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The explicit inclusion of fractional occupation numbers in density-functional calculations is shown to
require an additional term to make the energy functional variational. The contribution from this term to
the density-functional force exactly cancels the correction term depending on changes in the occupation
number. For occupation numbers obeying a Fermi distribution, the resulting functional is identical in
form to the grand potential; other choices for the form of the occupation numbers wi11 result in di6'erent
functionals. These terms, although numerically small, should be included in practical calculations that
allow for fractional occupation numbers.

I. INTRODUCTION

Density-functional theory' in the local-density ap-
proximation is quite successful in predicting properties of
materials. An important ingredient in this success is the
ability to calculate a variational total energy. The ex-
istence of different variational functionals is by now well
known, ' as is the procedure for calculating the asso-
ciated density-functional forces. Most of these deriva-
tions assume either fixed integral occupation numbers, '

or else that variable occupation numbers will not alter
the form of the energy functional. ' Fractional occupa-
tion numbers are formally introduced via the grand po-
tential of finite-temperature thermodynamics. '

In practical calculations, variable occupation numbers
are often introduced even for finite systems. (A band cal-
culation with finite k-point sampling is still formally a
finite system, but with periodic boundary conditions. )
This procedure has the advantage that the calculations
for metallic systems typically coverage more rapidly, and
that a broadening of each level crudely mimics larger sys-
tems or better k-point sampling, although since these sys-
tems are finite, the grand potential is formally not applic-
able. It is important to emphasize, however, that finite-
temperature density-functional theory is the fundamental
basis for treating infinite electronic systems at physical
temperatures T )0.

In this paper, we demonstrate that by explicitly includ-
ing variable occupation numbers, an additional term is
required to make the standard total-energy functional
properly variational. Moreover, when this term is includ-
ed, there is no correction term to the density-functional
force due to changes in occupation number. For occupa-
tion numbers satisfying a Fermi distribution, the varia-

tional total-energy functional is identical in form to the
grand potential; for other choices of the occupation num-
bers, however, the form will be different. Although these
results are straightforward, they help clarify and correct
various statements made in the literature concerning
density-functional total energies and forces. Computa-
tional evidence for the existence of these terms can be
found in standard electronic-structure calculations, as
well as in a recent first-principles molecular-dynamics in-
vestigation' that used the grand potential of finite-
temperature density-functional theory ' directly. Thus,
the results of this paper are also of practical importance.

II. ENERGY FUNCTIONALS

Consider the energy functional'

E[n]=T, [n]+ U[n]+E„,[n],

T, [n] = g f, c, —fdr n(r) v,.tt[n;„], (3)

where v, [n;s„] is the effective single-particle potential.
The difference between these equations and those previ-

where n (r) is either the input, n;„, or output, n,„„densi-
ty. The Coulomb energy is

U[n]= —,
' fdr fdr'

/r —r'/

zz
V V

E,„ is the exchange-correlation energy, and the "kinetic"
energy is given by
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ously given ' is that the (possibly) fractional occupation
numbers f, have been explicitly included in the eigenval-
ue sum. This functional E includes both the standard
Kohn-Sham functional' EKs (for n =n, „,) and the
modified functional ' (for n =n—;„),and at the exact den-

sity no EKs[iio]:E[no]. When the occupation numbers
are fixed, then E is variational (stationary) for either
choice of n, as shown previously. Here we will demon-
strate that including the occupation numbers explicitly
requires that an additional term be added to the energy
functional.

Expanding n about the exact density np, it is easy to
show that, to first order, the Coulomb and exchange
terms are

U [no+5n]+E„,[no+5n ]

= U[no]+E„,[no]+ f dr 5n (r)u, s[no], (4)

and the kinetic-energy term is

T, [no+5n ]= T, [n ]0—f dr 5n (r)v,&[no]+ + 5f; e; .

Thus, for a given density n, the density functional is

E[no+5n]=E[no]+ +5f;e;+O(5 ) .

bE[no+5n]=bE[no] —+5f; s;+O(5 ) . (7)

All first-order terms vanish, i.e., the functional is station-
ary, except for the term depending on the change in occu-
pation numbers. If 5f;%0, this term will be nonzero
since the eigenvalues c; are not all equal to the same con-
stant, although numerically it may be quite small.

To generate a proper variational functional, we must
add a term bE [n] such that

bE= —g fdf, ln
1

=—g [f,lnf, +(1 f, —)ln(1 f;—)]—p g f; +Co,
1

(10)

where Cp is a constant of integration which determines
the reference energy. For number conserving changes,
we choose Co =pN, and then p(N —g; f; ) =0:

bE = —g [f;lnf;+(1 f, )ln(1 —f; )] —.1 (10')

Thus, a term of the form given in Eqs. (10') or (10") is re-
quired to make the energy functional properly variational
when variable occupation numbers are permitted.

The form of Eq. (10') for number conserving variations
is the same" as the entropy contribution to the free ener-

gy for noninteracting particles, —TS, [n] When .non-
number-conserving changes are also included, Eq. (10"),
the resulting energy functional is identical in form to the
grand potential of finite-temperature thermodynamics,
i.e., Eo[n] =E[n]+bE =A[n] Th. e'interpretation
proposed in this paper —that AE is a consequence of
defining a proper variational functional —has the advan-

tage that no physical significance is necessarily given to
the "inverse temperature" P or to the form of b,E. Thus,
Eo[n] can be used in situations (such as finite systems)
where the concept of temperature is problematic.

Allowing the possibility of non-number-conserving
changes, we choose Cp =0 and then

bE= —g [f;lnf;+(1 f;)ln(1—f;)]—p—g f; . (10")1

The form of this correction will depend on the functional
form of the occupation numbers. A su%cient condition is
that there exists a function 7(f; ) =s;. Then b,E is given

as the integral of 9' with respect to f;.
Consider a Fermi function form for the occupation

numbers (we will discuss other choices later):

III. FORCES

F =—5Ep
5v.

In density-functional theory, the force on atom u is
given as the derivative of the (variational) energy func-
tional Ep =E+AE with respect to a displacement 5'T:

where p is determined either by numerical conservation
or the chemical potential of the system. Although it is
natural to make the additional correspondence
P =k~T, this identification is not necessary. The in-

verse function 9 is easily found to be

1
V(f, )=—ln

The derivation of the force follows in much the same
manner as the demonstration of the variational nature of
the energy functional. The result is

F = F„„—g f; l(H —e;)lg;
5$;

+tg; l(H —e;)I )

Integrating this term with respect to f;, we obtain The first term FH„ is the standard Hellmann-Feynman'
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result, i.e., the classical electrostatic force due to all the
charges in the system. The second term —the "Pulay"
force—contains the corrections' ' that depend on de-
tails of the calculations: In an exact calculation, as well
as in some other special cases, these terms vanish. ' '
(This contribution is also known as the "incomplete basis
set" force. )

The third term depends on the changes in occupation
numbers. While the existence of this term has been real-
ized previously, ' it has either been neglected or assumed
to vanish. Indeed, if all the states are occupied with fixed
occupations (f;—= 1), then this terms does vanish. If,
however, changes in occupation are allowed, either be-
cause of level crossings or "thermal" effects, then formal-
ly this term is not identically equal to zero, in complete
analogy with Eq. (6). '

By differentiating either Eq. (10') (and using number
conservation, iJ,+5f; =0) or Eq. (10"), the correction
term coming from hE is easily found to be

56E
5r

5f;

This term exactly cancels the third term and hence the
proper density-functional force is equal to only the
Hellmann-Feynman and Pulay forces,

(14)

IV. DISCUSSION

The results of the preceding sections demonstrate that
there are no correction terms to the density-functional
force due to changes in the occupation numbers if the
proper variational energy functional Ep is used. This is a
formal statement that is independent of such calculation-
al parameters as k-point sampling, etc. An equivalent
statement is that the line integral of the Hellmann-
Feynrnan and Pulay forces is given by differences of the
functional Ep =E+AE when variable occupation num-
bers are allowed.

This restatement is relevant to first-principles
molecular-dynamics (MD) methods. ' ' In these
methods, the ionic motion is treated classically, and the
potential-energy surface is defined by the density-
functional (Kohn-Sham) energy as a function of the ionic
positions {R~]. The Lagrangian for Born-Oppenheimer
(adiabatic) dynamics can be written as' '

+Bo X ,'MiRr E[n, {Rr]] .—
1

(15)

The force of the ions is then determined using the
Hellmann-Feynman forces. (In principle, the Pulay
forces also must be included. However, most of these cal-
culations to date have used plane waves and pseudopo-
tentials; for a plane-wave basis, the Pulay forces vanish
identically. ' If the Pulay terms are nonzero, as for ex-

ample in a linearized plane-wave calculation, then they
must be included also. ) The total energy, defined as the
sum of the kinetic energy of the ions and the potential en-
ergy E, is a conserved quantity, if and only if the force is
the derivative of the potential energy. Thus, if
Hellmann-Feynman (plus Pulay) forces are used, then the
correct energy functional to use in Eq. (15) is E =Eo.

In MD calculations, the changes in occupation number
between time steps are finite and will depend on the pa-
rameter P ', to get reasonable conservation of energy,
the calculation parameters should be chosen so that all
5f; are small. The optimum values will depend on the
time step and the number and energy separation of states
near p. Similar considerations also hold for the self-
consistency process itself with fixed ionic positions (the
changes 5f, between interations determine the rate of ap-
proach to the self-consistent value of the energy), and for
standard density-functional calculations in which the
force is used to relax the atomic positions.

Another approach, followed by Wentzcovitch, Mar-
tins, and Allen' (WMA), uses the finite-temperature for-
malism of Mermin to introduce fractional occupations
and a term of the form of Eq. (10). The use of the grand
potential ' has appeal in that it provides a physical inter-
pretation of the form of Eq. (10), albeit for noninteracting
particles. WMA found significant improvement in ener-

gy conservation during MD runs, even though the elec-
trons and ions were at different "temperatures" and the
grand potential is not formally applicable to finite sys-
tems. Based on the discussion above, and the discussion
in Ref. 10, it is clear that this observed improvement
comes about because the force and the potential energy
are now consistent. '

The analysis presented here takes as a starting ansatz
the commonly used assumptions of an energy functional
of the form of Eq. (1) and variable occupation numbers,
and then derives the additional terms required to make
the functional variational. Although the functionals Ep
and 0 are identical in form, the underlying assumptions
are different. By not associating physical significance to
P, and the corresponding "temperature" T, one is not
tied to the particular functional form of the grand poten-
tial. Instead, one can define a variational functional
given a particular choice for the form of f, Common
computational alternatives to the Fermi function form
for f; are interpolation schemes (e.g., linear tetrahadron
and Fourier fits) and Gaussian broadening of each level.
The interpolation schemes implicitly assign fractional oc-
cupations; unfortunately, the form of AE will depend on
details of the calculations, including k-point sets and the
band structure itself. For Gaussian broadening, the occu-
pation numbers are related to the complementary error
function, erfc[(s; —p, )/a]. A simple calculation shows
that hE as given in Eq. (10) will not yield a variational
energy for Gaussian broadening. It is not obvious that
any simple functional form of hE for Gaussian broaden-
ing can be found, since no simple functional form for the
inverse function to erfc exists. (An infinite series expan-
sion of the inverse, 9, can be defined from reversion of
the infinite series representation of the error function, but
is not useful in practice since it leads to an infinite series
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for AE. Reasonable numerical approximations, however,
may still be possible. ) On the other hand, Fermi broaden-
ing, which corresponds to broadening each level with a
function [f, = f"d Eg(, E, )]

g;E= sech
4k~T 2ksT ' (16)

is at least as simple to use in calculations and plots as a
Gaussian, but has the advantage that a simple and practi-
cal variational functional for the energy can be defined.

In conclusion, we have demonstrated that if fractional
(variable) occupation numbers are allowed, then an addi-
tional term is required in the energy functional in order
for it to be variational. When this term is included, the
density-functional force is equal to the Hellmann-
Feynman (+ Pulay) force only; no correction terms due
to changes in occupation numbers exist. If the occupa-

tion numbers are chosen to have the functional form of a
Fermi distribution, then the proper variational energy
functional is identical in form to the grand potential of
finite-temperature density-functional theory, ' but no
physical significance such as temperature or entropy need
or should be associated with this term. Although the nu-
merical effects of this term may be small, they do exist
and should be included in practical calculations that
make use of fractional occupation numbers.
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