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The problems associated with the poor convergence of the Fourier transform of the hard-sphere
dielectric function are discussed. A significant band gap between the eighth and ninth levels has been
found for air spheres in fcc. We also consider a periodic array of Gaussian spheres, which converges
well and allows a consistent and reliable determination of the general features of photonic bands. It
is found that when e(r) is sharply peaked, photonic levels become almost degenerate throughout the
Brillouin zone, corresponding to standing waves.

I. INTRODUCTION

The idea of photonic bands in periodic dielectric struc-
tures was suggestedi 2 some time ago. It has also been
investigated experimentallys and theoretically for scalar
waves, 4 s and more recently for electromagnetic (EM)
waves using the plane-wave method. Some of the
consequences of forbidden band gaps in such structures,
such as the modification of molecular interactions and of
the quantum electrodynamics of an atom, have also been
discussed. 'P Band gaps were shown to exist for scalar
waves for the face-centered-cubic (fcc) lattice; however,
for EM waves no gap was found for spherical atoms in
the fcc lattice for the lower-lying frequencies.

In this paper we will formulate the problem in a slightly
different fashion which we believe exposes its overall fea-
tures more effectively and focus on those features of
photonic levels that depend on the gross features of
the dielectric function e(r). We start with the wave
equations in a lossless periodic dielectric structure, i.e.
p(r) = 1, o (r) = 0,

1 87'g(r, t) ——, , e(r)Q(r, t) = 0,

1 2

T x T x S(r, t)+ —, , ) ~"(r)S'(r, t)e'=0.
t,j=l

For the EM wave equation 8 must also satisfy the aux-
iliary condition V 17 = 0. It is worth noting that for
e(r) = 1 and p(r) periodic, one gets the identical eigen-
value problem for Q including the auxiliary condition
V 8 = 0. Therefore all the properties of periodic dielec-
tric structures to be discussed in this paper also hold for
periodic paramagnetic structures.

Here we consider a linear, isotropic, and positive-
definite dielectric medium periodic in some lattice with
lattice vectors R,

e"(r) = 6"e(r),
(2)

e(r) = e(r+ R) ) 0.

It is also convenient to assume

e(r) = ey + ) ep(r —R),
R

where ei, is the dielectric constant of the background and
ep(r —R) is the contribution to the dielectric function
at r from the "atom" at R. We assume that ep(r) is
square integrable and not necessarily confined to a single
primitive cell. Its Fourier transform is defined by

&(q) = dre '~' e(r) = ) 6(q —G) e(G), (4)
(2m)s

where the second equality follows from (2) and

e(G)= dre ' 'e(r) = dre ' ' es+ ) ep(r —R)
Vcell WS cell ~cell WS cell

=eibao+ ) dre 'o&' a)ep(r —R)
~cell R WS cell

dr e ' ' ep(r)
~cell all r

= estop + «(G),
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1
~p(a)—: dr e '~'ep(r) .

all r

V„ll is the volume of the primitive cell of the lattice,
which we take to be the Wigner-Seitz (WS) cell for con-
venience and G is a reciprocal-lattice vector. For a lat-
tice with n basis vectors bz, j = 1, . . . , n with identical
"atoms" at each site,

4J
Ik+ GI'y(a) ——,) .(a- a')y(a') = o,

Gl

(k+ G) x (k p G) x E(a)

c(r) = ci, + ) ) Ep(r —bi —R),
R 2=1

~(a) =~i,b~p+ ) e-'~b' ~p(a).

For n = 2, a lattice with a two-point basis such as the di-
amond structure, the basis vectors can always be chosen
equal and opposite, bi z ——+b. Hence

+—,) .(c-c')E(a') =o;
G'

we have dropped the subscripts nk for simplicity.
These equations define an infinite-dimensional general-
ized eigenvalue problem of the form

Ax = ABx,

c(a) = cyb~p + 2 cos (G b) ep(a) . where for the scalar case,

Inverting e(a), one gets

E(r) = ) t(a) e
G

If ep(r) is spherically symmetric, then

4x
cp(a) = cp(G) = dr ) sin Gr ep(f ) .

~ceii p

To solve (1), we write

(10)

Ac&' ~ Ik+ GI'b&&'

Bg,c,e ~ e(G —G ),
x~ ~ $(a),

and for vector waves,

Ac'~, ~ [Ik+ GI b'~ —(k+ G)'(k+ G)']b~~,
B~~~, +-) e(a —G')b'~,

xz ~ E'(G), i, j = z, y, z

d)rt) = fdqe'e', fdtee ' 'e)(q te),

d(r, t) = fdqe'e'" fdtee ' 'd(q~), ,

where q varies over all space. We also note that, for any
function f(q),

q q = dk k+ G,
G BZ

and k varies over the first Brillouin zone only. In antici-
pation of discrete frequencies we also write

g(k+ G, ~) = ) b(~ —~„k)p„i,(a),

f(k+ C, ~) = ) b(~ —(u„i,)E„i,(c).

and

Q2

We note that A and B are Hermitian matrices, and in
addition B is positive definite. B is Hermitian because
e(r) is real, i.e. , ).(G) = e (—C), and it is positive def-
inite because e(r) & 0. The eigenvalue problem stated
in this form is a generalization of the Hermitian eigen-
value problem. Using the Hermiticity of A and B, and
the positive definiteness of B, one has, for a given k,

x Bx = C„i,b„„,t

where C„i,is a real positive but otherwise arbitrary nor-
malization constant with the dimension of energy density.
This effectively replaces the usual inner product ( I ) with
the generalized inner product ( IBI ). It is now straight-
forward to show that the Bloch functions e '"'E„i,(r)
are orthogonal with the weight function e(r),

Using the standard arguments of orthogonality of the
Fourier basis the wave equations (1) can now be put into
the form

= C„),b„„b(k—k') .

To further simplify the problem, we notice first that A
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is always real symmetric for both scalar and EM waves.
For the special case when e(r) has inversion symmetry,
the origin can be chosen such that t(r) = t(—r) and t(a)
becomes real, with the result that B is now real symmet-
ric and positive definite. This allows the use of standard
library routines and substantially reduces computational
effort.

Casting the problem into a form such as B iA x = Ax

obscures its underlying simple structure. Since B A is
no longer Herrnitian, this also adds unnecessary compu-
tational complexity to the problem; symmetric eigen-
value problems can be handled much more efficiently
than unsymmetric ones. Clearly, solving detiA —ABi = 0
for A is inefficient and unnecessary unless e is a func-
tion of ~. For EM waves, u g 0 implies V D = 0. For
k g 0 this can be used to discard the N redundant u = 0
eigenvalues.

We also find that eliminating one Cartesian component
of E not only destroys the symmetry of the problem, but
also results in poorer accuracy due to an additional trun-
cation error during the inversion involved. Finally, we
feel that calculating e(G) numerically rather than ana-
lytically should be avoided if possible. EM fields, time
dependent or not, tend to be singular near sharp edges
and corners. The discrete Fourier transform, in effect,
rounds these and may cause additional inaccuracies if the
sampling mesh is not fine enough.

An alternate way of formulating the EM eigenvalue
problem is to start with the equation satisfied by the
magnetic fields

1 82
'7 x g(r)V' x 'H(r, t)+ — 'Pt'(r, t) = 0,c2 t2

which, in Fourier space, takes the form

4)
(k+ G) x ) FRIGG (k+ G') x H~ + —HG = 0,

Q, l

(14)

where g(r) = 1/t(r) and @~cd = rl(G —G'). This is an
ordinary Hermitian eigenvalue problem. We note that

c(r)rt(r) = 1 w ) cgG 'g~ G = bc,c,

the H method uses the same matrix equation with t ~~,
replaced by gQQ. .

Yet another formulation of the problem is to start
with the equation satisfied by D,

1 80 x V x il(r)27(r, t) + —
2 &(r, t) = 0,

c

which is written in Fourier space as

(k+ G) x (k+ G) x ) iI~GiDGI + —~D~ = 0.
Q, l

This is a non-Hermitian form, but its truncated form
is completely equivalent to the H method. Defining
Q&~G, = id&~(k+ G) e"b~c,i, where s'&" is the Levi-
Civita tensor, it can be written as

QQiID+ —,D = 0.

Multiplying on the left by Qrl and regrouping, one obtains

QgQ [Qg D] + —,[QUID] = 0,

which is the same eigenproblem in Eq. (14).
Finally, when both e and p are position dependent,

one has to work with the 3N x 3N generalized Hermi-
tian form. One will then have four different "methods"
depending on whether e or I/t and p or I/p is expanded
in Fourier series.

II. TRUNCATION

One must truncate the matrix equation at N terms to
solve it, We consider the G = 0 term of the scalar wave

equation to illustrate the issues involved.

ik+ oi'P(a = o) = —, ) .(o —G')y(a')
-IQ l&G

+ )
I 'l&Gmax

i.e. , gcQ. l is the inverse of the oo x oo matrix ecQ, . This
ensures that the spectrum of both formulations would be
identical, as they should be, when the problem is solved
with infinite-dimensional matrices. However, when the
matrix |.c~l is first truncated at 1V x N, and then in-
verted, the matrix obtained, F~~, can be, and often is
if c(r) is discontinuous, quite difFerent from rl~~I. Thus
the spectrum obtained from the truncated forms of Eqs.
(12) and (14) will not be the same in general. We will
call the finite forms of Eqs. (12) and (14) the E method
and the H method, respectively.

Using V' V'xE = 0, the 3Nx3N matrix equations (12)
and (14) can be cast into 2N x 2N ordinary Hermitian
forms which are computationally more efficient. Hence
the E method is identical to the method of Ref, 9 while

&trunc (17)

where

ctrunc(p) = ) c(G) e

lal&G .„

and the truncation is to be done so as to include all G
points inside a sphere of radius G „.In order for the
truncated equation to yield accurate solutions of the orig-
inal problem, the second sum, which is left out, must be
small compared to the first sum, which is retained. Thus
we must require either
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and

2 — 1
dr I~(r) I' = ) .I~(G) I'

Vcell WS cell

or

trunc
1 (18)

where Pt,„„,(r) is defined similarly.
We emphasize that at least one of the above must be

satisfied in order to guarantee acceptable accuracy in the
calculated frequencies. There is a third way for the sec-
ond term to be negligible, namely when P turns out to
be orthogonal to ~ within the truncated Fourier subspace
spanned by (IG) I

G & G „).This is clearly a special
case and will not be considered here.

If both e(G) and P(G) are large for IGI & G
then convergence of the eigenvalues is not guaranteed.
The arguments so far apply for both scalar and vector
waves. When e(r) has a jump discontinuity, due to Gibbs
phenomenon, rz its Fourier transform will have a long
tail. Hence the validity of truncation depends largely
on the behavior of P(G)—E(G) for the EM problem.
The scalar wave function P(r) and its first derivatives
are continuous; if e(r) is discontinuous, then the second
derivative(s) of P(r) will be discontinuous: a relatively
mild pathology. EM fields, E, D, B, or H, on the other
hand, will, in general, themselves be discontinuous across
the discontinuity in e(r). Therefore they will have non-
vanishing Fourier components even for very large values
of IGI. The physical origin of this is the polarization cur-
rent/charge density which has a 6-function singularity at
the surface of discontinuity, for which there is no analog
in the scalar problem.

The discontinuity presents acute convergence prob-
lems for the vector problem even in the long-wavelength
limit. Setting ~ = 0 in Eqs. (1), the scalar wave prob-
lem reduces to Laplace's equation, the only solution of
which is P(r) = Po ——const. As a result, the effec-
tive long-wavelength dielectric constant is always e for
scalar waves and the inequality (18) is automatically sat-
isfied in the long-wavelength limit. For the vector wave

equation, we obtain V x V x E = 0. It may seem at
first sight that E(r) = Eo is the solution in the long-
wavelength limit. However, the solutions of the vec-

tor equation must also satisfy the auxiliary condition
V' D(r) = E(r) V'c(r) + c(r)V' E(r) = 0. Hence

E(r) = Eo cannot be a solution unless Eo V'e(r) = 0 for
all r, which is realized only when e(r) = e(z). For spheres
in any spatial arrangement, the solutions in this regime
are very close to those of the familiar "dielectric sphere in
a uniform E field" problem, provided that the separation
of the spheres is large compared with their radii, i.e. , for
low filling fractions. For dielectric spheres, the E field is
"attracted" toward the spheres and hence is largely per-
pendicular to the surface of the spheres and is very weak
inside the spheres. From a convergence standpoint this

implies that, in general, neither (17) nor (18) will be sat-
isfied in the long-wavelength regime when the E field is

expanded in series, since it is highly discontinuous. The
D field, on the other hand, is much better behaved than
the E field. Hence a D field expansion, or equivalently
the H method, is expected to work better for this case.
For air spheres, the E field is "repelled" from the spheres
and therefore is largely parallel to the spherical surface.
Hence, it is by and large continuous across the interface.
Therefore the E method would work much better. These
considerations apply, to a large extent, for nonsphericaj.
atoms as well.

For more complicated geometries, one has no a vari

ori reason to believe that one method would work better
than the other, and hence both must be used and a suffi-

cient number of plane waves must be included until rea-
sonable consistency is obtained. Since the necessary con-
dition for convergence involves the eigenfunctions, which
are unknown, the sufficient condition is n « 1. With the
choice of the Euclidean norm, we have

&trunc

n is the truncation error of the G = 0 row of the matrix
e(G —G'). The G g 0 rows of e(G —G') will have errors
due not only to truncation, but lopsided truncation. The
row elements of e(G —G') are the Fourier coefficients
within a sphere of radius G~«, centered at G, not 0.
The additional error introduced by the asymmetric trun-
cation gets progressively worse as

I
G

I
~ G~». There-

fore the above estimate for the truncation error would be
meaningful only for the lowest-lying levels.

Some additional insight into the problem may be
gained if we write

~(r) = ~ y ~fl„,(r)—:~ [1+e„(r)],

where i is the space average,

1
dr e(r),

WS cell

and

( )
~flUC (r)

is the relative ripple. The significance of decomposing
e(r) into a space average part and a fluctuating part can
be seen more clearly when one notes that the Fourier
transform of e yields only the diagonal part of e(G —C'),
while that of efl„,(r) yields only the off-diagonal part,
which is solely responsible for the deviation from the free
photon problem —since it mixes the difFerent q compo-
nents of g(q, u). Hence e is responsible only for "for-
ward" scattering, or no scattering, while efl„,(r) is re-
sponsible for the off-axis scattering. IIe„II is then, in a
crude sense, the ratio scattering/no-scattering strength
of the medium. Since i can be absorbed into c —= c/+c,
we are left with IIe„IIas the measure of deviation from
the free photon problem. Hence the problem naturally
falls into three interesting categories:
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FIG. 2. c(r) (solid) and c~,„,(r) with N=331 (dashed)
and N=1139 (dotted) for dielectric spheres in a fcc lattice
along x = y = s plotted against the path length s.
1, c =10, and P=0.3.

In Fig. 2 the partial sums of the Fourier series for the
case ei, ——1,e, = 10, and P = 0.3 is plotted for N=331,
1139, and oo. It is clear that, just because increasing
N does not produce visible differences in the resulting
band structure, one has not necessarily converged to the
"true" values. In this case, it is merely an indication of
the slow convergence of the Fourier series.

B. The long-wavelength limit

C2
llm
y~p c4 (22)

An experimental definition of e,ir for a heterogeneous
medium can be given by considering the capacitance of
two large parallel plates sandwiching the medium,

d
lim —C(A, d),

A, d~oo A
A))d.

A reasonably accurate e,g is of paramount importance
in band-structure calculations because it is related to the
slope of the lowest two bands and hence to the accuracy
of the first gap. Previously e,~ was calculated using
the average value of the lowest four frequencies at the
X point. » We prefer to calculate r,~ using the lowest
frequency at k (2n/a)(0. 05, 0, 0). The slight curvature
of the bands here affects only the fourth digit of c,ir and
is therefore irrelevant.

We plot in Fig. 3 the coeKcients a and e,&, calculated

Since the sufficiency condition for convergence is not
satisfied for hard spheres, there remains the question of
how accurate the calculated spectrum actually is for a
particular case. For this we turn to an area that has
been intensely investigated, the effective long-wavelength
dielectric constant of a heterogeneous medium, defined
by

with the E method, for the case of dielectric spheres in
fcc with ei, ——1, c, = 16, and P = 0.7 with N up to 1600.
The behavior of e,ir and n is very similar in appearance.
The extrema of e(z) correspond to regions where n and
e,ir change rapidly, and wide plateaus are observed when
zm« is close to a zero of e(z). It is these plateaus that
grow wider with Nz~s that give the false impression that
convergence has been achieved. However, this "seasonal"
variation should be disregarded, and we should really be
looking at the "trend" as the true test of convergence.
For this, one needs to increment zma„=R, Gmax in in-
tervals of m. Since the truncation volume in G space is
spherical, for large N, N ~ oc 1/Gm,„.When zm,

„

is
large, the sine term in ~(z) can be ignored and we have,

2 cos z
n oc n„oc ) ic(G)i 47rz dz

Jc)&G .„

ILx

f (fz 1 1
)

z max +s Gmax2
N-1/3 (24)

where the seasonal variation has effectively been smeared
out by ignoring the cos2z factor. In Fig. 4 we plot
e,& and t.+& as a function of N / for dielectric and air
spheres packed at the maximum filling ratio of x/6 in a
simple cubic lattice. These results agree well with the
results of Ref. 13. It is seen readily that the E method
is reasonably accurate for air spheres but fails badly for
dielectric spheres, and the opposite holds, to a large ex-
tent, for the H method. We found similar convergence
characteristics for the two methods in other periodic ar-
rangements we considered, such as body centered cubic,
diamond structure, and fcc.

The difference between the results of the two methods
for finite N is to be expected. Using the lowest-order

FIG. 3. n (dashed) and c,s (solid) for dielectric spheres
in a fcc lattice, plotted as a function of N. ~t, ——1,
16, and P = 0.7. The staircase appearance is a reflection of
oscillatory convergence. The change in e,p in each step has
not significantly diminished even for N=1600.
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FIG. 4. b,Ir (dashed curve) and r,z (solid curve) vs N
for air (hollow circles) and dielectric (filled circles) spheres in
the simple cubic lattice. eb, c = 1, 8, and P = Ir/6.

Fourier expansion, i.e. , N = 1, one obtains e,& ——i with
the E method, whereas with the H method, e,z ——I/g. It
is easy to verify, using parallel and series combinations of
capacitors, that these are the two possible extreme values
that b,ir can assume for any dielectric function b(r), and
indeed both are realized for a one-dimensional (periodic
or nonperiodic) dielectric medium, e(r) = b(z): ~ is the
ordinary e,ir, whereas I/g is the extraordinary. Hence,
for a given medium, depending on whether the actual e,ir
is closer to i or I/g, one method can be expected to be
more accurate than the other. Considering the D field
lines for air and dielectric atoms described earlier, one
readily sees that series and parallel combinations would
be good first approximations to ~,p for dielectric and air
atoms, respectively. Indeed, for cubic atoms in the simple
cubic lattice, a somewhat more refined three-capacitor
model (connected differently for air and dielectric atoms)
reproduces the Maxwell-Garnett results with remarkable
accuracy.

In Fig. 5 we plot e,Ir vs p for air and dielectric spheres
in fcc obtained by a simple linear extrapolation. The
discrepancy between the extrapola/ed values from each
method was 1—5%. Up to 2200 plane waves were used
for dielectric spheres. The agreement with the Maxwell-
Garnett theory is good for the lower volume fractions
and qualitatively it compares well with the findings of a
study of the simple cubic lattice by Lamb et at. , who
use the Korringa-Kohn-Rostoker (KKR) method. The
effective-medium result, in which both types of mate-
rials appear on an equal footing, is particularly inac-
curate for this topology except at very low volume
fractions. We found, for the topologies where both a-
and b-type materials are connected, that e,~ is well
modeled by the efFective-medium theory. For dielectric
spheres at high volume fractions, the deviation from the
Maxwell-Garnett results has been attributed to prox-
imity eKects ~ which induce higher-order multipoles.
From a Fourier expansion point of view, close packing
means that the scale of change of e(r) and that of the

FIG. 5. e,s vs Pis, the volume fraction of e = 13 material
for dielectric spheres (filled circles) and air spheres (hollow
circles) in fcc calculated by the plane-wave method. The solid
curves are the corresponding results from Maxwell-Garnett
theory. The dashed curve is the prediction of the efFective-
medium theory. See Ref. 13 for a detailed discussion.

fields is small, hence the need for very large G compo-
nents.

It is important that the E and the H methods yield
consistent results in the limit N i~ ~ 0. As an example
of a case where both methods fail badly, we plot in Fig.
6 e,& and e,& vs N / for cubic dielectric atoms in a
simple cubic lattice with eb = 1, b, = 13, and p = 0.9.
A cubic truncation in G space was employed. The two
results differ by 35% for N as large as 2200. Fur-
thermore, even an extrapolation to N / ~ 0 seems
hopeless,

A word about extrapolation. No one likes to make ex-
trapolations and we are no exception. However, when one
uses a method that employs an infinite series expansion,

Q-—
~~

0 .1

FIG. 6. e,z (dashed) and e,~ (solid) vs N ~ for dielec-
tric cubic atoms in the simple cubic lattice. cb ——1, e = 13,
and P = 0.9.
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plot the relative 8-9 gap Esg = 2(4/g ' —4)s )/(4Jg
+as~«) vs ei, with P = 0.74 and e, = 1. We computed
the gap with the E method using N 110,330, 750, 1200,
and 1600 and extrapolated to N ~ -+ 0. For these val-
ues of N, we obtain, for eg ——16, b,sg

——6.2%, 7.1%, 7.3%,
7.35%%uo, and 7.4%%uo, respectively. The convergence of the
II method is much worse, as would be expected, and we
obtain b, f&

——0%, 1.4%, 7.1%, 8.3%, and 8.45%, respec-
tively. It is because both methods yield a gap of increas-
ing width as N increases that we are able to say, with a
good degree of confidence, that this gap is not an artifact
of poor convergence.

U L X W K IV. GAUSSIAN SPHERES

FIG. 7, Band structure for EM waves for air spheres in a
fcc lattice. eq ——16, e~ = 1, P = 0.74, ()e„(~= 1.34, N = 1211. The limitations of the plane-wave method for dielectric

hard spheres led us to consider the Gaussian form for the
dielectric function,

one has to make an extrapolation since one is actually
interested in the exact solution which involves an infinite
series, and not in the result obtained with a finite num-
ber of terms, per se. Hence, not making an extrapolation
is, quite possibly, making the toorst extrapolation. It is
equivalent to saying that the results obtained with the
finite number of terms used is the solution.

e(G) = e(G)
(2zoz)s~g= e~~ao + (ea —es)

~ceii

Gzog
exp

2

(25)

(26)

C. The band structure

With dielectric spheres in fcc we were unable to find
any gaps using either method. For air spheres, we find a
gap of significant size between the eighth and ninth levels,
and a direct gap between the fifth and sixth. We say that
there is a direct gap between the nth and (n+1)th levels
when u„+i(k)& u„(k)for all k, whereas a gap is said to
exist when u„+i(k)& u„(k')for all k, k'.

In Fig. 7 we plot the band structure calculated with
the E method which converges better for this case. We
spanned the parameter space with e, fixed at 1 and ei,
varied between 1 to 100 and P from 0 to 0.74, and found
that the 8-9 gap opens for I)e„)) & 1. In Fig. 8 we

This choice of e(r) is artificial and practically impos-
sible to realize from an engineering point of view, and
we certainly are not proposing it as a solution to the
hard-sphere problem. However, it retains one fundamen-
tal nature of the problem, namely, periodicity with large
variations. The major physical difFerence between hard
spheres and Gaussian spheres is that, whereas with hard
spheres the polarization charge/current density is con-
fined to the surface of the discontinuity and hence to
within each primitive cell, with Gaussian spheres po-
larization charges are distributed and are free to move
throughout the entire crystal. Therefore the model of
Gaussian spheres could be interesting in its own right;

ts
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FIG. 8. The relative 8-9 gap ass (see the text) vs ei, with
e, = 1 and P = 0.74 for air spheres in fcc.

FIG. 9. Band structure for EM waves for Gaussian
spheres in the fcc lattice. es = 1, e~ = 25, o = 0.5,
&.38, N =3O7.
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FIG. 10. Band structure for EM waves for Gaussian
spheres in the diamond structure. cb ——1, e = 25, o

o.s, II., II
=1.29, x = 3o7.

FIG. 12. Band structure for EM waves for Gaussian
spheres in the fcc lattice. eb = 1, e = 10, o = 0.5,
3.18, N = 1243.

and because its Fourier transform converges much faster,
it provides a good, consistent "textbook case" to see the
general behavior of photonic bands in a wide range of ~.
On the other hand, since the discontinuity of hard spheres
is poorly represented by a Fourier series, the results ob-
tained with the plane-wave method should be used with
extreme caution and from a "dynamic" perspective, i.e. ,

as G~,„-+oo, since a lot of physics may, and does, crit-
ically depend on the discontinuity itself.

We were able to achieve a very high degree of accu-

racy, as measured by n„,in computing the bands up to
2. For 0 = 0.5, with 307 Fourier terms

one has n„&0.01. A plot similar to Fig. 2 for Gaus-
sian spheres shows that eq«„,(r) and e(r) are practically
indistinguishable. For EM waves in a fcc structure, we

did not see any gaps for the lower-lying levels. We also
tried Gaussian-type atoms in a diamond structure and

clearly there are gaps. However, the lowest gap seems

to be very sensitive to the overlap of bii(r) from adjacent
atoms and vanishes as o —+ 0. Therefore we computed

the band structure for hard spheres in diamond near the
close-packing arrangement with both the E and the H
methods and found that for I9 & 0.34, the gap disappears
as more and more plane waves are included. When a
finite number of Fourier terms are retained, the partial
sums of these are "extended" atoms. As N grows larger,
the truncated dielectric function slowly approaches the
actual discontinuous function for which the polarization
charges/currents are localized —and the gap disappears.

Results for the Gaussian sphere model band structure
are displayed in Figs. 9 and 10. The parameters in both
cases are bb

——1, e, = 25, and 0 = 0.5. These show a
structure similar to that found in the hard-sphere calcu-
lations. Our value of the peak dielectric constant is larger
than those in the hard-sphere calculations, but it is com-
parable to the peak of et«„,(r) in hard-sphere models.

We also tried the "limit" e~ -+ oo at c = 10, o' = 0.5.
In Figs. 11—14 we plot the band structure for this case
for scalar/vector and fcc/diamond combinations. Prob-

(Q

O
0)
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O
CO

U L X W K U L X W K

FIG. 11. Band structure for scalar waves for Gaussian
spheres in the fcc lattice. eb = &, e = 10, a = 0.5,
3.18, N = 1243.

FIG. 13. Band structure for scalar waves for Gaussian

spheres in the diamond structure. ~b ——1, e = 10, o =
o 5 II&. II

= 2 14 zv = 740
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FIG. 14. Band structure for EM waves for Gaussian
spheres in the diamond structure. eg ——1, e = 10, cr =
o 5 II"II

= 2 14 & = 749

ably the most interesting feature of these bands is their
apparent simplicity. Although convergence of the higher
frequencies is not as good, the pattern is clear. One sees
the unmistakable quantization of frequencies at this limit.
Also notable is that for a given type of lattice, the sta-
tionary frequencies for scalar and vector waves coincide
most of the time. This is to be expected for those so-
lutions of the EM wave equation for which V' E = 0,
since then the scalar and the vector eigenvalue problems
become identical.

V. CONCLUSION

We found that the discontinuous nature of e(r) and
the EM fields for a periodic array of dielectric spheres
severely limits the accuracy of the plane-wave method.
Fluctuation of the truncated series from the actual case
is large and the convergence is very slow.

We have also formulated the problem in the form of a
generalized Hermitian eigenvalue problem that has many
features in common with the ordinary Hermitian prob-
lem that gives rise to electronic band structures. It is,
however, limited to the case where the dielectric function
is frequency independent. We observe that the scatter-
ing strength parameter ~~e„~~ plays a crucial role in the
photonic band structure. When it is weak, the photonic
band structure resembles the free photon case, and when
it is strong the bands become degenerate and Bat and
resemble the harmonic-oscillator spectrum.

The Gaussian sphere model gave us good convergence
and provided a good model upon which we can draw
reliable conclusions. %e find for this model that, for EM

waves in a fcc lattice, there is no gap between the second
and third bands consistent with the results of previous
numerical work on hard spheres. For Gaussian spheres in
diamond structure we find large gaps between the second
and third bands.

VVith hard spheres, we find a sizable gap for the air
spheres in fcc between the eighth and ninth bands but
none between the second and third bands. For hard
spheres in the diamond structure, packed with P ( 0.34
there are no gaps. A.t the close-packing fraction of
P = 0.34, our best estimate of the gap is Ass ( 3.5%
for c, 13. This, we believe, is due to a change in the
topology of the medium.

The plane-wave method is clearly an attractive method
because of its simplicity and its applicability, at least in
principle, to any type of s(r). We have tried to make
the best of the method by using a "Cauchy sequence"
approach and the complementary E and H methods,
which is necessary when all the fields E, D, B, and H
behave about equally badly. Hence, there is a need to
solve the problem for hard spheres with other methods,
such as KKR or APW (augmented plane wave), although
we suspect that the discontinuous nature of e(r) and the
fields would still pose problems. This need is particularly
acute for high dielectric contrasts and near close-packing
ratios and for higher frequencies, an accurate calculation
of which would bring invaluable insight into the problem.

Future work is planned to be devoted to spheroid-
shaped particles where the polarization degeneracy for
EM waves is broken at the long-wavelength limit and
gaps are observed in fcc structures. 1s

Xofe added. A structure consisting of cylindrical holes
drilled along the [110], [101],and [011]directions in fcc,
another similar structure in the diamond lattice, and a
similar structure in the simple cubic lattice have recently
been shown to have large gaps. 1 We have also recently
become aware of a criterion alternative to Eq. (21) for
the volume fraction that maximizes the band gap, Po ——

1j2n, given by John, r who considers a one-dimensional
structure and imposes the condition that the Bragg and
the Mie resonances occur at the same frequency.
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