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Elementary excitations in one-dimensional quantum wires: Exact equivalence between
the random-phase approximation and the Tomonaga-Luttinger model
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We show —contrary to the viewpoint that the random-phase approximation (RPA) is progressively
worse in lower dimensions —that the simple random-phase approximation provides an exact description
for intrasubband plasmon dispersion in one-dimensional quantum wires, by establishing a general

equivalence between the RPA and the strongly correlated Tomonaga-Luttinger model for the
elementary-excitation spectra in one-dimensional Fermi systems. We also discuss the formal analogy be-

tween intrasubband and intersubband collective modes in quantum wires by showing that the one-

dimensional intrasubband collective excitations can also be thought of as depolarization-shifted single-

particle excitations. Our results explain why recent experimentally observed one-dimensional-plasmon

dispersion in GaAs quantum wires can be quantitatively described by the RPA.

Very recently, Goni et al. have observed' one-
dimensional (1D) plasmons in semiconductor (GaAs)
quantum wire structures using inelastic-light-scattering
spectroscopy at low (-4 K) temperatures. There have
been earlier experimental studies of plasmons in GaAs
quantum wires using infrared-absorption and inelastic-
light-scattering techniques; however, Ref. 1 reports an
observation of 1D plasmons in the extreme-quantum-
limit situation where essentially only one 1D electronic
subband is occupied by the carriers. Earlier experiments
probed much wider wires (and higher electron densities)
where many (typically more than ten) confined subbands
were populated by electrons, and, therefore, the system
was more accurately represented as a narrow two-
dimensional electron gas than a pure 1D electron gas.
The quantum wire structure of Ref. 1 has a width of
roughly 300 A, and an electron density of 6.5 X 10 cm
with the Fermi level just around the bottom of the first
excited subband.

Interesting and important as the observation of 1D
plasmons in semiconductor quantum wires most certainly
is, what is even more remarkable (at least from a theoreti-
cal perspective) is that the observed 1D plasmon disper-
sion and the line shape of Ref. 1 agree quantitatively with
a simple theory based on the random-phase approxima-
tion (RPA). While RPA theories for elementary excita-
tions in quasi-two-dimensional semiconductor quantum
wells, heterojunctions, inversion layers, and multilayer
superlattices have been quantitatively highly successful in
explaining an abundance of experimental data, it is gen-
erally believed that a simple Fermi-gas model for 1D
electron systems is simplistic and inadequate because a
one-dimensional Fermi system is a singular, strongly

correlated many-body system where any interaction be-
tween the electrons, no matter how weak, leads to essen-
tial singularities in the electronic spectral function, and
the usual diagrammatic perturbation theory, certainly an
approximation as simple as the RPA, is doomed to
failure unless special care is taken to incorporate the vari-
ous 1D singularities into the calculation. In fact, effects
of interaction are so strong in one dimension that the
Fermi surface disappears in the Tomonaga-Luttinger
model, leading to the nomenclature of the Luttinger
liquid (for 10 Fermi systems) in contrast to the Landau
Fermi liquid where the Fermi surface exists. On the oth-
er hand, experimental results of Ref. 1 are quantitatively
well described by the RPA theory of Ref. 4, which treats
the 1D system simply as a one-dimensional Landau
Fermi-liquid-type "metal" ignoring all the sophistication
and subtleties of the Tomonaga-Luttinger model, which
has been the theoretical paradigm for 1D Fermi systems.
This is particularly surprising because the RPA is sup-
posed to be progressively worse in lower dimensions. We
clearly have a puzzle here: Why does the simple RPA
theory provide an essentially quantitatively exact descrip-
tion of the experimentally observed 1D elementary-
electronic-excitation spectra?

In this paper, we solve this puzzle by demonstrating
that the standard Bohm-Pines-Lindhard RPA theory for
elementary excitations is exactly the same as the known
exact solution for the low-lying exeitations of the
Tomonaga-Luttinger model obtained earlier by Bethe-
ansatz, bosonization, and renormalization-group tech-
niques. This apparently surprising fact, that the standard
RPA provides an exact solution for the strongly correlat-
ed Tomonaga-Luttinger 1D model, seems not to have
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II(q, co) =II(q, co)+II(q, co) V(q)II(q, co), (3)

where II(q, co) is the exact irreducible' polarizability
function. Combining Eqs. (2) and (3), we get the exact re-
lationship,

e(q, co) =1—V(q)II(q, co) . (4)

Equation (4) may be considered an identity, defining the
relationship between the dielectric function and the irre-
ducible polarizability function. The RPA consists of the
simple approximation of replacing the exact II(q, co) of
the system by II&(q, co), which is the irreducible polariza-
bility (the "Lindhard function") for the corresponding
noninteracting electron gas, yielding

eRp~(q, co) =1—V(q)II&(q, co) . (5)

Equation (5) can be derived by a number of alternative
equivalent techniques (e.g., collective coordinates, self-
consistent field, equation of motion, time-dependent Har-
tree, summing the most divergent diagrams), all of which
were well-established ' in the 1950s. The RPA forms
the basis of extensive dynamical linear-response studies in
three and two" -dimensional electron systems. Equa-
tion (5) leads to the well-known long-wavelength collec-
tive mode dispersion of co(q~O)-co& (a constant in-
dependent of q) and co(q~O)-&q in three and two di-
rnensions, respectively.

In a 1D electron gas, it can easily be shown that the
noninteracting polarizability or the polarization bubble
diagram is given by

m
ilo(q, co) = ln

~q

Q) CO
2 2

2 2
CO Q7+

(6)

been appreciated in the existing theoretical literature
(spanning four decades) on the subject. We believe that
our work is significant not only in the context of under-
standing collective modes in quantum wires, ' but also in
view of the currently renewed interest ' in strongly
correlated (non-Fermi-liquid-like) low-dimensional sys-
tems as models for high-temperature superconductors.
In fact, the Tomonaga-Luttinger model has recently been
claimed to be relevant to topics ranging from high-
temperature superconductors to edge excitation in the
fractional quantum Hall effect. Thus, our demonstra-
tion that the RPA elementary excitations are exactly the
same as those in the strongly correlated Tomonaga-
Luttinger model may have some general consequences
well beyond understanding the experimental data of Ref.
1.

The elementary excitations of an interacting electron
gas are given by the zeros of the dielectric function:

e(q, co) =0 .

The exact dielectric function is given by

e '(q, co) =1+V(q)II(q, co),

where V(q) is the Fourier transform of the relevant
Coulomb interaction, and II(q, co) is the reducible' densi-
ty response function or the polarizability function, which
obeys Dyson's equation

A (q)co+ —co
CO

A (q) —1

with

(8)

A (q)=exp
m V(q)

To explicitly see the connection between the RPA and
the Tomonaga-Luttinger model, we expand Eq. (8) up to
second order in q/kF (the expansion is motivated by the
linear dispersion ' of the known exact elementary excita-
tion spectrum in the Tomonaga-Luttinger model) to get

m V(q)q vF + vF

m mV(q)

2uF V(q)
UF+ (10)

leading to the following RPA dispersion for the long-
wavelength collective mode ("plasmon") in 1D systems:

1/2
2 2co= lql uF+ vF V(q)

Note that the collective excitation given by Eq. (11) has
the distinctive form of a shifted single-particle excitation
(remembering that qvF is the single-particle energy in the
Tomonaga-Luttinger model) —this is unique to 1D; in
higher dimensions plasmon energy cannot be written as a
shifted single-particle energy. Equation (11)is exactly the
same ' as the eigenenergy of the elementary-excitation
spectrum in the Tomonaga-Luttinger model. Since the
Tomonaga-Luttinger result is thought to be generically
exact for 1D systems (note that the RPA assumes the
electron single-particle energy to be parabolic, i.e.,
E =q /2m in contrast to the Tomonaga-Luttinger mod-
el, where the single-particle energy has the well-known
linear uFq dispersion), we assert that the RPA is exact in

1D, in contrast to the viewpoint that the RPA becomes
progressively worse in lower dimensions.

While in the Tornonaga-Luttinger model the interac-
tion V is purely a parameter, for 1D semiconductor quan-
tum wires V(q) is the matrix element of the 1/r Coulomb
interaction in the lowest quantized subband and is, there-
fore, exactly known if the confinement potential is
known. It can be shown that for q «a, where a is the
typical confinement width, V(q)- Iln(qa) I, leading to (for
very small q)

co, —Iql l»(qa) I

'", (12)

a result obtained earlier by Das Sarma and Lai. In strict
1D (i.e., a~O), Coulomb interaction is logarithmically

with

~+=qv~+q'/2m,

where uF is the 1D Fermi velocity (A'=I throughout).
Solving Eq. (1) with Eqs. (5) and (6), we get the following
for the RPA elementary excitation spectra of the 1D sys-
tem:
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singular without a cutoff. This follows simply from the
fact that Jdx e'~"/x is logarithmically divergent without

an infrared cutoff. It may also be worthwhile to point out
that for small q ( «kz} the correct long-wavelength ex-

pansion for the irreducible RPA polarizability in 1D is
given by

(13)

(where N is the 1D electron density), in contrast to the
higher-dimensional result given by II(p, ro)
=(X/m)(q /ro )+ . . Again, Eq. (13) is of the exact
Tomonaga-Luttinger form.

In Fig. 1, we show our calculated 1D plasrnon disper-
sion for the full RPA [Eq. (8)], the long-wavelength RPA,
or, equivalently, the Tomonaga-Luttinger result [Eq.
(11)], and, the Das Sarma —Lai long-wavelength result

[Eq. (12)] for the parameters of Ref. 1, assuming a har-
monic confinement (which is a reasonable' approxima-
tion for GaAs quantum wires} with the energy-level sepa-
ration of 5.2 meV and 1D electron density 6X10 crn
Changing the confinement to a square-well-type
confinement does not affect the result very much. Note
that in the wave-vector range of Ref. 1, the first two ap-
proximations (i.e., the full RPA and its long-wavelength
expansion) are indistinguishable. The experimental re-
sults of Ref. 1 are very close to the theoretical results
shown here (cf. Ref. 1, in particular Fig. 3, for details).

In hindsight, it is easy to see why the RPA is an exact
description for 1D plasrnon dispersion. In the
Tomonaga-Luttinger model, all diagrams containing
closed fermion loops consisting of more than two fermion
lines vanish. ' Vertex corrections are, therefore, absent
in the Tomonaga-Luttinger model. Thus, the only dia-
grams which survive' are the bubble (or ring) diagrams
(without any internal interaction lines) connected by
Coulomb interaction lines. This, of course, is the RPA,
which is nothing but a geometric series of bubble dia-
grams, with a single bubble being the noninteracting irre-
ducible polarizability IIo of Eq. (6). This geometric
series, as is well known, leads to the RPA given by Eq.
(5). Compared to 1D electron gas models with nonlinear
parabolic dispersions, such as were used in Ref. 4, the
Tomonaga-Luttinger model distorts the electron energy
spectrum only far away from the Fermi level in making
its linear dispersion approximation. Hence, for those
physical quantities which depend only on the electrons
near the Fermi surface, the Tomonaga-Luttinger model is
a very good model, and, therefore, the RPA should be ac-
curate in the calculation of those physical quantities.
That is the reason why, in the long-wavelength limit, the
calculated 1D plasmon dispersion using the RPA and a
quadratic electron dispersion is exactly the same as the
low-energy collective spectrum of the Tomonaga-
Luttinger model.

Before concluding, we point out that the elementary
excitations discussed above are longitudinal charge-
density excitations along the length of the wire, which are
the only allowed excitations in the Tomonaga-Luttinger
model. But, in real quantum wires, even in the extreme
1D limit, there can be collective charge-density excita-
tions associated with the transverse electronic motion
representing quantum intersubband transitions. The
same RPA theory can be used to obtain the collective ex-
citation spectra for these intersubband transverse excita-
tions (which have no analog in the Tomonaga-Luttinger
model, where all higher subbands are strictly neglected),
and, assuming occupation only of the lowest subband,
one obtains

8 (q)Q+(q) —0 (q)
~12(1} g ( )

(14)

0 0.5 1.0 1.5
q(105 cm ~)

I

6
I

2.0
8 (q) =exp

VI 212 (9}
(15)

where coI2 is the lowest intersubband collective mode,
0+(q) =E2, +qu~+q /2m, with E2, as the single-particle
energy separation between the ground and the first excit-
ed subbands associated with confinement, and, the func-
tion B (q) is given by

FIG. 1. The calculated intrasubband 1D plasmon dispersion
for the parabolic GaAs quantum wire (N =6X10 cm ') of
Ref. 1: Full RPA, i.e., Eq. (8) of text (solid line); long-
wavelength RPA or, equivalently, the Tomonaga-Luttinger re-
sult, i.e., Eq. (11) of text (indistinguishable from the solid line);
the logarithmic formula of Eq. (12) (dashed line). The experi-
mental results of Ref. 1 are close to the solid line. Inset: The
calculated lowest intersubband 1D RPA collective mode disper-
sion for the same sample.

where V,2,2(q } is the off-diagonal matrix-element of
Coulomb interaction between subbands 1 and 2 [in this
notation, V(q) of Eqs. (5)—(11) is VIIII(q)]. Note that
Eqs. (14) and (15) are formally equivalent to Eqs. (8) and
(9), except that now we are considering intersubband col-
lective modes, whereas Eqs. (8) and (9) refer to intrasub-
band collective modes. The long-wavelength expansion
of Eqs. (14) and (15) lead to
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ro»(q)=[E»+2E»NV»»(q 0)]' '+0(q'), (16)

which is formally the same as Eq. (11). Note that in the
semiconductor microstructure literature, ' "the second
term of Eq. (16) is called a depolarization shift' and
therefore we can consider the second term in Eq. (11) a
depolarization shift for 1D intrasubband excitation. The
analogy is formally exact because the first term in Eq.
(11), vFq, is the single-particle energy in the Tomonaga-
Luttinger model just as the first term in Eq. (16), E2„ is
the single-particle intersubband excitation energy. As an
inset of Fig. 1, we show our calculated intersubband col-
lective excitation dispersion for the parameters of Ref. 1.
This theoretical result has also been experimentally
verified quantitatively in Ref. l. (Note that the intersub-
band excitations are massive in the field-theoretic sense,
i.e., they have a gap, E2&, at q=0. The vertex corrections
are important for the intersubband excitations and
represent an excitonic effect physically. )

In summary, we have studied the elementary-excitation
spectra of 1D quantum wire structures, obtaining the
seemingly surprising result that the RPA provides an ex-
act description of the collective mode dispersion in 1D, in
contrast to higher dimensions, where it is exact only in

the high-density limit. ' The long-wavelength (up to
second order in q lkF ) RPA plasmon dispersion is shown
to be identical to the exact result in the Tomonaga-
Luttinger model of a strongly correlated 1D Fermi sys-
tem. Our results explain' why a recent experimental
study' of 1D plasmons in GaAs quantum wires can be
quantitatively explained by an earlier numerical RPA
analysis. In that sense, we have demonstrated that 1D
quantum wires, at least in the extreme quantum limit, are
Tomonaga-Luttinger systems, which is important in view
of the widespread fundamental and technological interest
in quantum wires. We also show the curious result that
1D intrasubband collective mode dispersion can be
thought of as a depolarization-shifted single-particle exci-
tation, whereas in two dimensions '" there is no relation-
ship between collective and single-particle modes. Final-
ly, we obtain the 1D intersubband collective mode disper-
sion and establish the formal analogy between intrasub-
band and intersubband excitations in 1D.
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