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Universality of dissipative two-state systems
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The static properties of a dissipative two-state system are studied by perturbation, mapping to

the quantum sine-Gordon model, and a variational approach. We Snd that its properties at zero

temperature depend not only on the spectral density J(u) P, g& 6(w —u~), but also on the explicit

form of the coupling strength g~ u&" (u~ is the phonon frequency). For weak coupling (A & 1),
the effect of displacement of the phonon state is dominant; while for strong coupling (A & 1), one

must take account of both displacement and deformation. Displaced squeezed states are proposed

as ground states of the bath under strong coupling, and we show that the localization transition of

the Ohmic dissipation occurs at e, = 3 —2A instead of a, = 1 as for the weak-coupling case.

Recently, there has been much interest in the dis-
sipative effect of a bath in the quantum tunneling or
two-state system (TSS), e.g. , in dissipative macroscopic
tunneling phenomena~ and atomic tunneling states in
solids. This system can be described by a spin-boson
H amiltonian ~

H = —b po + ) ~(b~tb(+ o, ) gt(b~t + b(), (1)
1

where 0'~, cr, are Pauli matrices, Lo the bare tunneling
parameter, while the bath is described by a set of har-
monic oscillators with frequencies ~~ and coupling con-
stants

gi = gp(~i/~p)

and ~0 is the upper cutoff.
It has been argued, by using path-integral techniques,

that complete information about the eA'ect of the bath is
contained in the spectral density

J(io) ) gt b(~ —~~)

independent of the explicit form of the coupling strength
gI. This concept of universality seems to be well accepted
by many researchers in the field. The basic assumption
of this argument is that the bath degrees of freedom can
be integrated out as Gaussian integrals with displaced
centers. It is implicitly assumed that the only effect of
the tunneling particle on the bath is to displace the cen-
ters of harmonic oscillators.

We would like to point out in this paper that this as-
sumption is not always true. In fact, the coupling of
the bath to TSS may give rise to two effects: displace-
ment and deformation of the phonon states. In the weak-
coupling case when g~/&u~ && 1, the displacement is the
dominating effect. However, in the strong-coupling case
when g~/~i && 1, both effects should be considered. We
show in this paper that the physical behavior of TSS de-
pends not only on J(~), but also on g~ explicitly if the

H = —Apa + ) u)([btt + (g(/~()o, ][b( + (gt/~t)o, ].
I

—) .(w'/~i) . (4)

If we neglect the first term in (4) temporarily, the phonon
state is described by a displaced oscillator characterized
by A(~I) = gl/u& = (gp/~p)(~~/~p)" . At this stage, we

may subdivide the coupling into two different regimes de-
pending on the index A. For weak couplings A & 1, A(~~)
will increase from zero to gp/alp as ~~ goes from zero to
urp, while for the strong-coupling regime A & 1, A(~~) will
decrease from in/i nity to gp/up and hence the correspond-
ing displaced state is not a well-defined function for low-
frequency phonons. Different physical pictures emerge
when we consider the first term in (4). In the weak-
coupling regime, the low-frequency phonons (M( « Ap)
nearly decouple from TSS and one can safely integrate
out the displaced phonons in the adiabatic approxima-
tion. However, the adiabatic approximation does not
work in the regime A & 1 because of strong coupling
of the low-frequency phonons to TSS and so one cannot
simply integrate out the bath. To get a full description
for the bath, we apply, as usual, the unitary transforma-
tion

to (4). One can see that there are two kinds of influence
on the phonon subsystem due to coupling with TSS. The
first is the diagonal term containing o. , providing static
influence of TSS in its ground state (o = +1) or in its

deformation is taken into account. This means the uni-
versality fails in this case. We will focus on the case of
Ohmic dissipation s = 1, when there exists a sharp local-
ization transition due to the infrared divergences induced
by low-frequency bath phonons.

In Hamiltonian (1) we can complete the square to ob-
tain
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excited state (0 = —1). The second is the nondiagonal
term containing o&, representing dynamic influence of the
transition of TSS between its ground and excited states.
This case is analogous to the small-polaron problem.
Thus, the nondiagonal term will be important only for
temperatures T ) 4/kB (where b, = b, ((z is the renor-
malized tunneling parameter with z as the phonon over-
lapping integral). At low temperatures, the nondiagonal
term may be treated as perturbation and then project-
ing the transformed Hamiltonian on to the subspace of
o = +1 gives an eA'ective Hamiltonian for the bath. The
unperturbed Hamiltonian (neglecing the dynamic eft'ect)
is

H „=) ~(b, b( —Ao cosh ) (2g(/~()(bt —b()
)

where we have discarded an unimportant constant Hpp
(o)

represents a phonon system with nonlinear interaction.
Normal ordering of phonon operators, needed for calcu-
lating the ground-state energy, shows the nonlinear inter-
action is proportional to the phonon overlapping integral
~. As we will see later, the leading term of the dynamic

effect is proportional to ((;s [Eq. (22)]. Therefore H &
is

exact at the limit T 0, K ~ 0, but &BT/Ap& (( 1.
Because of the nonlinear interaction, it is diKcult to find

an exact solution of H &, and one must look for approx-(o)

imations.
For weak couplings (A ) 1), the hyperbolic function in

(6) may be expanded with respect to (g(/uI). To zeroth

order, the ground states of H b are vacuum states 4„8,(o)

or displaced states in the original basis

@1(+)= exp + ) (g(/~I)(b( b() C'vac (7)

with

cr = 2(gs/~o)

J(~) = cu'/~0 (10)

s = 2A+n —1

Here n is the exponent of the phonon density of states
D(~) = ~" '/ceo.

For strong couplings (A ( 1), however, the expansion
with respect to (g(/u() fails because it tends to infinity
as u( ~ 0. Therefore, the displaced-state approximation
is no longer valid. In order to make the expansion of the
hyperbolic function in (6) available, we apply the second
unitary transformation

(12)

where the parameter pl will be determined later. Sg
represents the simplest kind of deformation of the bath,
namely, the rescaling of phonon coordinates. Using the
properties of S2, we obtain

where + corrrespond to o, = +1. It is easy to calculate
the renormalized tunneling parameter

(' J(~)EI ——b.oexp I

—o der
~

—(o) (0) —1H I, SgHqS2

= ) ~([b( b( cosh 4y(+ 2(b(b( + b(b() sinh4p(] —bo cosh ) (2g(/u()(b( —b() + ) u((sinh 2y(), (13)
l I I

with g(
—g(e z('. Then we may expand the hyperbolic function with respect to g(/~(. By normal ordering phonon

operators and expanding up to (g(/a()2, we have

) [~( cosh 4y( + (4g( Dz/~( )]b( b(

l

+ ) & [a( sinh 4p( —(4g( Az/~I )](b(b( + b(b() + ) u((sinh 2p() —bq
l l

(14)

with

&2 = ~o exp
I

—2 ) (g(/~I)'
l

H &
—) [a(e ~'bt(b(+u((sinh2p() ] —Az

l

7( in[1 + (8g( +2/~( )l

(16)

(17)

In deriving (14), we have omitted the coupling between
diAerent modes. The parameter yl is now chosen to di-

agonalize H(&) in (14) to yield

The ground states of (16) are vacuum states [which are
different from 4„~ in (7)], or displaced squeezed states
in the original basis
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which obey the canonical commutation relation

x exp —) 7((b(b( —bl bl ) ~

4„„. (18)
1

It is easy to prove that the corresponding renormalized
tunneling parameter is Aq, which can be rewritten as

h (*) ~(z )] = 'b(z z )

we can rewrite H&h as

A—b(z) cos[BQ(z)]

(2&)

(26)

g(~) ~s/~s-1(1 + 8g2g ~2A~2A-3)1/2

Before proceeding further, we would like to analyze the
range of validity for expansion in (g(/~(). Equation (17)
gives g(/~( cu(2" (}/~ at low-frequency limit. There-
fore, the expansion is self-consistent as long as 1 ) A ) 2.

As an application of the present theory, we investi-
gate the influence of the deformation on the localization
transition for Ohmic dissipation (s = 1). Following the
iterative treatment of Ref. 1, from (8) we can find the
localizaion transition takes place at n, = 1 for the limit
Ap/4Jp « 1 if we introduce an infrared cutoff u
Let 62 = ApK, then (19) becomes

~(~'-1}/»' Bi/2 + (B + g)1/2

with B = ~ps/8gp26p, n' = o/(3 —2A). For Ap/~p && 1,
we find K g 0 for n' & 1, z = 0 for n' ) 1, i.e. , the
localization transition occurs at o.', = 1 or o., = 3—2A ) 1

for the strong-coupling regime, instead of e, = 1 for the
weak-coupling regime.

To include the dynamic effect of TSS on phonons, we

use second-order perturbation with 0&. term, which gives

where A/B2 = Ap, B = 2 /2n / (gp/urp). Then H&h

maps on to the quantum sine-Gordon model which has
a well-known phase transition at B, = 8x, ' and it
gives (gp/~p)2 = 1,14 thus confirming our result in the
special case A = 2.

The above results can also be derived from a varia-
tional treatment for 6p/~p && 1. It has been proved'
that the variational displaced state

C'1 ——exp —o', ) Al(b, —b() C„„
l

t (27)

42 —exp —0, ) (gl/~()(bt —b()t

gives localization transition at n, = 1. In (27), 4„
denotes both the vacuum state for phonons and the sym-
metric state for the two-state system (o 4„=4„).
The energy of state C i is

(28)

with Ki ——(2eAp/up) ~/(1 }. The variational displaced
squeezed state has the form'

x exp —) 7((bib( —b( bl ) 4vac (29)

P(z) = i ) (~p/27rur()'/ (b(e' —b)e '
) (28)

x(z) = ) (~p(u(/2s)'/ (b(e" + b.te '
)

I

(24)

(22)

Following a similar treatment as above, we ~et the same
equation as (21) except B is replaced by B = B(1 +
z2) i. Therefore, including the dynamic effect does not
change the result nc = 3 —2A for Ap/up « 1. Hence
we have shown that the localization transition for the
Ohmic dissipative system depends explicitly on A in the
strong-coupling regime.

A typical strong-coupling case is materialized for
the model of a two-state system interacting with one-
dimensional acoustic phonons where A = 2. The present1

theory gives cr', = n, /2 = (gp/up), = 1. This result can
also be obtained exactly in another way. Introducing the
following operators

where pi is determined by minimising the energy E2 of
42. We get the same condition for p( as in (17). Then 42
gives the same localization transition condition as that by
perturbation. Inserting yi into E~ leads to

E2 ——Ep l(:2(1 —n')

with tc2 ——(26pgp/up) /( }.Ei and E2 depend on A

via the relation n' = e/(3 —2A). It can be provedis that
Ei & E2 for A & 1 and 0 & 0, & 1, while Ei ) E2 for A &
1 and 0 & a & 3 —2A. Therefore, the displaced squeezed
state is preferable for the strong-coupling regime at least
in view of the ground-state energy.

Before making conclusions, we would like to discuss
the possible origin of the discrepancy between the present
theory and the previous studies. We want to point out,
on the one hand, the present results are valid in the limit
T ~ 0 and A ~ 0, but knT/D && 1. On the other
hand, we emphasize that the correct order of taking the
limit is important and one should be very careful. There
may be, for example, two diA'erent ways of taking the
limit T ~ 0 in the path-integral approach: before or
after the Gaussian integrals about displaced coordinates
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zI ——zt(1+ b) with the relative displacement

(31)

value o., is determined by

cr, [l + 4n, (Ap/~p)j 'l2 = 1 (33)

where ~~ T is the Matsubara frequency. If the
T ~ 0 limit is taken after integration, ~ acts as a low-

frequency cutoff and there is no infrared divergence. If,
however, the limit ~ ~ 0 is taken first, the behav-
ior of b as ~~ ~ 0 depends on the index A: b ~ 0 for
A ) 1; b ~ oo for A & 1 and the corresponding Gaussian
integrals are not well defined. Therefore, these two dif-
ferent limits are not interchangeable for strong couplings
A & 1. We believe the discrepancy may stem from differ-
ent treatments of the low-frequency modes of the bath:
we have considered the infrared divergence properly while
previous studies have not. In fact, previous results are
recovered if we assume that the low-frequency modes are
not important. In this case, the dissipative effect of the
bath mainly comes from the high-frequency modes and
the parameter p~ may be written as

(32)

in the high-frequency approximation. Then the critical

In the limit Ap/cup « 1, it gives n, :1+2(Ap/~p) which
is precisely the same as that of previous studies.

In conclusion, by considering carefully the effects due
to coupling with a two-state system on the phonon states
of a bath, we have shown the static properties of a dis-
sipative two-state system at zero temperature depend,
not only on the spectral density, but also on the explicit
form of the coupling strength. Our results, contrary to
the previous studies, indicate there is no universality in
dissipative two state-systems at zero temperature. The
effects of strong coupling on dynamical properties are
under consideration now.
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