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Correlated electronic ground state of the molecule C6o
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Ab initio correlation calculations for the C60 molecule are reported. Details are compared with those
of similar calculations on diamond and graphite. It is found that the binding energy of the molecule is
smaller by 0.45 eV/atom than that of the solids. The correlation pattern is very similar to the one for
graphite.

I. INTRODUCTION

A detailed understanding of electron correlations in
the fullerene molecule C6o (Ref. I) is of significance. It
was recently found that C60 compounds become super-
conducting at temperatures that are large in comparison
with related compounds such as doped graphite. There-
fore it seems to be worthwhile to investigate whether
there are differences in the electronic many-body effects
in these systems. If they exist, then they might give a
hint for a superconducting mechanism caused by the
direct Coulomb interaction of the electrons.

This aim is pursued by an ab initio correlation calcula-
tion for the neutral molecule. For this purpose, the local
ansatz is used. a scheme which was developed using cal-
culations for small molecules and has been applied to
two other allotropic forms of carbon, namely diamond
and graphite. From the calculations not only ground-
state energies but also correlation patterns can be taken.
Here, we start from a Hartree-Fock (HF) self-consistent-
field (SCF) calculation which was performed with the
direct SCF program in the program package
TURBOMOLE.

Correlation calculations for large molecules or solids
can be performed within the local ansatz because this
scheme is restricted to relatively few correlation opera-
tors which all have a definite purpose. In this respect, the
scheme differs from standard quantum-chemistry ap-
proaches which all cover complete sets of operators. This
leads to computation costs that have so far made calcula-
tions for solids too expensive to be performed.

Such a selection of correlation operators within the lo-
cal ansatz has a disadvantage, though. A certain amount
of correlation energy is lost when the resulting energy is
compared with the one of a complete coverage of the
correlation space. Such comparisons have been made in
the past. for atoms and small molecules. There a loss of
5—8% was observed. ' The computations for the C6O
molecule offer a comparison for a larger system, since re-
cently a standard correlation calculation could be per-
formed although only in second-order many-body pertur-
bation expansion (MP2). In this way, experience about
the shortcomings of the local ansatz may be gained. Such
information will be relevant for future solid calculations.

The next section contains a short introduction into the
calculation scheme. Within the third section, the partial
contributions to the correlation energy are discussed and
a comparison between results of the local ansatz when re-
stricted to MP2 and the correct MP2 energy for the same
basis set are made. The fourth section contains some de-
tails of the correlation patterns and a comparison with
other carbon representations.

II. THE COMPUTATION SCHEME

The SCF calculation was performed by the program
TURBQMoLE. As a basis set, the same set of (contracted)
Gaussians was taken as was used before for the calcula-
tions tor aiamona ana grapliite. It is of aoubie-5 plus po-
larization function quality. As compared with the origi-
nal basis set, the outer s and p orbitals were contracted to
0.23. The exponent for the d orbitals was set to 0.6. The
molecule is completely described by the two different
neighbor distances. Here, the optimal values for the SCF
ground state were taken, namely a, = 1.37 A and

0
a2=1.45 A. a, is the axis connecting two hexagons
while a2 connects a pentagon and a hexagon. MP2 calcu-
lations and experiments indicate that the difference be-
tween these distances as obtained using the SCF approxi-
mation is a factor of 2 too large compared with the real
difference.

Correlations are included by the local ansatz. Within
this scheme, the following variational ansatz is made for
the correlated ground state:

~e,.„)=e '~esc„&,

S=gil 0„, (2)

g;(r)= g y;,fj(r),
1

(4)

ni.

gnat.

g

0 = nn. ,

S; SJ.

Here, n; and s; are density and spin operators for an
electron in the local orbital
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where the f, (r ) represent the basis orbitals. The opera-
tors have a transparent meaning. The first operator
n, tn, &, for example, when applied to ~%'scF), picks out all

configurations with two electrons in orbital g,.(r). When

applied with a variational parameter g„, as in Eq. (3), it
partially suppresses those configurations. Similarly, the
operators n, n. introduce density correlations between
electrons in local orbitals g;(r) and g (r). The wave func-
tion with these two sets of operators, when chosen for the
homogeneous-electron-gas problem, is the Jastrow func-
tion. ' The operators s; s generate spin correlations.

All operators, when applied to ~%sc„), create states
which are not orthogonal to

~ VscF). Besides, these states
include one-particle excitations in addition to the two-
particle excitations from ~qlsc„). We want to keep only
the two-particle excitation parts of these states. There-
fore, we require that contractions within the operators
are forbidden when expectation values are computed.
The operators then reduce fiuctuations in

~ VscF).
The variational parameters g are chosen so that the

energy

is optimized. Such a computation cannot be performed
exactly. The standard approximation is an expansion in

powers of g, e.g. ,

SCF corr

E„„=—2 g g ( O,H ) + g g„g„(O,HO„), . (7)
V,P

Here, ( A ) means the expectation value of A within

~'PscF). The subscript ( ), indicates that only connected
diagram contributions are added. " This approximation
works only if the correlations are sufficiently weak. It is
equivalent to a specific coupled electron pair approxirna-
tion called CEPA-0 in quantum chemistry' but is re-
stricted to relatively few operators.

An MP2 calculation within the subspace of the opera-
tors 0„ is performed when the matrix (O„HO„), in Eq.
(7} is replaced by the matrix (O„HOO )„where Ho
represents the HF one-particle Hamiltonian for the prob-
lem. For both approximate calculation schemes it holds
that correlation energy is lost if the space of correlation
operators is restricted.

So far everything except the local orbitals [Eq. (4}j and
the sets of operators built by them is fixed. A first choice
within the treatment is to restrict ourselves to the so-
called interatomic correlations. These correlations arise
due to bonding, i.e., due to the delocalization of elec-
trons. They are expressed by the above operators when
the local orbitals represent atomic orbitals. There is no
unique way to determine atomic orbitals from a SCF
ground state. Here, they were obtained in the following
way. First, the density matrix in terms of Lowdin or-
thogonalized basis orbitals was restricted to a small clus-
ter around a specific atom. Next, only the eigenstates of

this density matrix closest to 1 were kept, representing
occupied states localized to this cluster. From these, con-
tributions from the basis orbitals on the central atom
were taken and averaged. This led to a core state, and to
information about the representation of average atomic
2s and 2p valence orbitals on this atom. From these
valence orbitals, a ~ orbital in center direction and three
sp2 hybrids in the direction of a neighbor atom each were
generated. Such orbitals were constructed on every atom
and Lowdin orthogonalized to each other. They were
used as atomic orbitals for the interatomic calculation
and represent more than 99%%uo of the total electronic
charge. With them, correlations on individual atoms as
well as longer-range correlations between different atoms
were treated. Such a calculation can only be performed
when the energy converges sufficiently fast with respect
to operators describing long-range correlations. It turned
out that for the actual calculation, operators describing
correlations between atomic orbitals up to second nearest
atoms had to be included. The corresponding calcula-
tions were performed without further approximation,
leading to the interatomic correlation energy E o",,'.

Shorter-range correlations are covered by so-called
intra-atomic operators. They are built from sets of local-
ized subatomic orbitals that are generated from basis or-
bitals on a given atom each. Details for their construc-
tion can be found in Ref. 3. The choice of localized suba-
tomic orbitals depends on the available basis. Within a
basis of double-g plus polarization functions quality, the
maximal angular subdivision of the atomic volume is a
twelvefold nonorthogonal sp d hybridization while the
maximal radial subdivision is one into three shells. For
them, sets of parameters had to be determined. These
were taken from an optimization calculation on the mole-
cule CH~ computed in the same basis set. The same pa-
rameter sets have been used before for calculations in dia-
mond and graphite. Neither here nor in the cases be-
fore did a reoptimization lead to a sizable energy gain.
The operators constructed by these orbitals are connect-
ed with individual atoms only. For each atom A, a gain
in correlation energy E',",'„';(A) is obtained when these
operators on atom A are added to the interatomic opera-
tors. In a first approximation, the total correlation ener-

gy consists of the interatomic energy and the sum of all
these terms. There is a correction to be made, however: a
set of calculations in which intra-atomic correlations on
neighbor atoms A and A' are added at the same time has
to be performed and leads to an overlap correction
E;;„„(A, A '), since these short-range correlations on the
two atoms are not orthogonal to each other.

There is also a set of medium-range operators that
need to be added. Such operators were constructed from
subatomic orbitals on nearest-neighbor atoms before and
were thought to describe short-range correlations in the
volume between the two respective atoms. From the
calculations for C60 presented here, it turned out that
similar operators needed to be included for next nearest
neighbors as well. Therefore, a more appropriate inter-
pretation of these operators is made. When atoms come
closer, they interact by an induced polarization. Further-
more, when the electrons delocalize, charge fluctuations
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on individual atoms are screened by polarizations on the
neighbors as well. Polarizations on individual atoms are
described by local orbitals that represent superpositions
of atomic orbitals and the appropriate polarization func-
tions. In order to be able to describe polarizations in
each required direction, the set of atomic orbitals is hy-
bridized with the complete set of polarization functions.
For the C atom this means a (nonorthogonal) twelvefold
sp d hybridization. It turned out in the calculations
that no new local orbitals needed to be generated but that
a specific twelvefold hybridized set could be taken that
was used for intra-atomic correlations on an individual
atom before. When constructing the operators for the in-
duced polarizations, the polarization orbitals on two
neighbor atoms are coupled by density operators, while
polarizations due to charge fluctuations are described by
operators formed from pairs consisting of atomic orbitals
on one atom and of polarization orbitals on the second
atom. These operators are included into the calculations
in an incremental fashion. For pairs of atoms A and A',
intra-atomic correlations are added to the interatomic
correlations and then the polarization operators are in-
cluded as well. This leads to an energy gain which is
called E~,",, (A, A').

The total correlation energy is therefore

corr corr + X Ecorr (
A

these additional atoms may be left out without changing
sizably the results because these orbitals contribute very
little weight to the SCF ground state. Figure 1 represents
the three clusters for which interaction matrix elements
had to be calculated. The atoms represented by filled
dots require a complete basis set while the ones given by
open circles require only the smaller basis. These clusters
are big enough to determine all intra-atomic and polar-
ization contributions described above. Cluster 3 actually
enables one to compute a specific third-neighbor polariza-
tion as well. Besides, these clusters were large enough to
determine all matrix elements needed for the interatomic
correlation calculation. On the other hand, they were
small enough to make the generation of the VJI,I a simple
task for standard quantum-chemistry programs and to
guarantee that the following calculations within the local
ansatz program scheme were not time consuming either.

III. CORRELATION AND BINDING ENERGIES

The individual contributions to the correlation energy
of the molecule C60 are presented in Table I for the com-
plete solution of Eq. (7) (called CEPA-0) and for the ap-

+ g [E;,"„(A,A')+E~;,', (A, A')] .

Similarly, other properties are computed. This way, a
segmentation of the correlation treatment for larger sys-
tems is available which applies independent of details of
the delocalization of electrons. It is crucial that the in-
teratomic correlations which in fact do depend on the de-
tails of bonding are treated separately. They do not show
such a perfect separability as the intra-atomic terms and
the polarization contributions.

This computation scheme allows us to include symme-
try in a very efficient way. For the molecule C60, there
exists only one kind of C atom. Therefore, there was only
need for a single calculation leading to E',",",;(C). Further-
more, there were only two calculations for different
nearest-neighbor C atoms necessary —the one dealing
with two atoms on a line connecting two hexagons, the
other on a line connecting a hexagonal and a pentagon.
For next nearest neighbors there exist only two types as
well —the one describing a second neighbor on a penta-
gon and the second describing a second neighbor on a
hexagon.

The largest computer time expenses come into the cal-
culations from the generation of the required interaction
matrix elements between basis orbitals on different atoms,
V; ki. It is self-evident that for operators on the atoms A
and A ' basis orbitals on these atoms need to be included.
Additional matrix elements are only needed due to the
delocalization of the SCF ground state. It turned out
that only matrix elements from basis orbitals on further
atoms needed to be included that are nearest neighbors to
these two atoms. Actually, all polarization functions for

FIG. 1. Schematic representation of the three different clus-
ters for which interaction matrix elements for the basis orbitals
were generated. Double lines denote the shorter distances a l.
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TABLE I. Contributions to the valence-shell correlation energy of C6o, as obtained in two different
approximations. Quantities are expressed in a.u./2 C atoms.

CEPA-0 MP2

Single-site operators
Neighbor-atom operators
NNN-atom operators
Longer-range correlations
Total interatomic contributions

Interatomic correlations
—0.0898
—0.0175
—0.0058
—0.0040+0.0020
—0.1171+0.0020

—0.0717
—0.0165
—0.0046
—0.0040+0.0020
—0.0968+0.0020

Single-site operators
Overlap corrections
Total intra-atomic contribution

Intra-atomic correlations
—0.1092
+0.0028
—0.1064

—0.1088
+0.0028
—0.1060

Nearest-neighbor atoms
NNN atoms
Opposite hexagon atoms
Total polarization contributions

Polarization correlations
—0.0140
—0.0054
—0.0004
—0.0198

—0.0171
—0.0067
—0.0006
—0.0244

Result LA
Exact result

Total correlation energies
—0.2433+0.0020 —0.2272+0.0020

—0.257

proximate solution in MP2. For the latter approxima-
tion, the result obtained for the local ansatz can be com-
pared to the exact result for the same basis set. Actually,
the latter result was obtained after a first calculation
within the local ansatz without longer-range polarization
contributions was performed. As can be seen, the local
ansatz loses almost 12% of the correlation energy. This
is a significantly larger error than found before for calcu-
lations on atoms and small molecules. When comparing
the results obtained there ' with results obtained with
standard programs, ' a loss of 4—6%%uo for atoms and
6—9 % for small molecules was observed.

Before addressing the origin of this defect, details of
the results shall be discussed briefly. As can be seen, in-
teratomic correlations contribute almost half of the
correlation energy. Longer-range correlations converge
quite fast. Contributions extending beyond next-nearest-
neighbor (NNN) correlations were estimated. A few of
them were explicitly computed. When calculated using
MP2, the single-site terms are strongly underestimated.
Such a behavior was found before for other systems and
is well understood. ' It is known that MP2 strongly
overestimates longer-range correlations in metals. For a
three-dimensional metal, this even leads to a divergence
of the correlation energy. Here it can be seen that
longer-range results come closer to the CEPA-0 results
but up to second-neighbor distances do not overestimate
them.

Intra-atomic correlations contribute with roughly the
same amount to the correlation energy as do the intera-
tomic correlations. Note that these contributions are al-
rnost perfectly additive, i.e., the overlap corrections are
very small, and that almost the same result is obtained
within MP2. Polarization corrections come out smallest.

While there is a sizeable contribution stemming from
nearest neighbors, the newly added NNN terms add only
2—3% to the correlation energy. A specific set of third
nearest neighbors adds only a negligible amount of polar-
ization contributions. These polarization contributions
are systematically overrated by 20% in MP2.

We now return to the question where correlations get
lost due to the restrictions of the local ansatz. We do not
trace the source of the discrepancy to the longer-range
correlations since the operators, which are expected to
describe the dominant long-range contributions, were ex-
plicitly included, and the resulting contributions seem to
be well converged. What must have been handled not
well enough are the intra-atomic contributions and the
on-site and neighbor contributions to the interatomic
correlation energy. Possibly, neighbor polarizations will
necessitate a better treatment too. In fact, the size of the
defect for C60 can be estimated from trends in the defects
of small molecules.

Let us turn next to the binding energy of C6O. Know-
ing the corresponding energies for the free atom and the
molecule within the same finite-basis set, one may calcu-
late the individual contributions to the binding energy.
The values are presented in Table II. The SCF binding
energy is obtained by subtracting the atomic energies, ob-
tained within the original basis but corrected for the
double-g contraction of the s orbitals, from the total ener-

gy of the molecule. The latter is —2270. 191 a.u. , while
the first is —37.653 a.u. A rough estimate is made for the
finite-basis correction leading to the HF limit of the bind-

ing energy. The correlation contribution to the binding
energy is obtained by subtracting from the total correla-
tion energy, obtained within the local ansatz for C6O

(Table I) the valence correlation energies of the individual
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HF contributions
SCF result
Finite-basis corrections

—0.367
0.010+0.005

Correlation contributions
Local ansatz
Corrections to the LA
Finite-basis corrections

0.093+0.002
—0.025

0.034+0.008

TABLE II. Binding-energy contributions to C«(a.u./2 C
atoms).

differences in between C6p and graphite. The energy
difference discussed above should therefore represent well
the metastability of the molecule C6p. A certain correc-
tion is expected from an optimization of the ground-state
geometry. When assuming that the difference between
the two neighbor distances for C6p was overestimated by
a factor of 2, then this is connected with a loss of binding
energy of 0.10 eV per atom.

IV. CORRELATION FUNCTIONS

Final estimate 0.528+0.010

atoms, obtained within the local ansatz for the same basis
but with the original exponents. The latter value is—0.075 a.u. '

There are two corrections that need to be made in or-
der to estimate the experimental binding energy. The
first is an estimate of the shortcoming of the local ansatz.
The exact valence shell correlation energy for the C atom
in the actual basis is known to be —0.078 a.u. ' An esti-
mate for C6p is made by assuming that the relative error
of the result in the CEPA-0 approximation is the same as
in MP2. The resulting correction is sizeable.

The second correction is connected with the finite basis
used for the correlation calculation. An estimate of the
shortcomings of the basis was obtained from a compar-
ison of results for such a basis and experimental informa-
tion in the case of small molecules. Here, it is assumed
that the finite-basis error is the same as for small organic
molecules. The error bar connected with this estimate
represents variations in the finite-basis defects for
different molecules.

The resulting electronic contribution to the binding en-
ergy is sufficiently smaller than the corresponding values
for diamond or two-dimensional graphite ( —0.555
a.u. /unit cell) as deduced from the experimental binding
energies. From calculation performed using techniques
such as the local-density approximation (LDA) and
density-functional theory, a binding energy of 0.561
a.u. /2 C atoms for the molecule was obtained. ' This
binding energy is certainly too large, probably due to the
well-known shortcomings of the LDA.

Similar correlation calculations to those performed
here for C6p have been performed for two-dimensional
graphite. A more accurate estimate of the metastability
of C6p can therefore be made by directly comparing the
values of the two calculations. For graphite, a SCF bind-
ing energy of —0.398 a.u./unit cell was obtained. In the
SCF approximation, C6p is by 0.015 a.u./atom less stable
than graphite. This loss in binding represents the costs of
the bending of the plane. The valence-shell correlations
of graphite are very similar of those of C6p. The correla-
tion energy amounts to —0.244 a.u./unit cell when in-
cluding the same sets of operators. Therefore, a further
loss in energy of 0.0005 a.u./atom is found. Altogether,
this leads to a loss of energy of 0.016 a.u. or 0.45 eV per
atom for C6p.

There is no reason to assume that finite-basis effects or
shortcomings of the local ansatz should result in

=8 y q.& o,n, ,n, , & . (9)

Here, only linear corrections in the variational parame-
ters g were included. Table III contains the values for
the correlation strength g;, where i represents the tr orbit-
al and the o orbitals in the different directions. For com-
parison, analogous values for diamond and graphite are
added. As can be seen, correlations of the valence elec-
trons in C6p are very similar to the ones in graphite.

From the values of the correlation strength, it may be
deduced that the m. electrons in C6p are weakly correlated.
Correlations are not expected to reduce the mobility of
the electrons by more than 5%. Theories of strong corre-
lations or resonant-valence-bond theories will therefore
not work when they are applied to intramolecular in-
teractions in C6p. This notion is supported by the close
agreement between the experimental equilibrium
geometry of the molecule and the theoretical result ob-
tained from MP2 calculations.

The correlation strength obtained from this ab initio
calculation may be used to fix the interaction parameters
of a model Hamiltonian. When choosing a Hamiltonian

TABLE III. Correlation strength g and atomic charge fluc-
tuation hn (C) for different C representations.

hn, (C)

Diamond
Graphite

0.18

0.17

0.14
0.12
0.16
0.14

1.27

1.36
1.28

The detailed correlation energy contributions of C6p
turned out to be very similar to those of graphite. There-
fore the correlation behavior is expected to be very simi-
lar too. Details of the correlation functions shall be in-
vestigated in the following. As it turned out in all calcu-
lations done so far, the dominant corrections to the pair-
correlation functions of the HF ground state are connect-
ed with interatomic correlations.

Here, the following correlation functions will be inves-
tigated. The first one describes the probability to find
two electrons in the same atomic orbital. Since each
atomic orbital is half filled, this probability is 0.25 for the
uncorrelated case. In this case, the correlation strength
or relative reduction of charge fluctuations is defined as

(0.25 —(4, ~n;tn;& ~%, ) )
1
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with neighbor hopping t for the m electrons and with on-
site interaction U, then the following ratio holds:
U/E =2.0 '

The second correlation function considered is the total
atomic charge fluctuation on atom C, called hn (C). For
a state +I, it is defined as

bn (C)=(+,~bn (C)~e, )

= ( 4 ~in ( C ) ~
0I &

—( 0'i
~
n ( C )

~ %1 ) (10)

V. CONCLUSIONS

This investigation had two aims: first to gain addition-
al information about the electronic structure of the neu-
tral molecule C6p, and second to learn about advantages
and limitations of the theoretical method applied, i.e., the
local ansatz.

Let us address the first question, namely a better un-
derstanding of C6p. Here, it could be demonstrated that
electrons in C6p are weakly correlated. Actually, the
correlation of the most relevant m electrons is almost
identical to the case of graphite. There is not the slight-
est evidence of any peculiarity in intramolecular electron-
ic interactions. When addressing the problem of super-

For the SCF gl ound state of C6p it holds that
b,nsc„(C)=2.0. For the correlated ground state, it holds
in lowest order in g,

bn, (C)=bnsc„(C) —2 g +7)„(O„n;nl ) .
ijEC v

The charge fluctuation for the correlated ground state
is given in Table III, too. As can be seen, the atomic
charge fluctuations are as strongly reduced in C6p as they
are in graphite.

conductivity, these electronic interactions should at most
enter via renormalizations of electron-lattice coupling. '

Next, we were able to give a first estimate of the bind-
ing energy of C6p. As compared with diamond or two-
dimensional graphite, this molecule is rather unstable.
An energy of 0.4—0.5 eV per atom is lost. Very recently,
a total-energy calculation, performed within density-
functional theory, has been carried out where a direct
comparison between the energies of diamond and C6p was
made. ' There, an energy loss of 0.3+0. 1 eV was de-
duced.

As far as the second question is concerned, it was
demonstrated that a detailed understanding of correla-
tions does arise from these calculations. Specifically, it
could be demonstrated which parts of correlations dom-
inate the correlation energy and which ones are relevant
for other correlation effects. Besides, it was shown that
correlations are short ranged and hence well behaved as
far as real-space convergence is concerned.

A disadvantage of every variational treatment is that
only specific contributions are accounted for which are
explicitly included in the ansatz for the ground state.
Here, we compared a result for the local ansatz with a
complete result for a large system. The shortcomings
turned out to be bigger than originally anticipated. The
defect in correlation energy was larger than 10%, and
therefore larger than originally estimated from results ob-
tained for small molecules. It is encouraging, though,
that this error is probably not caused by a poor treatment
of long-range correlations but has its origin in an incom-
plete coverage of shorter-range contributions. It means
that the principal idea behind the local ansatz wi11 not
have to be changed in order to improve it, but a better
understanding of short-range correlations has to be ob-
tained.
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