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Steady-state transport in mesoscopic systems illuminated by alternating fields
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In this paper we present a Landauer-type expression for the time-averaged dc current in a meso-

scopic device illuminated by a coherent ac field, assuming phase-breaking processes to be restricted to
the contacts. This expression is derived starting from the nonequilibrium Green-function formalism
which rigorously accounts for the exclusion principle. However, the (1 f) fac—tors that are often as-

sumed do not appear in our expression. This does not aff'ect the result if the transmission is reciprocal.
But for traveling-eave fields the transmission is nonreciprocal even in zero magnetic fields and the
magnitude of the resulting current is affected by the presence or absence of the (1 f) fa—ctor.

We consider a two-terminal device illuminated by an
arbitrary time-varying potential V(r, t ) (Fig. 1 ). The two
terminals are connected to large contacts that are as-
sumed to remain in local equilibrium with electrochemical
potentials Iti and p2, respectively. The time-varying po-
tential is assumed to be zero in the contacts. The subject
of this paper is the dc current that flows (not the time-
varying current) in the external circuit in response to the
potential V(r, t). We wish to find an expression for this
time-averaged dc current I in terms of Iti and It2. This
problem is relevant to a number of interesting exIieriments
such as the mesoscopic photovoltaic eflect, ' photo-
current in scanning tunnel microscope, optical rectifica-
tion, and the proposed "Pauli pump.

" t )

We assume that phase-breaking processes occur only in

the contacts and not within the device, as is commonly as-
sumed in the Landauer-Buttiker formalism. Indeed, if the
potential V were independent of time, then the current-
voltage relation is well known:

e dE T(E)[f,(E)—f,(E)1.

CONTACT I

V(r, t)=0
CONTACT 2

V(r, t)=0

DEVICE
V(r, t)~0

I IG. 1. Schematic representation of a two-terminal meso-
scopic device with an arbitrary potential V (r, t ). Phase-
breaking processes are assumed to occur only in the contacts.

Here fi(E) and f2(E) represent the Fermi-Dirac func-
tions with potentials Itt and It2, respectively. T(E) is the
total transmission at energy E summed over all possible
input and output modes. In the linear-response regime,
Eq. (1) reduces to the well-known Landauer formula.

If we generalize Eq. (1) to include time-varying poten-
tials V(r, t), we are faced with two choices for the time-
averaged dc current:

fO

I =— dE~ dE' I t 2i (E,E')f i
(E') [I —f2(E)]

—t i2(E', E)f2(E) [I —f i (E')]], (2)
I~

I =— dE dE'[tpt (E,E')ft (E') —t i 2(E', E)f2(E)] .

(3)

Here t 2t (E,E') represents the total transmission summed
over all input modes at energy E' (in terminal 1) and all
output modes at energy E (in terminal 2). If t2i(E, E') is
equal to t i 2(E',E) then the two possibilities [Eqs. (2) and
(3)] are equivalent. But this is not true in general.

Equation (2), which is used in Ref. 3(b), is based on the
view that an electron makes transitions from an occupied
state in one reservoir into an empty state in the other
reservoir. But if only coherent processes (elastic or inelas-
tic) occur within the device, then one can define orthogo-
nal "scattering states" ' for the entire structure composed
of incident, reflected, and transmitted waves. Each such
scattering state is populated according to the distribution
function f at the incident port. From this point of view

coherent inelastic processes are much like elastic processes
and there is no reason to include factors of the form
(1 f)." This arg—ument cannot be used for incoherent
inelastic processes, ' ' since one cannot define a wave
function over the entire structure.

Starting from the nonequilibrium Green-function for-
malism, ' ' which rigorously accounts for the exclusion
principle, we obtain Eq (3) rather th. an Eq (2). The.
derivation is outlined at the end of this paper. (For sim-

plicity we neglect magnetic fields in this paper though the
approach can be extended to nonzero fields as well. ) We
obtain the following expression for transmission:

t (E,E') =DE dr„dr' IG (r, E;r', E')
I

,"~ „„i"„.„-,- 4tr'r~(r, E)rt(r', E')
r' G contact "1"

where r&(r, E) is the phase-breaking time which is infinite
everywhere except in the contacts. h, F, can be interpreted
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+A V

2m
—Vs(r)+ G (r, E;r', E')

2r~ r, E

=8(r r') 8—(E E')—+Q V(r, I'2')G (r,E —h rLI;r', E')

where Vs (r) is the static potential in the device and

V(r, t) =+V(r, ItirII)e

(5)

as the energy spread of individual wave packets or as h/T
where T is the time window over which the current is

averaged. It cancels out the 6 functions in energy that
arise in actual calculations. The Green function G is

computed from a Schrodinger-like equation

Note that m runs over both positive and negative values—positive components cause absorption while negative
components cause emission. Since the potential V(r, t) is

real, V(r, hro) =V(r, —bra)*.
The above result is an extension of our earlier work' to

include coherent ac fields {dephasing processes inside the
device, however, are neglected in this paper). It may seem

surprising that the phase-breaking time r
& in the contacts

enters the expression [Eq. (4)] for the transmission. How-
ever, as discussed in Ref. 14 the imaginary potential
i h/2r& in Eq. (5) causes the Green function G to damp
out exponentially inside the contacts. Neglecting any
reflection at the device-contact interfaces we can write in

one dimension

(G (z, E;z', E')) =)G (z2, E;zI,E')( exp[ —(z —z2~/v2(E)rII(E)]exp[ —(z' —zi(/Ui(E')rid(E')] (7)

where v (E) is the velocity, z C contact "2," z' C con-
tact "I," and zi, z2 are located right at the device-contact
(1,2) interfaces. Using Eq. (7) we can simplify Eq. (4) to
a form similar to the formula due to Fisher and Lee, '

I

the phase-breaking time rid inside the contacts. This re-
sult can easily be extended to include multiple modes.

0'i 2(E)i, (E')
t2I(E, E') =

2 ~G (z2, E;zI,E')~ hE.

Thus, the transmission t2I (E,E') is nearly independent of
I

RECIPROCITY

We can solve Eq. (5) iteratively to express G in the
form of a Born series:

G (r,E,r', E') =Go(r, r';E)b(E E')+g —dri Go (r, rI,E)V(rI, h, re)GrI(ri, r';E')B(E —hro E')+— (9)

where Go is the unperturbed Green function obtained by
solving Eq. (5) with V(r, hco) set equal to zero. The un-

perturbed Green function Go obeys reciprocity. From Eq.
(9) it can be shown that the perturbed Green function G
also obeys reciprocity G (r, E;r', E') =G (r', E';r, E) pro
vided V(r, hro) = V(r, —hro). This condition is satisfied

by standing-wave potentials of form V(r, t) =v(r)costi
but not by traveling-wave potentials of the form
V(r, i) =cos(riit —

q r). ' We can thus distinguish be-
tween two categories of ac fields. For the standing
wave-type, transmission is reciprocal: t 2I (E,E')
=ti2(E', E), while the traveling wave-type tra-nsmission
is nonreciprocal: t 2(IEE')&t I(2E', E). In the former
case the presence or absence of the. factor (I f) makes-
no difference, so that our results are in complete agree-
ment with Ref. 3(a). But in the latter case the magnitude
of the current can be very different if we use Eq. (3)
[rather than Eq. (2) which is used in Ref. 3(b)].

tures such that only energies E'&EF contribute to the
current in Eq. (10). For a perfectly symmetric device
with uniform illumination [V(z, r) —Vricosrot], we expect
that t2I {E,E') =t I2(E,E'), since there is no way to distin-
guish between terminals 1 and 2. Consequently, I„=O.
But the zero-bias current can be nonzero if (a) the device
is asymmetric and/or (b) the illumination is asymmetric.
This is illustrated by the two examples in Fig. 2. In both
examples, ti2(E, E') =0 for E'( EF. In Fig. 2(a) this is

because there are no states below EF near contact 2 while
in Fig. 2(b) the reason is that there is no illumination near
contact 2. In either case electrons flow from contact l to
contact 2.

{a) Asymmetric device, uniform illumination

SHORT-CIRCUIT (ZERO-BIAS) CURRENT

Using Eq. (3) we write the short-circuit current as
(fi(E) =f2(E):fo(E)),

(t)) Symmetric device, illumination only on lei't

I,c=„dE fo(E') dE. [r2I(E,E') —
i (rE2, E )] . (10) FE

E'

We will now discuss a few simple examples illustrating the
conditions that lead to a nonzero short-circuit current.
For simplicity, we restrict our attention to low tempera-

FIG. 2. Two simple examples where a nonzero short-circuit
current Rows from contact l to contact 2.
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Finally, we consider a uniform quantum wire with a
traveling-wave illumination [V=Vpcos(pzt —qz)]. In
this case also there will be a short-circuit current which
will normally be small if A a&, Vp((E'. But with strong il-
lumination significant acoustoelectric current could arise
in the direction of the traveling wave. '

DERIVATION OF EQS. (3) AND (4)

Finally, we will outline the derivation of Eqs. (3) and
(4) from the nonequilibrium Green-function formalism.
Our starting point is the Keldysh equation '4'p

ac component of current which is, in general, nonzero in
the presence of a time-dependent field. The dc current
flowing at the terminals is obtained by time averaging the
net current from contact I (see Fig. I) over a long time T
and can be written as

~+Ttz dt t
rI= J-dSi,

~ —T]2

where St C device-contact I interface. Using Eqs. (11)
and (13) and the divergence theorem, "

++TI2 dg ) di' d2'Z (I' 2') drt Vt Jg
rI C contact 1

G (1,2) =
d I'd2'G (1,1')Z (I',2')G" (2', 2) (11)

where l=(rt, t t), I'=(rt, t[), 2=—(rz, tz), 2'—= (rz, tz). The
retarded Green function is obtained from [Hp= —0 V /
2m + Vs (r) + V (r, t )]

ih —Hp(l) G"(1,2) — d3Z (1,3)G (3,2)
r)t t

~l

where

ehJc = [[Vtg (1,1')]G (2', 1) G (1,1')

[V,G"(2', I)]] .
From Eqs. (12) and (14) we can write

(14)

The current density is given by

=B(1—2) . (12) e+ T/2 dE tI = -e drt Q(rt, t t,rt, t t)
rl 6 contact I

(i5a)

2

J(rt, t t) = — (Vt —Vz)G (rt, t t, rz, tz) t„, &

eh

(i3)

Equation (13) contains both the ac and dc components of
the current density. By time averaging we can remove the

where

q —Z &GA gRX & +XRgRX &GA gRX &GAZA (15b)

using matrix notation for compactness. zz

We now make the assumption that incoherent processes
are caused by point (local) inelastic scatterers. Defining

A (r t, Et,.l z, Ez) — dt t dtzexp(iE tt t/h)exp( —iEztz/6)A(r t, t t.,rz, tz),
where A could be any of the G's or X's, Eq. (15a) can be rewritten as

r dE dE'I = „drt [(—2i)X (rt, E,E')Img (rt, E';rt, E)
rt C contoct I

~ dEt ~ dE2+2i lmZ (rt, E,E') dr G (rt, E';r, Et)X (r, Et,Ez)G"(r,Ez.,rt, E)].
pace 2~6 2mh

(i6)

Equation (16) is valid with point scatterers in both the device and contacts. We can simplify it further by assuming that
phase-breaking processes occur only in the contacts. The contracts are assumed to be large reservoirs that remain in local
equilibrium at all times despite the time-varying fields in the device. We can then write (rt E contact I )

I mX R(r t, E,E') = 6'(E —E'),
2r, (rtE)

X (rt, E,E') = —2if t (E)lmX (rt, E,E') .

(17a)

(i7b)
Equation (17a) follows from the assumption that Z (rt, t t, tz) depends only on (t t

—tz) and not on (t t+tz) while Eq.
(17b) follows from the assumption of local equilibrium. Then from Eqs. (16) and (17) we obtain

dEt It R
~ dE IzIG"(rt, Et, r,E)I( —2)f(rt, Et) lmG (rt, Et,rt, Et) — dr ' f(r, E) . (18)

Equation (18) can be rewritten in the form

Iz'IG"(rz, Ez,rt, Et) II=—
&

drt J dEt„~ drz„dE2 z ft(Et)—
t t E cpptpct t 42r rtt(rz E2) r tt(rl E I )
r2 E contact 2

(r t, E t, rz, Ez) I

fz Ez
42r r &(rz, E 2) r t,(r t, E t )
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making use of the following identity which can be proved
using Eq. (5) [obtained from Eq. (12) by Fourier trans-
formation and using Eq. (17)l
—lm[G (r),E)',rt, Et)]

~dE hlG (r,E;r),E))l'
dr 20

2tr 2r&(r E)
Equations (3) and (4) follow readily from Eq. (19) noting
that hE 2trh/T.

averaged dc current through a mesoscopic device il-
luminated by ac fields, neglecting dephasing processes
within the device. The (I f—) factors that are often as-
sumed do not appear in our result. This makes no
difference for standing-wave fields (in zero magnetic field)
since the transmission is reciprocal. But it can make a
significant difference with traveling-wave fields when the
transmission is nonreciprocal.
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