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Formation of general fullerenes by their projection on a honeycomb lattice
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We propose the use of a projection method based on a honeycomb lattice to enhance the geo-
metrical understanding of general fullerenes. An arbitrary fullerene consisting of pentagonal and
hexagonal arrangements of carbon atoms is completely specified by the distribution of twelve pen-
tagonal defects on an otherwise hexagonal honeycomb lattice. Utilizing this projection method, we
demonstrate the geometric specification of icosahedral hyperfullerenes and general chiral fullerene
tubules suitably capped on each end.

The discovery of new aromatic molecules based on Cso
(Refs. 1 and 2) has aroused great scientific activity not
only for their exceptional properties but also for their
potential for applications to physics, chemistry, biotech-
nology, and materials science. A major focus at present is
the study of how and why fullerenes form in such elegant
structures and the search for new stable fullerenes.

The basic structure of Cso is a hollow truncated reg-
ular icosahedron. If we preserve the icosahedral sym-
metry and add hexagons between pentagons of Cso, the
series of giant fullerenes Cz4p, Cs4p, Cssp) ~ ~ Cson& is
obtained. z 4 Fowlers pointed out that more general icosa-
hedral fullerenes are possible, corresponding to Gold-
berg polyhedrons, s which are spherical polyhedronss"
and have 20(rn +mn+nz) atoms where rn and n are
non-negative integers. Possible cage structures for lower
symmetry molecules are discussed by several authors. s s

If the geometrical constraint of including only hexagonal
and pentagonal faces is relaxed, other icosahedral hyper-
fullerenes also can be obtained, like the Archimedene. M

Another interesting generalization of fullerenes is to ex-
tend Cso in only one direction to form graphene tubules
which have hemispheres of C6p on both ends. An oval-
shaped C7p fullerene is the simplest example of sym-
metry lowering of C6p. The existence and structure
of C7p is already well established. Stimulated by the
experimental observation of graphite tubules, 4 re-
searchers have already discussed their electronic prop-
erties theoretically. To nucleate cylindrical growth,
some defects are needed during the early formation stage.
The geometrical approach described here for general
fullerene tubules provides a convenient method for the
construction of caps suitable for nucleating such tubules.

In this paper we propose a projection method for de-

scribing fullerenes on a honeycomb lattice or a graphene
sheet (a single layer of graphite), thereby providing a

geometrical understanding of the formation of general
fullerenes. We show that the geometrical construction
can be applied to any fullerene consisting of hexagons and
pentagons of carbon atoms. In this construction, a pen-
tagon is regarded as a defect on the honeycomb network
of carbon atoms, since a conical surface forms around
each pentagonal defect. We first apply this projection
method to icosahedral fullerenes and demonstrate their
icosapod structure (i.e., a truncated cone of graphene
with pentagonal cross section). Further we apply this

FIG. 1. (a) Formation of a pentagonal defect in a honey-

comb lattice removes the area designated by the shaded out-
lined triangle. (b) The vector (m, n) which connects two pen-
tagonal defects fully specifies the icosahedral hyperfullerene.
The diagram is constructed for (m, n) = (2, 1).
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projection to the formation of suitably capped fullerene
tubules with arbitrary chirality.

First let us examine the role of a single pentagon in a
hexagonal honeycomb lattice. If we prepare a honeycomb
sheet as shown in Fig. 1(a), then remove the 60' wedge
of the dark-shaded hexagon, and connect the two edges
along the dark lines from the center, then we form a
truncated cone with a pentagonal cross section projecting
out of the plane of the hexagonal network. The apical
pentagon can be regarded as a defect in the honeycomb
lattice.

Next we put a second pentagonal defect on the sheet
as shown in Fig. 1(b). In this figure we define a vec-
tor (rn, n) —= ma+nb connecting the two pentagonal de-
fects using two basis vectors of the honeycomb lattice a
and b. Since in icosahedral symmetry we have a five-
fold axis around the first defect, we then must put five
pentagons equivalently at 72' intervals (or 60' on the
honeycomb lattice) around the first defect. These six de-
fects together with their surrounding hexagons form a
hemisphere derived from the honeycomb lattice. Finally
we can form a closed cage with icosahedral symmetry
by joining two identical hemispheres so that the twelve
defects align icosahedrally.

The vector (tn, n) defined in Fig. 1(b) is thus suff-
icien. for spwi&in p a.ymmaL4~wbedzaLMlmem s s Tbe
connectivity of the twelve pentagons relative to the hon-
eycomb lattice is shown by considering Cq4p in Fig. 2.
Here we see that relative to the honeycomb lattice, all
the defects are distributed on a triangular lattice whose
characteristic vector is (2, 1) or (1,2), since all icosahe-
dral fullerenes are generated by connecting twenty regu-
lar (equilateral) triangles. The Cq4p fullerenes with (2, 1)
and (1,2) are related to each other by mirror symmetry.
The total number of atoms for the vector (m, n) is given
by 20(mz+tnn+nz), corresponding to the total area of
the planar surface. For example, the series Csp, Cz4p,
~ ~ ~ Csp 2 are assigned to the vectors (1, 1), (2, 2),
(n, n), respectively. When m=n or tnn=0 the fullerenes
have Ih symmetry, but in other cases the fullerenes have
I symmetry which is a subgroup of Ih without the inver-
sion operation.

In Fig. 3 we show two examples of icosahedral

fullerenes with (m, n) = (2, 0) and (2, 1) which corre-
spond to the molecules Cso with Ih, symmetry and Cy4p
with I symmetry, respectively. The difference from the
spherical Goldberg polyhedronss 7 is that our icosahe-
dral fullerenes form conical surfaces around the pen-
tagons. However, the joining of pentagonally truncated
cones requires a slight rearrangement of atoms relative to
those on exact conical surfaces, for otherwise the surfaces
on adjacent defects would be connected by a kink. Sev-
eral authors have discussed the nonspherical nature of the
larger icosahedral fullerenesz ~s and have suggested that
the icosapodlike fullerenes might be energetically more
favorable than the spherical fullerenes because the car-
bon atoms which are far from each defect should form a
fiat sheet, i.e., graphite.

Since the atoms are confined to a single surface in our
model, it is probable that the strain near the pentagons
where the curvature is the largest would be relaxed to
minimize the total energy, but would still retain the same
icosahedral symmetry as before. The Kekule pattern is
not applicable for general icosahedral hyperfullerenes ex-
cept for the case where mz+tnn+n or m n is a m—ulti-
ple of 3, because the Kekulh structure gives a three sub-
lattice pattern on a honeycomb lattice. Fowler showed

by simple Hiickel theory that when m —n is a multi-
ule of 3. the„fid3e~we mole~s&s. baze fi)JeA 4 veda. at. the„
Fermi energy, giving rise to a semiconductor; otherwise
the molecules have partly filled levels. s In the former case,
the fullerene should undergo a Jahn-Teller distortion to

FIG. 2. Expanded surfaces of Cq4p with (m, n) = (2, 1).
The twelve pentagonal defects are indicated by 1—12. The
Cg4p fullerene is obtained by superimposing pentagons with
the same number.

FIG. 3. Icosapod hyperfullerene molecules of (a) Cap and
(b) Cq4p, corresponding to (m, n)=(2, 0) and (2, 1), respec-
tively.
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FIG. 4. An example of the projection of the capped tubule
with the chiral vector d~e = (7, 5). Different caps are con-
structed for the two ends of the fiber to illustrate the multiple
possibilities for nucleating a given fiber.

form the Kekule pattern as is seen in Cso. With regard
to the latter case, we are now investigating whether or
not the molecule is stabilized by a Jahn-Teller distortion,
and if so, what kind of texture may appear. 2o

The method given here for icosahedral fullerenes can
be generalized to classify fullerenes of lower symmetry,
for example, C7o. We can also apply this method to pro-
duce graphene tubules from icosahedral hyperfullerene
molecules in the same way as we can make armchair
and zigzag fibers from cuts of the Cso molecule. This
is done by increasing the size of sides BD and AC of
the parallelogram ABCD in Fig. 2 to form the tubules,
while retaining the lengths of AB and CD in order to
fit the tubules perfectly to their adjacent fullerene hemi-
spherical caps. The number of carbon atoms T

„

for
the fullerene tubules is given by 10(m +rnn+n2)+10pI
(I = 1, 2, . . .) where 10' is the number of carbon atoms
along the d~g vector and p is the greatest common factor
of m and n, except for the case when n(m) =0, for which

p = rn(n). Thus the spiral graphene tubulesi7 with the
chiral vector d~~ = (5m, 5n) can be capped by an icosa-
hedral hemisphere. We note that (rn, n) = (2, 1) and (1,2)

give tubules with left-handed and right-handed chirality,
respectively, and are therefore expected to be optically
active.

The projection in Fig. 2 can be generalized to specify
caps for chiral fibers without fivefold symmetry. Once the
chiral vector dgB, which specifies both the fiber diameter
and chirality, is given, the problem of finding the cap of
the tubule can be reduced to finding the distribution of
five defects, for example, defects 2, 3, 4, 5, and 6 in Fig.
2. If these five defects are arranged so as to keep the
condition that at each defect the 60' wedge is missing on
the honeycomb lattice, this projection can form a cap for
a tubule with a given d~~. Nonequilateral triangles can
be used to form a general fiber cap. We show in Fig. 4 an
example of caps for a graphene tubule with dg~ = (7, 5).
DifFerent caps are constructed for the two ends of the
fiber to illustrate the multiple possibilities for nucleating
and terminating a given fiber.

In this paper we have demonstrated a projection
method for specifying general fullerenes on a honeycomb
lattice. We show that any fullerene which consists of
twelve pentagons and any number of hexagons of car-
bon atoms can be specified by arrangement of the twelve
pentagonal defects on a honeycomb lattice. With this
projection, we demonstrate the icosopod of icosahedral
fullerenes as well as general graphene tubules capped on
their edges. The coordinates of carbon atoms on the ico-
sapod provide a good starting point for investigating the
structual stability of the fullerene. Special attention in
future work should be directed toward new physics, such
as the left and right optical activity, that is expected from
molecules described by the symmetry group I.
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