m;k’, ,m;k’,
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Since the Hamiltonian is quadratic these equations
form a closed set and have the solution

S kO m’
Gl m (@)= kT
omik’, {fio—E ;— | Vao|2/[#io—e(k)])
A, (k)
=Bk B m [iw—E , (k)]
A-M) (15a)
[io—E_(K)] a
and
Vaoby  Om m
Gltffm'k'm'(w)= gL - 2
S {[fiw—e(k)|(iw—E;)—|Vayl?}
Sy O m Ay (k)A_(k)
- k.k'“m,m + (15b)

{(fio—E , ()][fiw—E_(K)]} ’

where we have expressed the Green’s functions in terms
of simple poles corresponding to two hybridized quasi-
particle bands.

The two hybridized bands have dispersion relations
given by

E (K)={[E;,+e(K))+tV[E;—e(k)?+4V 2} /2. (16)

+W

Band Energies E,(k)
m

1.00

0.75p

D.SOL

0.25F

4f Weight Factors A (k)

A (k) (b)
0.00 S
0

k

G/2

FIG. 1. The energy dispersion relations E 4 (k) for the hybri-
dized bands found in the mean-field slave-boson approximation
are shown as a function of k in (a). The upper band and lower
band indices are denoted by + and — respectively, and
G/2=m/a(1,1,1) is half a reciprocal lattice vector. The factors
A +(k), which describe the 4f weight of the upper and lower
hybridized bands, are plotted as functions of k (b).
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These energy bands are sketched in Fig. 1(a). The factors
A (k) represent the 4f spectral weight contained in the
Bloch state labeled by k in the upper and lower hybri-
dized bands, and these factors are given by

A (K)=H1£[E,—e(®)]/V[E,—e(k)*+4V 2} (17)

such that 4 ,(k)+4_(k)=1. These projection factors
are depicted in Fig. 1(b). Here, E; and V are given by re-
normalized expressions
corresponding to a shift in the binding energy of the f
level, and

V=Va, (18b)

is the reduced hybridization matrix element.

The renormalization of the f level energy may be un-
derstood as an energy lowering due to the zero-point
motion from virtual hopping of the f electrons. Since a,
is proportional to the square root of the number of 4f°
configurations, the factors of 4% ? occurring in the solu-
tion are reduced from their noninteracting values by the
probability that the 4f level is already occupied. This
reduction in the hopping probability is therefore due to
the Coulomb interaction blocking the hopping of an elec-
tron onto a singly occupied f level, similar to the effect
that occurs in the Gutzwiller effective band picture.?”?8
Thus the slave-boson projection method prohibits a por-
tion of the possible charge fluctuations from occurring,
even as virtual states.

The two branches of quasiparticle poles form hybri-
dized bands shown in Fig. 1(a). The two bands are
separated by an indirect band gap between the lower
band at k=G /2 and the upper band at k=0. The value
of the gap is of the order of 4 (Va,)*/W, where W is the
width of the d band. As shown in Fig. 1(b), for k values
close to the point k=0, the upper band is predominantly
of 4f character and has an extremely flat slope, i.e., a
high density of states. Likewise, for k values near
k=G /2, the lower band is also predominantly of f char-
acter and has a high density of states. Therefore, the in-
direct band gap occurs between states with predominant-
ly 4f character. The minimum direct band gap is of or-
der (2Va,). This occurs between states with equal f and
d weights.

The f portion of these quasiparticle bands is subjected
to a wave-function renormalization factor of Z ~!=ga3,
which not only enhances the effective mass close to the
localization transition?”?® but also has the effect of reduc-
ing the number of quasiparticles that can occupy the
coherent quasiparticle bands to less than unity. If the
Hamiltonian is rescaled in powers of N, the terms involv-
ing boson fluctuations may be ordered in powers of the
boson propagator, which is of order 1/N. In the large-N
limit, these fluctuations may be neglected, resulting in
this mean-field approach. The incoherent parts of the
spectrum are higher order in 1/N since they involve the
emission and absorption of slave bosons and are moved to
energies further from the Fermi energy.

To obtain an insulating state, as in Ce;Bi,Pt; (Refs. 6
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and 7), CeNiSn (Ref. 8), or YbB,, (Refs. 9-11), one must
be able to fill the lower hybridized band completely.
Since the lower band contains half of the 2N states, one
must have N electrons in total. It is interesting to note
that for this occupation, the Anderson lattice model in
the noninteracting limit (U, =0), would also be semi-
conducting. The results are consistent with the stability
of the semiconducting state against the effect of interac-
tions as implied by the argument’s of Martin and Al-
len'* 1> that involve Luttinger’s theorem. However, since
Uy is considered to be infinite and a phase transition
may occur, the prerequisite conditions needed for
Luttinger’s theorem to apply cannot be proved and possi-
bly may not be satisfied.

We shall consider the case in which N =2 and extrapo-
late the mean-field theory, valid in the infinite-V limit, to
the case where N=2. Then the number of electrons
filling the lower band is half the total number of available
states and is given by

Ny =2N/2=2 .

The three self-consistency equations are as follows.

(1) The number of particles, which for the case in which
the lower band is full, and the upper band is empty, is
given by the equation

AN/2=N=(1/N,) 3 f(E.(k (19)

k,t,m

since there is a total 2N states per atom, N d states and N
f states, which are half filled. (In this expression, the
non-quasiparticle f weight is counted.)

(i) The constraint excluding multiply occupied
configurations becomes

1=a2+(1/N,) 3 A (K)f(E, (k). (20)

k,t,m

(iii) The equation of motion for the stationary part of
the slave-boson condensate yields

Aag=—(V/N,)S A_(K) A (k)

k,m
X[f(E_(k))—f(E (k)

Since _(k)A,(k) is of the order of
Vzao/iEf—e(k)\, A can be seen to be an energy scale of
the order of the zero-point energy for virtual hopping of
the f electrons which is allowed when a;70.

The self-consistency equations have a nonzero solution
for a,, in the range of temperatures below T,.. Above T,
the value of a is zero. This can be seen directly from ex-
amination of two limiting cases.

1. @y

A. High temperatures

The solution can be found, in the extreme high-
temperature limit, since the Fermi functions become in-
dependent of the band index and quantum number k,

f(Ei(k))zNel/ZN:-;— .

The constraint (20) becomes
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a2=1—(N/N,) S A, (K)f(E,(k)=1—N,/2,
k, =

and since there is a total of two electrons per ion, N, =2,
consisting of one f electron and one d electron per 4f
ion, the gap equation (21) is trivially satisfied since it has
a common multiplying factor of a, which is zero, a;=0.
The constraint then implies that in this high-temperature
scale the number of f electrons is precisely unity.

B. Low temperatures

The solution in the zero-temperature limit 7=0 is
found with the use of the substitutions,

S(E_(k))=1 and f(E_,.(k))=0

which occurs since the lower band is completely full and
the upper band is empty. Thus, in the zero-temperature
limit the constraint (20) becomes

(N/N)S 4-(k) (22)

=q 0
whlch has a nontrivial solution when E >0, that is
a3 >0. The gap equation (21) reduces to

Ef—Ef=( y? N/N;) % {[Ef—e(k)] +4I72] -z
For a structureless bare d band of width 2W, the con-
straint can be written as

ad=(N/AW)[V (W +E,;?+4V?

—V(W—E,?+4V?], (23)
which has the solution
E,=(VY/NA)[1+4NAV 2 /(N AW =TV 9H]'/2,

(24)

0.0 0?5 1.0
Vv

FIG. 2. The graphical solution of the self-consistency Egs.
(24) and (25). Both the expressions for E + are plotted as a func-
tion of the hybridization matrix element renormalization factor
V /V. The intersection of the two curves yields the renormal-
ized values of E; and V. Due to the singularities at ¥ =0 and
V=V, the equations always have a solution in which the
effective hybridization matrix element is always smaller than the
bare value.
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where A=V?/2W is a measure of the unrenormalized en-
ergy dispersion of the 4f states. For N =2, this equation
has a singularity at ¥ =V. The gap equation becomes

E,—E;,=NAW{[W+E;+V (W+E,;?+4V?)]

+V (W—E ) +4V2] /(4P })] .
(25)

After substituting (24) into Eq. (25), one finds that the re-
sulting expression for E + is singular at V=0. The pair of
coupled equations (24) and (25) can be solved graphically
and can be shown to always have a unique solution, with
the position of the renormalized f level E + above the
center of the band. The graphical construction is shown
in Fig. 2, where it can be seen that the presence of the
two singularities ensures that the curves cross.

C. The critical temperature

The critical temperature T, at which the boson con-
densation occurs is given by the condition a% =0, which
constrains the number of f electrons being unity, which
in turn implies that the position of the renormalized f
level E, is exactly equal to zero. With these
simplifications, the gap equation becomes

—E;=(NV?/N,) 3 [1—2f(e(k))]/[2e(k)] .  (26)
k

The solution of the above equation yields the expression
for the critical temperature,

kpT.=1.14W exp(E, /NA) . 27)

The exponent in the critical temperature given in (27) is
the same as in the usual expression for the Kondo tem-
perature Tg.

The order parameter a3 is the deviation of the 4f occu-
pation number from unity. The temperature variation is
that of a mean-field transition, where the indirect hybridi-
zation gap in the electronic spectrum, proportional to a3
opens up below 7,.. The mean-field transition is con-
trolled by the balance of the energy gained in opening up
a gap at the Fermi level with the entropy from the spin
disorder entropy of the high-temperature state. Due to
the specific two-band nature of the electronic structure,
the mean-field transition is gentle and is not accompanied
by a discontinuity in the specific heat.

For values of the bare f level energy E, far below the
center of the band, the value of the low-temperature in-
direct gap E,, is roughly 1.764kpT,. In the other limit,
when both the bare f level and the renormalized f level
lie above the center of the band, the f level is mainly
unoccupied, so the hybridization gap is not subjected to
strong many-body reductions. At very low temperatures
the gap shows an exponential temperature variation,
with an exponent of [E_(G/2)—ul/kgT
=[u—E (0)]/kgT, which since the Fermi energy lies in
the center of the gap, has an activation energy of half the
zero-temperature gap, or of the order of the critical tem-
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perature. Thus, the activated behavior of the low-
temperature thermodynamic properties does have a non-
negligible contribution from the temperature variation of
the gap in addition to the usual contribution from the
thermal population of electrons or holes.

Although the system does show a phase transition in
the mean-field approximation,'®2° it is unclear if this
will persist if the fluctuations in the slave-boson field are
incorporated. As has been previously mentioned, the sys-
tem may have a Goldstone mode that could restore the
broken symmetry.?*?! However, one may argue that the
stability of the low-temperature semiconducting
phase'®!* is consistent with Luttinger’s theorem and fur-
ther speculate that if the fluctuations in the slave-boson
field do destroy the phase transition, then only the
gapped phase should remain. If the above speculation is
indeed correct, the only remaining difference between the
low- and high-temperature regimes would be in the mag-
nitude of the gap.

IV. INELASTIC NEUTRON SCATTERING

The dynamic susceptibility is to be calculated within
the mean-field slave-boson approximation. First, the spin
operators are written as

S:g:Ns_l/zZC(m)f::+l,k+qu,k ’ (28a)
k.m

where [C(m)>*=#[(N*—1)/4—m(m +1)], and

SG=N2 3 Amf) s ofmx (28b)
k,m

These expressions do not involve the slave-boson opera-
tors since the local spin operators do not involve a
change in total f occupation at the site. The dynamic
susceptibilities are then defined as

X3P()=(i /M) [S2(1),58 (0)]_) , (29)

which are then calculated from the equations of motion,
in the slave-boson mean-field approximation. The imagi-
nary part of the Fourier transform with respect to time is
the spectral density of spin excitations and can be found,
for sufficiently low frequencies, quite directly from
inelastic-neutron-scattering cross sections.

The Fourier transforms of the dynamic susceptibility
are found from the equation of motion. They are given
by the expressions appropriate for noninteracting quasi-
particles within the renormalized bands,

Xiw)= kz #m?4,(k+q), 45(k),

X[f(E,(k+q),)— f(E5(K),)]

X[Es(k),, —E, (k+q), —#inw]"", (30a)
Xq (@)= [C(m)]PA4,(k+q), 4+ 4s(k),
k,m
X[f(E,(k+Qq),, +1)—f(Es(k),)]
X[Es(k), —E,(k+q),+ —fiw]™" (30b)

and



Xq (@)= kz [C(m)PA,(k+q), As(k),, +,

X[f(E,(k+q),,)—f(Es(k), )]
X[Eg(K),, 1 —E,(k+q), —fio]"" . (30c)

In these expressions, the sums over ¥ and & run over the
upper and lower band indices independently. When the
magnetic field B approaches zero, then these susceptibili-
|
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ties satisfy the relation 2y*=y =y ¥ expressing the spin
rotational invariance of the paramagnetic state. Thus,
magnetic ordering is not a consequence of the mean-field
slave-boson approximation. The effect of magnetic ex-
change interactions between the f quasiparticles can be
included, by considering diagrams of order 1/N2, and
higher. These interactions have been considered by
Doniach,” who has shown that if they are regarded as in-
stantaneous, the exchange interactions are of separable
form and are given by

J(@)=—43 [V(k+@)PIVKIHfi (1= Fiig)/{[e(k)—e(k+q)][E,—e(k+q)]*}
k

—(1= )= fre ) /{[E;—e(K)P[E, —e(k+q)]}) . (31

This interaction has the same form as previously derived
by other methods.*® The first term is recognized* as the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, in
which the conduction spin density is polarized by the
Schreiffer-Wolf interaction, and the second term is a form
of Anderson superexchange interaction. Thus, by only
retaining the subset of 1/N? interactions and summing
the effect of these exchange interactions to infinite order,
one obtains a susceptibility in the usual random-phase ap-
proximation (RPA) form,

Xq (0)=#x30)/[1-J(qQx(®)] (32)

in which the noninteracting susceptibility )(g(w) is given
by an expression similar to those of Eq. (30). However, as
the inclusion of these lowest-order exchange terms in-
volves only a partial summation of a subset of terms in
the entire 1/N series, the validity of this procedure is not
well founded, and so we shall neglect these interaction
effects entirely and only consider the susceptibility in the
mean-field approximation.

The susceptibility will be examined above and below
the mean-field transition temperature. At high tempera-
tures, we shall see that the model yields the Curie suscep-
tibility appropriate to independent magnetic moments,
and at low temperatures we shall recover a susceptibility
in the form of independent quasiparticles in renormalized
(semiconducting) bands.?”?®
]

Imyg ~(0)=mR(N = 1)NV 2 /(60V &?—4V ?)

A. High temperatures, 7> T,

The static susceptibility of the f electrons Y?(0) is re-
duced to a g-independent expression, since the renormal-
ized dispersion of the 4f electrons vanishes. This is indi-
cative of the local nature of the spins, and the static sus-
ceptibility becomes

XZ0)=#[(N?—1)/4]
XNf(E)[1—f(E;)]/3kgT . (33)

Furthermore, since the average number of f electrons is
one per 4f ion, f(E,)=1/N, then we recover the suscep-
tibility of a set of independent local moments, to order
1/N,

XYA0)=#(N*—1)(1—1/N)/12kyT . (34)

Thus, at high temperatures one recovers a Curie law due
to the disordered spins on each 4f ion.

B. Low temperatures, 7 < T,

At low temperatures, the f susceptibility acquires a
significant q dependence. We shall display the limiting
expressions for q=0, and q=(7/a)(1,1,1)=G /2.

The imaginary part of the dynamic susceptibility
Im)(‘;L ~(w) represents the spectral density of magnetic ex-
citations involving a momentum change of q. This is
shown for q=0 in Fig. 3(a). For q=0, the imaginary
part of the dynamic susceptibility may be written as

x(p(E,+\/m2—4172){f[E,—w/2+1/(w/2)2—VZ]—f[Ef+w/2+\/(w/2)2—172]}

+p(E—V =4V ) fIE;—w0/2—V (0/2* =V = fIE,+0/2—V (0/2) =V 2]}) (35)

and the corresponding real part of the frequency-dependent susceptibility is given by

Rexq (0)=p(E AN *— 1NV 2n[(0—V 0?—4V ) (0+V 0*—4V )] /B V o’ — 4V ?)
f

(36a)
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if @ > 2¥; whereas if @ <2V, then the alternate expression

Rexy ~(0)=p(E AN?— 1NV 2tan [0 /(47 2—0?)' 2] /(3 )20V 4V 2 — o?)

holds at T=0. In these expressions, the excitation ener-
gy fiw is denoted by w. The q=0 magnetic spectral den-
sity of Eq. (35) shows a threshold energy of order 2.
This corresponds to the excitation of an electron from a
state in the lower hybridized band to a state with the
same momentum in the upper hybridized band, while
flipping the spin of the electron. This direct gap 2V
should also be observable in optical conductivity mea-
surements of o(w) at low temperatures, if the indirect ab-
sorption processes are negligible. The spectral density is
nonzero above the threshold and shows a characteristic
square-root divergence at threshold; this square-root
variation is similar to that found in the inelastic-
neutron-scattering data of Aeppli® on Ce-Ni-Sn systems.
The real part of the dynamic susceptibility, at finite fre-
quencies also only has contributions from interband tran-
sitions. The real part of the q=0 susceptibility is shown

40.00 T T T
30.00 | E
6l
, ©20.00 | 1
i
=
E
10.00 | 1
J & (a)
2V
0.00 . L L
0.00 0.05 0.10 0.15 0.20
o /W
30.00 T T T
= 20.00 4
3
s
i 10.00 f E
=
o)
o
0.00 } J
~ (b)
2V
-10.00 L L L
0.00 0.05 0.10 0.15 0.20
/W

FIG. 3. The magnetic spectral density corresponding to the
imaginary part of the dynamical susceptibility Imy; ~ (o) with
q=0, is shown (a) as a function of frequency . The spectrum
only consists of an interband contribution that has a finite
threshold energy #%io=2V. The corresponding real part of the
dynamical susceptibility Re)(q+ “(w) is shown in (b). Note that
the =0 limit does not yield the thermodynamic uniform stat-
ic susceptibility, as the =0 and =0 limits are not inter-
changeable.
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(36b)

[

in Fig. 3(b). At zero temperature it comes from electron-
ic excitations from a completely filled, and therefore non-
magnetic, lower hybridized band to the upper hybridized
band, which by virtue of the mixing matrix element has a
4f spin component. At zero frequency, =0, and when
the renormalized f level E + is energetically degenerate
with the nonhybridized b band, since the numerator is
proportional to ¥? and the denominator is dominated by
V2, the resulting value of the dc susceptibility is given ap-
proximately by the value of the nonhybridized d band
density of states at the Fermi level p(E ). If the renor-
malized f level lies significantly above the upper d-band
edge, one obtains a Van-Vleck-like contribution to the
real part of the =0 susceptibility of order
V2/(E;—W). We, therefore, shall designate the T=0
static susceptibility as a Van-Vleck-type term.

It should be noted that intraband excitations are prohi-
bited from occurring in the q=0 dynamic susceptibility
for finite w values. They do occur at finite temperatures
in the uniform static susceptibility, where the order of the
q and o limits are interchanged, and this coincides with
the usual definition of the static susceptibility as the
second derivative of the free energy with respect to field.
The interband Van Vleck contribution to the static sus-
ceptibility is recognized to occur as a result of the mag-
netic field changing the f spectral weight admixture fac-
tors A, (k),, in the expression for the magnetization due
to the f moments. This is supportive of the nomencla-
ture that we have adopted. The intraband contribution
requires the existence of a thermal population of elec-
trons in the upper hybridized band, or holes in the lower
hybridized band. Therefore, they do not contribute to

100.00 T T T T

75.00F 4

Im x* @) W

25.00f 4

0.00 . . L
0.00 E 0.02 0.04 0.06 0.08 0.10

9ap o /W

FIG. 4. The magnetic spectral density calculated for
q=G/2=(m/a)(1,1,1), as a function of frequency w. The
spectrum exhibits a threshold for the interband contributions at
fio~2V?/W, and a low-intensity quasielastic (interband) con-
tribution can be seen below the threshold. The anomaly in the
spectrum seen above the threshold energy is just due to the Van
Hove anomaly in the three-dimensional tight-binding density of
states used to describe the unhybridized d band.
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the static susceptibility at zero temperature and are
thermally activated for temperatures less than the transi-
tion temperature or half the indirect band gap. The sus-
ceptibility peaks at temperatures of the order of the in-
direct band gap, where the presence of electron hole pairs

has metallized the f component of the density of states.
The gap in the spin-flip scattering spectrum is mini-
mized at q=G/2=(w/a)(1,1,1). This value of the gap
E,,, should be the same as the thermodynamic gap as ob-
served in resistivity, specific heat experiments, which can
J
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be approximated by the value
- 72 2_ @2
E o, =2WV* /(W —Ej) (37)

when W>>E 7- This indirect gap E,,, is much smaller
than the direct gap of 2V found in the spectral density
calculated with q=0.

An analytic expression for the dynamical susceptibility
at =G /2 can be found using a tight-binding approxi-
mation for the d-band dispersion relation, and this is
given by

Imy; (@) =fAN>—1)(N /6){mple(k)) A _(k+q) 4 . (K)[f(E_(k+q)—f(E, (k)]/[ 4, (k+q)+4_(k)]l,
+mple(k)) A _(k+q)A_(K)[f(E_(k+q)—f(E_(k)]/[4,(k+q+ 4, (K]l
+mple(k)) A, (k+q) A, (K)[f(E, (k+q)—f(E,(k)]/[4_(k+q+A4_(K)]l]},

where the energies satisfy the perfect nesting relations
e(k)=—e(k+q) and are given by the three solutions of
the cubic equation for e,

2we’+(4V 2 =50%)e* —20(E} +4V *—20%)e

+oXEj+4V2—0?)=0. (38b)
The first term of (38a) represents the interband contribu-
tion, and the second and third terms represent the intra-
band contributions. A typical form of the magnetic spec-
tral density for =G /2 is shown in Fig. 4.

At zero temperatures, when the lower hybridized band
is completely filled and the upper hybridized band is emp-
ty, the only excitations that can occur are spin-flip excita-
tions involving the removal of an electron from the lower
hybridized band and replacing it in the upper hybridized
band with a momentum increased by G/2. The thresh-
old excitation energy for these processes is E,,;, below
which the spin spectral density is zero. The anomaly in
the magnetic spectrum seen in Fig. 4 just above the
threshold energy is just a manifestation of the Van Hove
anomaly in the three-dimensional tight-binding density of
states used for the d electrons. A useful approximation
for the interband contribution to the susceptibility, valid

J

(38a)

[
in the strongly renormalized regime where E‘f =0, is
given by

AN —1)N(4V 2 mp((0*—4V *) /20)
X[f(—w)—f(0)]/120%0*+4V?) . (39)

At finite temperatures and q=G /2, the spin spectral
density shows a quasielastic peak within the band gap.
This corresponds to intraband scattering of thermal pop-
ulation of holes in the lower hybridized band, or of intra-
band scattering of the thermal population of electrons in
the upper hybridized band. Since there is no threshold
for intraband scattering processes, the quasielastic peak
extends down to zero. The quasielastic peak in the dy-
namic susceptibility vanishes at =0 in order to satisfy
the fluctuation dissipation theorem. Since the quasielas-
tic scattering involves the thermal population of electrons
in the upper hybridized band or holes in the lower hybri-
dized band, the total integrated intensity should be pro-
portional to the number of thermally excited electron
hole pairs or just the number of holes. A useful approxi-
mation for the intraband terms, valid in the strongly re-
normalized regime where E, ~0, is given by

TN —1)Np(@){ 7 2/[6(a? +4V D] [f(— Ho—V 2 +47 )+ f(— Lo+ V o +472))

When considered as a function of temperature the intra-
band contribution always remains relatively small, since
it is thermally activated at low temperatures and is also
dominated by ¥ 2, which is small and indeed vanishes at
T,. Furthermore, when regarded as a function of fre-
quency, one sees that for frequencies in the range that
maximize the Fermi function factors fio =~ W, the d-band
density of states p(w) becomes vanishingly small. Hence
the intensity of the intraband contribution remains low,
although it is distributed over a wide range of energies
fiw.

—f(Ho+V o +47 )~ f(Ho—V ?+47 )] . (40)

C. Experiments

The measured static susceptibility®’ of Ce;Bi Pt; is
shown in Fig. 5. The susceptibility shows a Curie tail at
low temperatures, probably caused by local impurities
with magnetic moments. This suggestion seems to be
confirmed from the Kramers-Kronig analysis of the
inelastic-neutron-scattering experiments, which indicates
that the q=0 susceptibility should saturate to a low-
temperature value of roughly 2X 10~3 emu per mole Ce.
Thus one expects that the T =0 value of the susceptibility
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FIG. 5. The measured static susceptibility for Ce;Bi,Pt; as a
function of temperature. The data is taken from Ref. 6. The
low-temperature upturn is probably caused by magnetic impuri-
ties.

should be close to the value of the low-temperature
minimum found in the thermodynamic measurements.
This inferred 7' =0 value therefore should directly corre-
spond to the theoretically calculated Van Vleck interband
contribution susceptibility. Since the value of this sus-
ceptibility is moderately large, this implies that the
nonhybridized density of states at the renormalized f lev-
el energy £ i is high. The intraband contribution, due to
the thermal population of holes at finite 7, vanishes at
T=0 and gives rise to peak at finite 7. The peak occurs
at temperatures a quarter of the critical temperature, as
can be seen in Fig. 6. With this finite concentration of
electron hole pairs, the intraband contribution to the sus-

3.00 T T T

2.00

2(0) W/2

N
= 1.00

0.00 > > A
0.00 0.05 0.10 0.15 0.20

kg T/W kg T /W

FIG. 6. The calculated temperature dependence of the static
susceptibility, in units of half the band width, as a function of
kpT/W. At zero temperatures, the susceptibility is of a Van
Vleck origin, whereas at higher temperatures the susceptibility
is that associated with a metal composed of a gas of thermally
excited heavy electrons or holes.
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ceptibility is metallic and is comparable to the suscepti-

bility of a moderately enhanced heavy-fermion metal.
The spin-flip contribution to the inelastic-neutron-

scattering cross section is proportional to the factor

[1—exp( —#0 /kp T)] " 'Imx; (o) . (41)

This scattering cross section was measured for Ce;Bi Pt;
by Severing et al.®° on powdered samples. As only the
average neutron momentum transfer q can be deter-
mined, we have compared these results with the analytic
expression derived with q=G /2. In doing this we are
presuming that the average spin spectral density is heavi-
ly weighted for these q values. The inelastic-scattering
cross section measured at T=2 K is shown in Fig. 7.
The data clearly shows an energy gap of the order of 12
meV and no thermally induced quasielastic states within
the gap, consistent with the 7"=0 mean-field theory. The
inelastic-scattering data taken at T=50 K is not quite so
clear cut, as seen in Fig. 8. The spectrum extends down
to zero energies suggesting the existence of a quasielastic
contribution. The high-energy portion of the spectrum
appear to have shifted to lower energies indicating a
temperature-dependent reduction of the gap.

The effects of magnetic exchange interactions
cluded through Egs. (31) and (32) could lead to some in-
teresting effects. First, the square-root singularity in the
q=0 inelastic-neutron-scattering spectrum is expected to
have the leading edge of the singularity replaced by a
square-root approach to zero at the threshold of #iw=2V.
Second, there exists the possibility of a dispersive collec-
tive mode occurring in the spectrum, either as a reso-
nance within the continuum of electron hole spin-flip ex-
citations or as a branch of bound states split off below the
edge of the continuum. At low temperatures, the branch
of bound states should show up as a narrow inelastic peak
within the gap. Due to the large strength of the magnetic
exchange interaction for q=G /2, for values of the chem-
ical potential close to the center of the band, this struc-
ture might be most clearly resolved from the band edge in
the low-energy inelastic-neutron-scattering experiments
with momentum transfers of q=G /2. However, no such
structure could be resolved in the gap found in the exper-

29,30 .
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FIG. 7. The inelastic-neutron-scattering cross section for
Ce;Bi Pt;, from Ref. 6, as a function of neutron energy transfer
fiw at T=2 K. The spectrum clearly shows a gap in the spec-
trum at energies fiwo~ 15 meV. The spectrum has a shape simi-
lar to that found in the calculation at q=G /2.
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FIG. 8. The inelastic-neutron-scattering cross section mea-
sured at 7=50 K, from Ref. 6. The threshold energy found at
T=2 K is marked by an arrow. No evidence of the gap
remains, and the high-energy tail of the spectrum has moved to
lower energies. This is argued to be indicative of the closing of
the gap, instead of the filling of the gap with a thermally activat-
ed quasielastic (intraband) peak.

imentally determined spectrum.

Other evidence concerning the existence of a gap
comes from the low-temperature specific heat which is
much smaller than the corresponding specific heat of the
Lanthanum homolog. This indicates that the electronic
density of states at the Fermi level is 3.3 mJ/mole Ce K2,
which is a factor of 3 less than that of La;Bi,Pt;, which
contains no f electron density of states at the Fermi ener-
gy. The form of the specific heat, calculated within the
mean-field approximation, is shown in Fig. 9. The resis-
tivity shows thermal activated behavior. Assuming an
Arrhenius law, the logarithmic plot versus 1/7T shows a
gap that increases with decreasing temperature, con-
sistent with the mean-field theory.®’ The low-
temperature value of the activation energy found in ther-
modynamic properties is a factor of 2 less than the gap

E,,, found in the inelastic-neutron-scattering experi-
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FIG. 9. The calculated temperature dependence of the
specific heat, as a function of k3T /W. The specific heat van-
ishes at =0, due to the existence of a gap in the excitation
spectrum. At higher temperatures, the specific heat takes on
the form associated with a heavy-fermion system.
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ments. However, in a semiconductor at low tempera-
tures, thermodynamic quantities typically shows thermal-
ly activated variations that depend upon the excitation
energy measured from the chemical potential; the latter
lies in the center of the gap. Thus, the number of
thermally excited electrons should have an activation en-
ergy of

E (G/2)—u=Eg,,2=V?*/W,

which is consistent with the observations.

These systems should show very interesting effects con-
nected with the modifications induced by impurity dop-
ing, which may lead to the destruction of coherence and
the appearance of local states within the hybridization
gap.’! The increase in the concentration of non-bound-
state electrons will also produce a shift of the Fermi level
relative to the edge of the hybridization gap. This
disorder-induced metallic phase should show properties
reminiscent of the T'=0 heavy-fermion metals. This type
of behavior would be direct confirmation that these ma-
terials support a novel kind of heavy-fermion state, the
heavy-fermion semiconductor. In fact these experiments
have already been performed,'? Lanthanum doping of
Ce;Bi,Pt; leads to linear T specific heat coefficients of the
order of 150 mJ/mole CeK?, which is of the order of
magnitude associated with moderately enhanced heavy-
fermion systems. If the effect of localization can be
neglected, the above mean-field theory predicts that there
should be a strong asymmetry between the effects of elec-
tron and hole doping that should be apparent in the limit
of large impurity concentrations. The origin of this
asymmetry is simply due to the fact that the Coulomb in-
teraction forbids doping by more than one electron per f
ion, whereas no such restriction occurs for hole doping.
In the case of doping with one electron per 4f ion, then
the system is chemically inert and the 4f ions remain in-
tegrally occupied, localized and incoherent at all temper-
atures. For doping with one 4f electron per ion the 4f
occupancy may range between the limits of unity and
zero, and the behavior of the system may accordingly
range from fully hybridized and coherent, to localized
and incoherent. For arbitrary values of doping and
asymmetry should show up in the magnitude of the low-
temperature wave function or mass renormalization, the
mass renormalization should be larger for electron dop-
ing than for the corresponding case of hole doping.

V. CONCLUSIONS

The slave-boson mean-field theory shows a transition,
below a critical temperature T, from a local-moment re-
gime to a state with hybridized bands separated by an in-
direct band gap. If this system contains enough electrons
to fill the lower hybridized band, then the system will un-
dergo a transition from a high-temperature metal, with
spin disorder scattering, to a low-temperature semicon-
ductor. This transition is due to slave-boson condensa-
tion and may be expected to be smoothed out due to
phase fluctuations. However, the Luttinger theorem ar-
guments made by Martin and Allen!*!® seem to suggest
that the low-temperature semiconducting phase should
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be stable against the effect of interactions. Thus, one may
speculate that the effect of higher-order fluctuations will
merely diminish the gap at higher temperatures and not
cause it to completely vanish.

The inelastic-neutron-scattering cross section should
show a gap at low temperatures, and the allowed transi-
tions correspond to exciting an electron from the lower
hybridized band to the upper, and flipping its spin. At
finite temperatures, the magnitude of the gap should de-
crease and a quasielastic scattering cross section should
occur. This latter is due to the finite thermal population
of electrons in the upper hybridized band or holes in the
lower band. The inelastic-neutron-scattering spectrum of
Ce;Bi,Pt; has been compared with predictions of the
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theory. The results are suggestive of the existence of a
band gap at 7=2 K and that the gap closes at higher
temperatures, although no clear separation of the quasi-
elastic from the inelastic scattering has been made.
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