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Optimal meshes for integrals in real- and reciprocal-space unit cells
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We present a detailed method to construct uniform meshes for fast Fourier transforms in electronic-
structure calculations. We show that a drastic reduction in the mesh size can be frequently achieved by
using an unconventional set of primitive lattice vectors. The same method can be applied also to obtain

optimum sets of special points for Brillouin-zone integrals, generalizing previous schemes.

I. INTRODUCTION

The fast Fourier transformation (FFT) is a basic tool in
most methods of electronic-structure calculation. They
are amply used when plane-wave basis sets are employed
and, more generally, in the solution of Poisson's equation.
They are especially important in the iterative solution of
Schrodinger s equation and for ab initio molecular dy-
namics. ' In many cases, the time spent doing FFT's
represents a very substantial fraction of the total compu-
tation, and this fraction generally increases when the
codes are highly optimized and vectorized. Therefore, an
important practical issue is the minimization of this time,
which increases as NlnN with the number N of mesh
points used to represent the function transformed. The
first subject of this paper is the construction of optimum
meshes, with minimum N, compatible with the lattice
periodicity and symmetry and with the requirements of
FFT algorithms.

An equally important issue is the choice of "special
points" for Brillouin-zone (BZ) integrations of electron
density, total energy, and many other quantities.
These special points are representative of a uniform mesh
of points in the BZ, completely similar to that used in the
real-space unit cell to perform FFT's. Therefore, we will
see that our method can be equally used to generate sets
of special k points, generalizing and optimizing previous
schemes in a systematic way.

Generally, the mesh is also required to possess all the
symmetry operations of the lattice space group (including
nonsymmorphic translations}. Furthermore, in order to
be used for FFT's, matrix N; must be diagonal
N;J=N;5; The .standard way of constructing the mesh
is then to make A; the conventional primitive lattice vec-
tors and

4x4
$+o—o—ojf 2x8

a;= A, /N;,

with N; some suitable integers. Roughly speaking, one
wants the mesh points to be as evenly distributed as pos-
sible. Figure l shows a two-dimensional (2D) rectangular
unit cell with two possible mesh partitions. In both cases
the number of mesh points is the same but the points in
mesh (b) are obviously more evenly distributed than those
in mesh (a). It can be seen that mesh (a) allows the
description of functions with very-short-wavelength oscil-
lations in some directions but with only very long wave-
lengths in other directions, while mesh (b) permits more
or less equal wavelengths in all directions. Since in gen-
eral there is no a priori reason to expect shorter-
wavelength oscillations in any particular direction, mesh
(b} is generally preferable.

II. OPTIMAL MESH FOR FFT

Let A;, i =1,2, 3 be a set of primitive lattice vectors.
A uniform mesh of points p will be defined by a similar
set of three (smaller) vectors a; such that all mesh points
can be written as

P=

with n; integer numbers. For the mesh to be acceptable,
it must be commensurate with the lattice, i.e., the lattice
vectors A; must be mesh vectors. This implies that there
is some integer matrix N;. such that

3
A =gaN; (2)

i=1

IVY—o—o—ii

(a) (b)
FI&. 1. Two-dimensional rectangular lattice (larger dots) and

two possible meshes (a) and (b) (smaller dots). The lines indicate
the unit cells of the lattice and of the mesh.
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The above concept of "even distribution" of the mesh
points can be made more precise with the use of the re-
ciprocal lattice. Let 8; and b, be the reciprocal vectors
of A; and a;: A;8 =2+6;, a;b =2~5;.. Vectors b;
define a supercell of 8, :

3

b;=g N; B.
j=1

(4)

Now, any function f (r) with the lattice periodicity can
be expanded in plane waves,

f(r)=g fGe'+',
G

where

(5)

3

G=g n;B;, Pg
— 00~. . . ~+00

4x4 4x8

However, if the function is to be Fourier transformed us-

ing only the finite number of points in the mesh a, , it is
possible to include only as many plane waves as there are
points in the mesh per unit cell. More specifically, we
can only use lattice vectors included in the supercell
defined by vectors b;, since other Fourier components
would be superimposed or "aliased" to these. It is cus-
tomary to use the Brillouin construction for the supercell,
taking the 6 vectors with smallest modulus among those
equivalent by sup ercell transhtions. Then,
max~G~ +6,„,:——,'min~b;~, where 6,„, is usually called
the plane-wave energy cutoff (in rydbergs when b, is in
atomic units}. ' lf the mesh unit cell defined by a; is very
"elongated, " as in Fig. 1(a}, its reciprocal unit cell b; will

also be very elongated and G,„, will be small. Thus, we
want to minimize the volume of the supercell (i.e., the
number of G vectors contained in it) but keeping G,„, as
large as possible. These partly contradictory require-
ments are accomplished best when the supercell is as
"spherical" as possible.

An additional complication is that the most efBcient
FFI' algorithms generally require that the integers N; in

Eq. (3) contain only powers of 2 or, at most, of a few

prime factors like 2, 3, and 5. Let us assume for the mo-
ment that we use an Fj.'i' routine which only accepts
powers of 2, and consider the 2D unit cell in Fig. 2. If
the 4X4 mesh of Fig. 2(a) is not dense enough to
represent our function f (r) (i.e., if the 6,„,of its recipro-
cal supercell is too small) then we would usually have to
increase it to an 8 X 8 mesh with four times as many
points. However, if we define the primitive lattice vectors
differently, we can generate the intermediate 4X8 mesh

4x4
~ oo0
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0
0

0
0

16x1

oo oo
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0
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o ~
0
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0

0
0
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of Fig. 2(b), with only twice as many points. If the cutoff
of this intermediate mesh is large enough for our pur-
poses, we will have saved by more than a factor of 2 in all
our FFT computations. The same procedure can be used
in three dimensions for cubic cells: by alternating sc, bcc,
and fcc meshes, we can always generate another mesh
with only twice the points of the previous one, thus sav-

ing by a factor of 4 over the conventional method of dou-
bling each N,-. If our FFT routine permits prime factors
other than 2, the savings will be smaller but still substan-
tial.

A more subtle case, with a centered rectangular unit
cell, is illustrated in Fig. 3 ~ Although the two sides of the
rectangle have very different lengths, the two convention-
al primitive vectors have equal lengths in this case. In or-
der to preserve in the mesh the lattice symmetry, we are
obliged to take the same N; for both vectors, as in the
4X4 mesh of Fig. 3(a). It is readily apparent that this
mesh has the same problem as that in Fig. 1(a), with a
poor ratio between G,„, and the total number of points N.
Again, changing the primitive vectors we can generate
the 8 X 1 mesh of Fig. 3(b), with half the number of points
and still the same value of 6,„,. Alternatively, Fig. 3(c)
shows still another mesh with the same number of points
(16X1) than that in (a) but with an energy cutoff G,„,
twice as large. Notice that in this case the required prim-
itive vectors have already become quite nontrivial.

We can ask now whether the above procedure of
choosing the primitive lattice vectors is possible in gen-
eral and extensible to three dimensions. To be precise,
imagine that we have already found an evenly distributed
mesh, with a "rounded" reciprocal supercell and a good
ratio between G,„, and N, preserving all the symmetry of
the lattice and commensurate with it [i.e., accomplishing

Eq. (2), but not necessarily Eq. (3)]. The question is

whether it is possible in general to find another set of
primitive vectors A,

' and a,
' of the lattice and mesh re-

spectively, such that

a,'= A,'/N, .

The answer is yes. To prove it, let us define two 3 X 3 ma-

(b) (b) (c)

FIG. 2. The same as Fig. 1 for a square lattice. FIG. 3. The same as Fig. 1 for a centered rectangular lattice.
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A'= AU~,

a'=aU, ,

(8)

(9)

trices A and a containing the components of vectors A;
and a,. with each vector in a column. In this notation,
Eq. (2), becomes A =aN. Then we want two integer ma-

trices U„and U, with determinant 1 and a diagonal in-

teger matrix N' such that

Since we want all matrix elements to be integers we must
make ao= Ao/2N, , co=Co/2N3, with N„Ni integer
numbers. Also, det(N ) =4N, N3 so that we want N, and

N3 to have only prime factors permitted by our FFT rou-

tine. Furthermore, we want the cutoff associated with
our mesh to be large enough, say larger than some
prespecified value G,„,. This implies that ao, co ~ n. /G, „„
or

A'=a'N' . (10) 6,„, 6.Ut
Ap, N3+ Cp .2' 2' (16)

The fact that U„and U, have determinant +1 means
that A ' and a' are primitive basis, completely equivalent
to A and a. It also implies that the inverse matrices U„
and U, ' exist and are also integer. After a few straight-
forward manipulations with Eqs. (2), (8), (9), and (10), we
obtain

N'= U, 'NUq .

We have reduced our problem to that of diagonalizing an
arbitrary integer matrix by multiplying it by two unitary
integer matrices at left and right. This is a well-known
problem in linear algebra, whose solution method is simi-
lar to Gaussian elimination and can be found in some
textbooks. " Furthermore, since Uz and U, are unitary
and N' is diagonal,

N:N iN&N3 —=det(N') =det(N ) . (12)

-Ap Ap
1A= — A —A0 0

Cp Cp

Ap

Ap

—C0

(13)

To preserve the lattice symmetry, our mesh must be also
tetragonal, either simple or centered. ' Let us study the
simple one, defining our mesh basis as

ap 0 0

This implies that, in order to have only permitted prime
factors in N;* we simply must choose mesh vectors a; such
that the determinant of N in Eq. (2) contains only permit-
ted prime factors. Therefore, we conclude that the
choice of the unit-cell primitive vectors should follow
from the choice of the optimum FFT mesh, not vice ver-
sa.

It is more difficult to find a simple general algorithm to
generate the optimum mesh vectors a; and we wi11 in-
stead illustrate the general methods with a particular ex-
ample. Suppose that our lattice is centered tetragonal,
with basis vectors A, of the form

The solution to our optimization problem is then given
by the two smallest integers NI, N3 verifying the inequal-
ities (16) and containing only allowed prime factors.
Similar (but more involved) equations are obtained for a
centered mesh. In general, the problem is to minimize
the product NINzN3, with N, , Nz, N3 integer numbers
with only allowed prime factors and subject to inequali-
ties of the general form

3

g a;NN &P, (17)

where a;J, P are real coefficients which depend on the lat-
tice and mesh types, on the lattice constants, and on the
required cutoff 6,„,. In some cases, as in our previous ex-

ample, some of the integers N&, Nz, N3 must be equal.
Once the coefficients a,j,P in Eqs. (17) are determined for
a given mesh type, it is straightforward to perform an ex-
haustive computer search of combinations NI, Nz, N3 to
obtain the optimum mesh of that type. After trying this
with all mesh types compatible with the lattice symmetry,
that with the lowest value for det(N } is finally selected.
Then, the previously described procedure for obtaining
the diagonal form N' and the modified primitive vectors
A,

' is applied.
To be fully specific in our example, let us consider the

case of LazCu04, which has a body-centered-tetragonal
unit cell with AO=7. 15 a.u. , Co/Ac=3. 50, and suppose
that we have concluded that we need 6,„,=50 Ry to
represent accurately the electron density (i.e., 12.5 Ry for
the wave functions). We will also assume that our FFT
routine handles efficiently powers of 2, 3, and 5. Then,
from Eq. (16) we obtain Ni &8.05 and N3 &28. 16, and
the next integers containing only allowed prime factors
are NI=9 and N3=30. The mesh vectors are given by
Eq. (14), with ao= Ao/18=0. 397 a.u. and co=CO/60
=0.417 a.u. Matrix N, given by Eq. (15), becomes

a= 0 ap 0

0 0 co

Multiplying by a ' in Eq. (2) we obtain

(14)
—9 9 9

N= 9 —9 9
30 30 —30

(18)

1N=a A =——1

2

—
A 0 /ap

A 0/ap

Cp /cp

A p /a p A p /a 0

A p /ao A p/ao . (15)

Cp /c p Cp /cp

In order to "diagonalize" this matrix, we use two basic
operations: (1) adding (or subtracting) n times one
column to another, and (2} adding or subtracting n times
one row to another. The first operation can be accom-
plished by multiplying our matrix on the right by a ma-
trix with determinant +1, and the second by a similar left
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multiplication. For example, right multiplication by ma-
trix

A set of primitive lattice vectors appropriate for this
mesh is

1 n 0
0 1 0
0 0 1

1

2
—20A p

—3Ap

20Ap 2Ap Ap

(24)

adds n times the first column to the second. Using only
these two basic operations we can transform our matrix
Nin (18) the sequence

—9 0 9
N~ 9 0 9

30 60 —30

—9 0 0
9 0 18

30 60 0
—9 0 0 —9 0 0

O 0 18 ~ 0 0 18

30 60 0 3 60 0

0 180 0 0 180 0
0 0 18 ~ 0 0 18

3 60 0 3 0 0
(19)

By identification with Eq. (11) we see that the last matrix
is U„. Applying Eqs. (8) and (10) we obtain the
transformed primitive and mesh vectors

20Ap 0 Ap
1

2
20Ap 2Ap

18Cp 0 Cp

(21)

a'=
Ao/18 0 Ao/6

Ap/18 Ap/18 Ap/6
—Cp /20 0 —Cp /6

(22)

This mesh contains 180X 18 X 3=9720 points. Actually,
this is not the best possibility and we have worked it out
only as an illustration because it is the simplest one. The
optimum mesh is of body-centered-tetragonal type and
contains only 240X12X2=5760 points. %'e mill give
only the final result:

—ap ap ap

a= ap —ap ap (23)

Cp p Cp

with ap= Ap/24=0. 298 a.u. and cp=Cp/80=0. 313 a.u.

This last matrix can be finally diagonalized by a column
permutation, which can be also accomplished by right-
multiplication by a matrix of determinant 1. Notice that
the crucial step for making the above process converge is
to use the smaller nonzero element in a row or column to
reduce the other elements in that row or column. After
multiplying all the left matrices and all the right matrices
to get one single matrix on each side, we obtain

180 0 0 10 0 3 1 1 0
N'= 0 180= —11 0 N100. (20)

0 0 3 —3 0 —1 20 1 1

6Cp Cp

On the other hand, it is not difficult to see that the
minimum mesh of the standard form (3), which is con-
sistent with the conditions imposed, contains
30X30X30=27000 points, i.e., almost five times more
than the optimum one.

III. SPECIAL POINTS IN THK BRILLOUIN ZONK

There have been a number of works proposing
methods to generate efficient sets of points in the BZ,
each one generalizing the previous ones. Although the
terminology has been frequently different, referring to
"special points, " all these methods in fact generate uni-
form periodic meshes, which are completely analogous to
the real-space meshes that we have considered previously.
Furthermore, the criterion for the completeness or "qual-
ity" of a mesh is also exactly the same: the maximum
planewave cutoff in its reciprocal space. Notice that now
the reciprocal of the mesh unit cell is a supercell of the
real-space lattice unit cell and that the cutoff radius is a
length. This supercell and length have a simple physical
interpretation: instead of using a mesh in the BZ, one
might equivalently use one single k point and a real-space
supercell. This method would be very inefficient because
the computation time increases much faster with the size
of the supercell than with the number of k points, but the
results should be exactly the same. Then, the "length
cutoff" is half the minimum distance between equivalent
atoms connected by (super)lattice vectors. This cutoff is
frequently referred to as the "radius of the first star not
integrated exactly" but we prefer the simpler name of
"length cutoff" by analogy to the "energy cutoff. " It is a
rigorous measure of the "quality" or completeness of the
k mesh and provides a simple way of comparing meshes
for different lattices and systems. By contrast, what is
more generally given in electronic structure calculations
is the "number of special points in the irreducible wedge
of the BZ (IBZ)." This number depends strongly on the
lattice unit-cell size and symmetry and on the method
used to generate the mesh, making it rather difficult to
judge the mesh quality on the basis of this single number.
In fact, we think that giving this number is as useless as
giving the number of points used in FFT's, while a
knowledge of the energy cutoff of the plane-wave basis set
is definitely helpful. Therefore we propose that we speci-
fy the length cutoff, instead of the number of special
points, in reporting results of electronic-structure calcula-
tions.

It is generally not necessary to perform FFT's in the
BZ and this eliminates the complication of requiring the
determinant of the supercell matrix N to have only some
prime factors. However, there is a different and essential
complication in the "special-points" issue. The hardest
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part of most electronic-structure computations involves a
series of separate calculations for each k point. When

several k points are equivalent by symmetry, it is neces-

sary to make the calculation only for one of them, reduc-

ing drastically the computational effort. It is therefore
essential to take into account this reduction in order to
determine the efBciency of a k mesh, and to maximize it if
possible. It is frequently possible to increase the multipli-
city of the stars of mesh points by displacing the mesh
origin, as shown in Fig. 4 for a 2D square lattice. Obvi-

ously, the length cutoff of the mesh is not affected by the
displacement but the number of inequivalent k points
(and the computation time) has been halved. Notice that
this trick is useless for the real-space mesh because the
FFT algorithms use all the mesh points independently of
whether they are equivalent by symmetry.

In principle, it is not necessary that the displaced mesh
have all the symmetry of the lattice point group. This is
because one can always "symmetrize" the mesh by corn-
pleting the stars with additional points. Since these addi-

IB2

b~
0 0 o

t'

~BZ
0 0 C 0

(b)

FIG. 4. Reduction of the number of inequivalent mesh points
(circles) by displacing the mesh origin. The lattice is square and
the long arrows are the primitive vectors of the reciprocal lat-
tice. The square is the first BZ; and the triangle, the IBZ.

tional points are equivalent by construction to the old
ones, no calculations are needed at these points and the
symmetrization does not cost anything. However, if the
displacement initially reduces the symmetry of the mesh,

TABLE I. All possible k meshes for a simple cubic lattice, up to some length cutoff. The k points
are given by

3

k=(2mlNAO) bo+ g n;b;
i=1

where N is given in the second column, Ao is the lattice constant in real space, n; are integer numbers,
and b; are three primitive vectors of the specified mesh type: b;=(2,0,0), (0,2,0), (0,0,2), for sc;
b; =(0, 1, 1), (1,0, 1), (1,1,0) for fcc; and b; =( —1, 1, 1), (1,—1,1), (1,1,—1), for bcc. bo is one of the fol-

lowing points: po, (0,0,0); p;, (1,0,0); and p2, (1,1,1). When several of these points are indicated for a
given mesh, they all produce the same number N»z of points in the IBZ. I,„, is the "length cutoff" and

N„„ is the number of real-space stars integrated exactly. Asterisks in the last column indicate the op-
timum sequence of meshes with increasing N»z.

Mesh type

sc
bcc
fcc
sc

bcc
sc
fcc
sc

bcc
sc
fcc
bcc
sc
fcc
sc

bcc
sc

bcc
fcc
SC

bcc
sc
fcc
SC

bcc
SC

fcc

2
2
2
4
4
6
4
8
6

10
6
8

12
8

14
10
16
12
10
18
14
20
12
22
16
24
14

bo

po~ p2
po

po~ p» p2
p2
po

po~ p2
p» p2

p2
po

po~ p2
po~ p» p2

po
p2

p» p2
po~ p2

po
p2

po
po~ p» p2

po~ pz
po
p2

p» p2
po~ p2

po
p2

po~ p» p2

Naz

1

2
4
8

16
27
32
64
54

125
108
128
216
256
343
250
512
432
500
729
686

1000
864

1331
1024
1728
1372

N»z

1

2
2
1

5
4
4
4
8

10
10
14
10
16
20
20
20
30
28
35

35
40
56
55
56
60

(2l,„,/A )

1

2
3
4
8

9
12
16
18
25
27
32
36
48
49
50
64
72
75
81
98

100
108
121
128
144
147

N„„
1

2
3
4
7
8

11
14
16
22
24
27
31
41
42
43
54
61
64
69
83
85
92

102
107
121
124



13 896 JUANA MORENO AND JOSE M. SOLER 45

3

k=g n;b;, (25)

and for every symmetry operation S, Sk is also a mesh
point. Based on this, it is easy to show that a sufficient
condition for the displaced mesh to conserve symmetry S
is that the mesh origin bo transform under S into a point
of the displaced mesh, i.e., Sbo=bo+g3, n;b; Or, .

3

(S I)bo= g —n;b;, (26)

where I is the identity matrix. Since S conserves the

it is very unlikely to be an improvement, because the
equivalences between at least some of the points will be
reduced and the number of inequivalent points will more
likely increase rather than decrease. In some cases, it
may occur that, after displacement and symmetrization, a
denser and periodic mesh results with a larger length
cutoff (see Fig. 5). But this mesh can always be generated
also by a symmetry-conserving displacement of an initial-
ly denser mesh. Therefore, following Froyen, we will
only consider symmetry-conserving displacements. The
problem is then to find the optimum displacement vector
bo which minimizes the number of points in the IBZ. To
achieve this, we find all possible symmetry-conserving
displacement vectors bo and select the best one. By con-
struction (by the same method described in the previous
section), the undisplaced mesh has the whole lattice sym-
metry, i.e., for all mesh points

o Qo

o Qo Qo

Qo Qo Qo

o Qo

o;; Q
0 00

Q Qo Qo

00~ Oo

Qo Qo Qo Qo

(a) (b)

FIG. 5. (a) The same original mesh of Fig. 4 with a different
displacement. Notice that the symmetry has been reduced and
the number of inequivalent mesh points has increased from 6 to
10. (b) The mesh, after completing the star of each mesh point
in (a) (symmetrization). A denser mesh has been generated
without any further increase of the number of inequivalent
mesh points. But notice that mesh (b) could have been equally
well generated by displacing the denser mesh from the begin-
ning and without any symmetrization.

norm and we can always take bo within the first BZ, it is
easy to see that —1(n; (+1. The method for finding
suitable vectors bo is then as follows: a particular sym-
metry operation S of the lattice point group is selected
such that the 3 X 3 matrix S—I is nonsingular. Then, for
each possible combination of values of n „n2,n3 (27 in to-
tal), the system of Eqs. (26) is solved, obtaining a candi-
date vector bo. Then, all other symmetry operations of

TABLE II. The same as Table I for a fcc k lattice (i.e., reciprocal of a bcc lattice in real space).

Mesh type

fcc
sc

bcc
fcc
sc
fcc
bcc
sc
fcc
sc

bcc
fcc
sc
fcc
bcc
sc
fcc
fcc
sc

bcc
fcc
sc

bcc
fcc

1

2
2
2
4
3
4
6
4
8

6
5

10
6
8

12
7
8

14
10
9

16
12
10

bo

po~ p» p2

p2
po

p» pz
pz

po~ p» p2
po
p2

p» p2
pz
po

Po~ Pl P2
P2

p» p2
po
pz

po~ p» p2
p» pz

pz
po

po~ p» pz
pz
po

p» p2

NBz

1

2
4
8

16
27
32
54
64

128
108
125
250
216
256
432
343
512
686
500
729

1024
864

1000

Nisz

1

1

3
2
2
4
7
5

6
8

13
10
14
14
22
20
20
26
30
34
35
40
50

(2l,„,/A )

0.75
1.00
2.00
3.00
4.00
6.75
8.00
9.00

12.00
16.00
18.00
18.75
25.00
27.00
32.00
36.00
36.75
48.00
49.00
50.00
60.75
64.00
72.00
75.00

N„„
1

2
3
5

6
10
11
13
17
22
25
26
35
38
43
49
50
65
67
68
82
86
97

102
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TABLE III. The same as Table I for a bcc lt lattice (reciprocal of a real-space fcc lattice).

Mesh type

bcc
SC

bcc
fcc
sc

bcc
bcc
sc
fcc
bcc
sc

bcc
bcc
sc
fcc
bcc
sc

bcc
fcc
sc

bcc
bcc
sc

bcc
fcc

N

1

2
2
2
4
3
4
6
4
5
8
6
7

10
6
8

12
9
8

14
10
11
16
12
10
18

bo

Po
P2
po

po~ p» p2
p2
po
po
p2

P» p2
po
P2
po
po
p2

Pos P» P2
po
P2
po

p» p2
p2
Po
po
p2
Po

POs p» PZ

p2

Ngz

1

4
8

16
32
27
64

108
128
125
256
216
343
500
432
512
864
729

1024
1372
1000
1331
2048
1728
2000
2916

Ngsz

1

1

3
3
2
4
8
6
8

10
10
16
20
19
22
29
28
35
40
44
47
56
60
72
73
85

(21,„,/Ao)'

0.5
1.0
2.0
3.0
4.0
4.5
8.0
9.0

12.0
12.5
16.0
18.0
24.5
25.0
27.0
32.0
36.0
40.5
48.0
49.0
50.0
60.5
64.0
72.0
75.0
81.0

1

2
4
6
8
9

15
17
23
24
30
34
46
47
51
59
67
75
89
91
93

112
118
133
138
148

the lattice point group are applied to bo, checking wheth-
er Eqs. (26) hold for every S. If they do, bc is a
symmetry-conserving displacement and we count the
number N&zz of displaced-mesh points in the IBZ. After
all the combinations of n; are tried and all possible dis-
placements bo have been found, the one with smallest

Nggz is finally selected. Notice that the method is general
and exhaustive, i.e., guaranteed to find the optimum dis-
placement in every case.

In Tables I, II, and III we give all the possible meshes
for the BZ of cubic lattices, up to some length cutofF. '

An asterisk in the last column indicates the sequence of
optimum meshes for increasing N,~z, and therefore for
increasing computational efFort. Most of these meshes
(and especially the most efficient ones) have been already
proposed and can be generated with existing methods.
But the main purpose of these tables is to show that, for
every possible lattice, an unambiguous optimum sequence
of k meshes exists and can be generated systematically,
giving the maximum accuracy for a given computational
effort or, alternatively, the minimum effort for a given
length cutofF.

ed purposes: to carry out fast Fourier transforins in a
crystal unit cell and to calculate integrals in the crystal
Brillouin zone. In the first case, we show that any mesh
(compatible with the lattice symmetry and periodicity)
can be used for FI'I's with an appropriate set of primi-
tive lattice vectors. Thus, we argue that the primitive lat-
tice vectors should follow from the choice of an optimum
mesh, and not vice versa. Also, we propose to use the
same measure of mesh quality in both direct and recipro-
cal space: the maximum cutoff of plane waves represent-
able with that mesh. For this purpose, we propose the
use of a "length cutoff, "analogous to the "energy cutofF, "
as a measure of k-mesh completeness in electronic-
structure calculations, instead of the "number of special
points, " now frequently specified. Finally, we have writ-
ten a FORTRAN code implementing the methods present-
ed in this work and we will provide it freely upon request.
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