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The existence and extent of quantum size effects in simple metal ultrathin films are studied by a sys-
tematic local-density, all-electron, full-potential calculation of the cohesive properties of v layers of hex-
agonal Li, with v=1, 2, 3, 4, and 5. By v=35, there is clear convergence of the a lattice parameter (intra-
planar bond length) to very nearly the calculated crystalline value, with a distinction between the two
films with a meaningful interior (a =5.68+0.01 a.u. for v=4 and 5) and those with a minimal interior or
none at all (v=3 and v=1 and 2, respectively; a =5.7573:0? a.u.). Equally clear stability of the interpla-
nar spacings occurs at distinctly noncrystalline values (4.27 a.u. for v=2; 4.38+0.01 a.u. for the inner
spacing of v=3, 4, and 5 versus 4.64 a.u. for the crystalline calculation). The cohesive energies of the 3,
4, and 5 layers are closely clumped at about 87% of the crystalline value. As the 2 and 1 layers are sub-
stantially less bound, both the cohesive properties and the inner interplanar spacing suggest a different
grouping than suggested by the a lattice parameter. Rough extrapolation of the slowly increasing
cohesion with v suggests that v~20 would be needed to achieve even 90% of the crystalline cohesive en-
ergy. The calculated surface energies do not exhibit any strong size effect, in striking contrast to Al
films. The equilibrium intraplanar force constant a’E /da?® has a minimum at v=3, with its maximum at
v=35 almost 2.5 times larger. The calculated work functions give only a hint, at the very most, of the
quantum size oscillations predicted from jellium models. A significant quantum size effect occurs, how-
ever, in the occupied portion of the density of states, which exhibits a step-function increase for each in-
teger increase in v. The density of states at Er has a maximum at v=3 with a variation over the series of
about 10%. The unrelaxed films do not exhibit a stronger quantum size effect than the equilibrium films,
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again with the barely possible exception of the work function.

I. BACKGROUND, MOTIVATION

Ever since the prediction of thickness-dependent oscil-
lations in the work function of an extremely thin jellium
film,"? there have been open questions about the ex-
istence of such static quantum size effects (QSE) in ul-
trathin films of real metals and about the magnitude of
QSE if they exist. The underlying issue is the much-
documented dependence of one-electron properties upon
lattice structure and spacings: will a real ultrathin sys-
tem reconstruct relative to its crystalline counterpart in a
way which suppresses otherwise expectable QSE? The
relatively small number of studies on the subject®® sug-
gest that structural changes with the number of layers
tend to reduce but not eliminate QSE. However, the evi-
dence is hardly conclusive.

Part of the problem is that theoretical prediction of the
equilibrium structural properties of ultrathin films (v-
layers with v=1,2,3,... atomic layers) is considerably
more demanding than treatment of their electronic prop-
erties with the structure corresponding to a fixed slice
from the parent crystal. Thus, the most extensive investi-
gations of possible QSE in a sequence of real films are for
Al in unrelaxed (so-called ideal) system geometries
(Feibelman and Hamann* and Batra et al.”). In the case
of Ref. 7 only films with an odd number of layers were
treated. Both calculations found large (=~0.6-1.1 eV)
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work-function variations with layer number. Apparently
the real systems most commonly thought of as well
modeled by jellium treatments, the alkali metals, have
never been examined for QSE.

Structural optimization studies to date (especially those
using all-electron methodologies) seem to be concentrated
either on 1 and 2 layers (see Ref. 9 for references) or
upon the modeling of relaxation at solid surfaces by treat-
ment of thicker films with inversion symmetry (v=2s +1,
with typically s=3,...,7). To our knowledge no sys-
tematic prediction of the structural equilibria and proper-
ties of an uninterrupted sequence of ultrathin films with
v>2 has ever appeared. It appears that the only
structural equilibrium calculations on 1- and 2-L pairs re-
ported to date are Feibelman’s for Al,> ours for Be,!0 12
H (Wu et al.!®), Li (Boettger et al.®), and a preliminary
study of graphite (Trickey, Diercksen, and Muiiller-
Plathe!*). Even those exhibit somewhat counter-intuitive
results.

The unusual nature of the trends in v-layer structural
parameters, relative to crystalline values, was discussed in
detail in Ref. 9 so a summary suffices. Simple coordina-
tion number arguments (in the absence of symmetry-
changing reconstructions and with due consideration of
the number of neighboring layers, if any) lead to the ex-
pectation that an unsupported metallic 1-L should exhibit
reduced intraplanar separation relative to the bulk value.
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The 2-L should, on the same grounds, have an intrapla-
nar separation intermediate between the 1-L and the
crystal, while the asymmetry of 2-L interplanar binding
should reduce the 2-L interplanar separation somewhat
from the crystalline value. Adding layers should then
cause a smooth increase in the intraplanar lattice parame-
ter and a rapid approach to the theoretical crystalline
value. Similarly a relatively thick film ought to have an
interior interplanar separation essentially identical with
the bulk crystal value, with smaller values near the film
surfaces.

That picture is the “coordination model” discussed in
Ref. 9. As shown there, what actually happens in even
the Li 1-L, 2-L pair is rather different. In both, the intra-
planar separation is expanded relative to the calculated
crystalline value (1.6% and 2.8%, for the 1-L and 2-L, re-
spectively). The 2-L interplanar distance is substantially
contracted (dilayer c¢/a=1.464 versus calculated bulk
=1.644). The predicted 1-L and 2-L work functions
differed little (3.53 and 3.58 eV, respectively), a somewhat
disquieting outcome to anyone with expectations (from
the jellium calculations) of work function QSE in Li.

The Li 1-L and 2-L findings were sufficiently intriguing
to motivate study of as large a sequence of v layers of Li
as is computationally tractable. Here we report the out-
come of that systematic study of the cohesive and one-
electron properties of v layers of Li with v=1, 2, 3, 4,
and 5. The remaining sections summarize methodology,
present the energetics and equilibrium lattice parameters,
consider force constants and equations of state, and con-
clude with electronic structure [at the level of Kohn-
Sham (KS) eigenvalues]. Other earlier work by us on the
Li 1 L to which these results are related is found in Refs.
15 and 16. The present results are consistent with those
studies as well as with the 1-L and 2-L predictions of
Boettger et al.’
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II. METHODOLOGY

The well-known Hedin-Lundqvist (HL) form of local-
density approximation (LDA) to density-functional
theory (DFT) was used throughout (for references to
DFT, LDA, etc., see Kryachko and Ludefia,!” Dreizler
and Gross,'® and Trickey'?). The LDA is implemented
as a completely first-principles methodology (all-electron,
full-potential, full self-consistency at every set of lattice
parameters) in the FILMS program package.”'>!'® FILMs
is based upon the linear combination of Gaussian-type or-
bitals, fitting-function (LCGTO-FF) procedure.20 The
essence of those algorithms is to expand the KS orbitals,
the electron number density, and the LDA exchange-
correlation kernels in three basis sets, respectively, the
KS, Q, and XC bases. These are Hermite Gaussian (for
ease of integral evaluation) which are then combined to
form appropriate Cartesian Gaussians. As experience
with the LCGTO-FF technique has grown it has become
clear that identical Q and XC bases are preferred. This
single-fitting basis is referred to hereafter as the F basis.
The same procedure was used in our previous work on
the Li 1- and 2-L films.’

Orbital exponents and contraction coefficients for basis
sets used in this study are given in Table I. Given the im-
portance of basis set selection in any work such as this, a
thorough discussion of how the basis sets in Table I were
obtained is warranted. First, it should be noted that at
the time of the work reported in Ref. 9, a great deal of
care was taken to ensure that the basis sets used there
were substantially richer than was necessary for that in-
vestigation. Several basis sets were tested and the final
results for the 1-L were compared with those obtained
with previous basis sets (including one numerical basis set
calculation; see Ref. 9 for details). In the present work,
we have reduced the size of the F basis while taking care

TABLE I. KS- and F-basis set exponents ({) and KS-basis contraction coefficients (C). In the
columns marked v, notations are given to indicate the systems (1, 2, 3, 4, and 5 layer) and sites (int., in-
terior; ext., exterior) for which a given basis function is used (““all” means the function was used for all

sites in all systems).

KS basis F basis
l} I C v I I v
s 1359.446 600 0.000 844 all s 700.00 all
204.026470 0.006 485 all 140.00 all
46.549 541 0.032 466 all 35.00 all
13.232 594 0.117 376 all 11.00 all
4.286 148 0.294 333 all 3.60 all
1.495 542 1.000 000 all 1.20 all
0.542238 1.000 000 all 0.45 all
0.120000 1.000 000 3-5 (int.) 0.20 3-5 (int.)
0.073 968 1.000 000 1-5 (ext.) 0.16 1-5 (ext.)
0.028 095 1.000 000 1-3,5 (ext.) 0.06 1-5 (ext.)
(0.030095) 1.000 000 4 (ext.)
P 1.4880 0.038 770 all d 0.40 all
0.2667 0.236 257 all 0.15 1-5 (ext.)
0.1500 1.000 000 all
p. 0.06 1.000 000 1-5 (ext.) P, 0.40 2-5 (ext.)

0.15 2-5 (ext.)
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to ensure that the results for the 1 L and 2 L do not differ
significantly from those reported in Ref. 9. Hence, the
basis sets used here are well tested and of good quality.
Now consider each basis set in more detail.

The KS basis was developed by modification of those
from standard sources (9s from van Duijneveldt,?' p basis
from Dunning and Hay??). The modifications were guid-
ed by application of two empirically based rules: (1) func-
tions centered on outer-layer sites should have atomiclike
s and p submanifolds (their most diffuse members should
be similar to those of an atomic basis); (2) functions cen-
tered on interior-layer sites as well as the entire p,;, sub-
manifold should be crystallinelike (the more diffuse func-
tions should be relatively compact to avoid approximate
linear dependencies). The basis sets were also modified
by contracting the tighter s functions using ls atomic or-
bital coefficients from van Duijneveldt.?!

The primary purpose of these guidelines is to adapt the
basis sets to the physical differences between interior and
exterior sites for the 3, 4, and 5 L’s. Table I shows that
the distinction is achieved by a few simple choices involv-
ing the more diffuse functions. For example, the uncon-
tracted KS basis is 9s3p,,4p, for exterior sites versus
8s3p for interior ones. Comparison of Table I with the
corresponding table of our 1-L, 2-L study® will show that
the KS basis used there needed very little change in order
to be suited to the present purpose.

The F-basis set was established primarily on the basis
of experience with previous calculations. The result is
both a simpler and more effective F basis than was used
in the prior 1-L, 2-L study. The results presented here
show that the new F basis does not alter the predictions
of that study in any substantive way. For the s submani-
fold, the number of functions and the smallest exponent
were initially chosen to be roughly the same as for the KS
basis. Starting with the next smallest exponent, the set
was tempered with the first interval about a factor of 2
and subsequent intervals growing larger as the exponents
increase. This procedure is aimed at assuring that the F
basis will have its greatest flexibility in the bonding re-
gion. After testing, the smaller exponents were increased
as needed to ensure that there were no instabilities in the
calculations. The F-basis set was also augmented with d-
type Gaussians with angular dependence of the form
zz—%(xz-f- y?), with exponents selected to produce added
flexibility in the bonding region. Similarly, the F basis for
exterior sites was augmented with p,-type Gaussians.
Identical F functions residing in layers which are
equivalent by symmetry are contracted also.

Two other remarks should be made about fitting basis
exponents for films. First, early work using LCGTO-FF
methodology used guidelines due to Dunlap, Connolly,
and Sabin? to generate Q and XC exponents from the KS
exponents. Those guidelines follow from approximate re-
lationships among the three bases which hold in an isolat-
ed atom. As such, the guidelines are both appealing and
useful in atoms and molecules. The behavior of charge
densities and energy densities in extended systems, how-
ever, is such that we have found it more effective to gen-
erate the F basis independent of the details of the KS
basis. Thus we no longer use the guidelines of Dunlap,
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Connolly, and Sabin. Second, in their pioneering study of
QSE, Feibelman and Hamann* remarked that they had
turned away from their implementation of fitting-
function methodology because of problems with regions
of negative density. With sufficient attention to the F
basis and technical details of the fitting procedure, such
problems need not occur and do not in this calculation.
Linear triangle Brillouin-zone (BZ) integration was
used with a 37-point mesh in the irreducible wedge of the
two-dimensional BZ. Details of the spatial distribution
of points are in the Appendix of Ref. 9. All calculations
were stabilized to an iteration-to-iteration shift in total
energy per atom of less than 1 pH (1IH=27.2117 eV).

III. EQUILIBRIUM LATTICE PARAMETERS
AND STRUCTURAL ENERGETICS

Because uncertainty still exists as to the exact nature of
the close packing in the T=0 K, P=0 phase of crystal-
line Li (Ref. 24) and because modern LDA calculations of
Li phase stability have been restricted to hcp, fcc, and
bee with hep found to be energetically preferred,” ~%" we
assume hcp ordering for the reference crystal. That or-
dering, the coordination model, and the previous studies
of the Li 1 and 2 L’s all point at the hexagonal films as
the appropriate targets for study.

The intraplanar unit cell parameter (hexagonal bond
length) will be denoted as a. The interplanar separations
will be designated as s;, and s, (where i refers to distance
between interior layers and e to distance between an exte-
rior layer and the next one inward) or merely s as ap-
propriate. The nearest-neighbor spacing is denoted ayy-

Study of 1 through 5 layers requires the optimization
of multiple geometric parameters within a finite, compu-
tationally tractable number of parameter sets, so a careful
strategy for selecting those sets is a necessity. In part the
selection is related to the functions to be used in fitting
the calculated points. Details of both the search grids
and fitting functions utilized are given in the Appendix.

The calculated equilibrium lattice parameters are in
Table II, along with calculated and measured results for
crystalline Li. We have discussed elsewhere’ the necessi-
ty of comparing to calculated crystalline lattice parame-
ters in order to distinguish a legitimate prediction of lat-
tice contraction from the systematic contraction that
LDA models show with respect to experimental
values.® =% Note, for example, the 3—4 % contraction of
calculated crystalline lattice constants as compared to the
experiment®! in Table II. Also note that the Dacorogna
and Cohen calculation?® exhibits less contraction for two
reasons: the use of a pseudopotential and of a different
LDA model. Except where noted we will compare with
the all-electron calculation of Nobel et al.?’ which used
the same LDA.

Certainly the most remarkable qualitative feature re-
vealed by Table II is that even the interior of the 5 L does
not come close to reproducing the interplanar lattice
spacing of the crystal. Instead, the value of s; is sensibly
constant for v=4 and 5 (and matches the s for v=3) at
about 5.6% contraction relative to the crystal, with s; /a
also remarkably stable at 0.77, about 6.4% contracted.
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TABLE II. Comparison of calculated and measured Li lattice parameters; see text for notation.

System a (a.u.) s; (a.u.) s, (a.u.) ayy (au)
1L 5.73 5.73
2L 5.76 4.27 5.41
3L 5.75 4.39 5.50
4L 5.69 4.38 4.32 5.43
5L 5.67 4.37 4.41 5.49

hep crystal® 5.65 4.64 4.64 5.65
hep crystal® 5.77 4.71 4.71 5.77
hcp crystal expt.© 5.88 4.81 4.81 5.88
1 L® 5.74 5.74

2 L¢ 5.81 4.25 5.41

#Reference 27.
"Reference 25.
‘Reference 31.
dReference 9.

The first of several even versus odd v distinctions is evi-
dent in s,: s5,(v=3,5)=4.40+£0.01 a.u. s, (v=2,4)
=4.2975-3 a.u. In confirmation of the previous calcula-
tion, the 2 L is contracted in s by 8% with s/a reduced
by 9.8%. Also to be noted is that the 5 L exhibits only
rather weak surface relaxation, s, /s; =1.01.

Quite different behavior is displayed by the a parame-
ter. The dual constraints of an a value common to all
planes and lattice translational symmetry in those planes
apparently drives the a lattice constant to converge to its
crystalline value much more rapidly with respect to v
than is the case with s, which is subject to neither re-
quirement. Thus, a for v=1, 2, and 3 is expanded with
respect to the crystal (behavior already found for v=1
and 2; see Ref. 9). By v=35, however, a is essentially in-
distinguishable from the crystalline value. In fact there is
a clear segregation of the two films with a meaningful in-
terior (v=4 and 5) from those with a minimal interior
(v=3) or none at all (v=1 and 2): ¢ =5.681+0.01 a.u. for
v=4and 5vs a=5.75733 a.u. forv=1,2,and 3.

Values of ayy tabulated in Table II again show an
even-odd variation; the larger distances are associated
with odd values of v and the smaller distances with even
values of v (the same pattern found in s,). Setting aside

the monolayer value, the separation is as large as in s,,
ayy(v=2,4)=5.40 a.u., ayy(v=3,5)=5.50 a.u. Put
another way, all the v layers beyond the 1 L have con-
tracted nearest-neighbor bonds compared to the crystal.
This behavior, when coupled with the lattice expansion in
a for v=1, 2, and 3 and the d contraction for v=2-5,
can be related to the assumptions of the coordination
model, i.e., that bonds are contracted in low-v systems.
This expectation is realized for all but v=1 in Li. The 1
L lies so high in energy relative to the 2 L that it is al-
most surely the constraint to planarity which prevents
the 1 L from fitting into this bonding picture as well.

A somewhat different grouping among the five systems
is suggested by the cohesive energies E. tabulated in
Table III. [The reference atomic energy is the local spin-
density approximation (LSDA) value from the HL LSDA
in a corresponding basis: E,,=—7.353739 H.] For
v=3, 4, and 5, the cohesive energies cluster within 50
meV whereas the 2 L is 90 meV less bound than the 3 L,
and the 1 L is another 290 meV less bound. In terms of
the crystalline cohesive energy, the 3, 4, and 5 L all clus-
ter around 86-88 % while the 2 L and 1 L achieve only
80% and 64 %, respectively.

Table III also presents, parenthetically, the cohesive

TABLE III. Calculated equilibrium-cohesive energies E, (eV/atom), incremental energies Ej,. (€V,
see text), interplanar binding energies E; (eV/atom, see text), and the ratio of E; to its crystalline value
E;(). Parenthetical entries for E. refer to the film constrained to be at calculated crystalline lattice

parameters (so-called ideal geometry).

System —E. E;. —E; E,/E ()
1L 1.10 (1.10) 0.00 0.00
2L 1.39 (1.38) 1.68 0.29 0.46
3L 1.48 (1.47) 1.66 0.38 0.60
4 L 1.51 (1.50) 1.60 0.41 0.65
5L 1.53 (1.52) 1.61 0.43 0.68

Crystal® 1.73 1.73 0.63 1.00
1L° 1.09
2 Lb 1.38 1.67 0.29 0.46

2Reference 27.
bReference 9.
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energies for the films constrained to reside at crystalline
lattice parameters. Even though the shifts from crystal-
line to equilibrium lattice parameters are substantial,
especially in s; and s,, there is no correspondingly large
shift in E.. At least so far as structural energetics are
concerned, there is no masking of QSE by relaxation of
the films to equilibrium lattice parameters. We will re-
turn to this question in the discussion of one-electron en-
ergies (below).

Another way to examine convergence toward the crys-
talline binding is to seek trends in the incremental bind-
ing energy

E‘inc(v)=|E‘ct:ll(v)_Ecell(v_1)l . (1)

In the limit of arbitrary thickness E; . should approach
the magnitude of E.. The values in Table III are distinct
from that limit, even allowing for the quite reasonable
possibility of precision limits (due to methodology) of
10.03 eV/atom for both E () and E; (v). The slow
convergence of both E. and E; . toward the crystalline
value is another striking demonstration of the fundamen-
tal difference between v layers, which lack translationally
equivalent neighbors to arbitrary distance in the z direc-
tion and the crystalline solid, which has such neighbors.

Table III also shows interplanar binding energies E;
calculated as

E,=E.(v)—E.(1). b))

Because E; is the energy advantage per layer of the equi-
librium v layer with respect to v well-separated 1 L’s, it
provides another focus on the progression toward crystal-
line binding. Again the 3-, 4-, and 5-L grouping is mani-
fest. An interesting approximate fit to the calculated ra-
tio R;(v)=E;(v)/E, () is

R,(v)=[arctan[0.12(v—1)]/arctan( « )]*% . (3)

This expression (rms deviation = 0.014) yields the pre-
diction that progression to as little as 90% of the crystal-
line interlayer binding could only be achieved by going to
v=17 (95% would require v=33). This fit and the be-
havior of E_, E; ., and E; all demonstrate that a rather
thick film (as measured by multiples of interatomic spac-
ing) is required if macroscopic crystal properties are to be
recovered.
Batra et al.” found that the surface energy

E(v)=3v[E.(v)—E. ()] (4)

of unrelaxed Al (111) films with v=1, 3, 5, and 7 exhibit-
ed a moderate QSE in that E; ranged up and back down
by about 12%. The results in Table IV show that such
behavior is not evident in the Li films for v=1,...,5.
Instead E seems to be increasing with v. The two calcu-
lations are not completely inconsistent, since it is at least
conceivable that a dropoff of E; could occur in the Li
films by v=7. It is noteworthy, though, that in the Li
films the first interior layer is worth about 0.04 eV/atom
in E; with successive interior layers gaining 0.06
eV/atom each. If there is a QSE dropoff in E; for Li
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TABLE 1V. Calculated surface energies E; (eV/atom) as a
function of layer number v for optimized Li films (present work)
and for unrelaxed Al films (Ref. 7).

v E,(Li) E (A])
1 0.32 0.47
2 0.34

3 0.38 0.50
4 0.44

5 0.50 0.49
6

7 0.44

analogous with Al, this trend would have to undergo an
abrupt reversal.

Although E, does not display an obvious QSE, both
the cohesive energies and d values (Tables II and III) can
be interpreted as subdividing the v layers of Li into three
groups, v=1, v=2, and v=3, 4, and 5. This interpreta-
tion rests on recognition that identification of s(v=2,3)
as s; or s, is not inexorable. Thought of as s;, there is a
structural size effect in the s parameter which distin-
guishes the v=3, 4, and 5 systems from both the crystal
and the 1 L and 2 L. Evidently it is related to the fact
that only v=3, 4, and 5 have a populated interior. As al-
ready noted, when s(v=2,3) is grouped with s, (as in
Table II), there is a well-defined oscillatory QSE in s,. In
either case, it is clear that while the v=3, 4, and 5 sys-
tems have settled on the crystalline @ parameter, neither
their s parameters nor cohesive energies have settled cor-
respondingly.

Both the a lattice parameter and the uniaxial force
constants (energy second derivatives evaluated at equilib-
rium: d’E /da*d’E /ds}, k=i,e) call attention to a
different grouping. Results obtained by the fitting pro-
cedures described above are presented in Table V. We
have not tabulated the mixed partial derivatives, e.g.,
d?E /da ds, since at each v they are at most about one-
fifth of the smallest magnitude uniaxial derivative. That
smallness confirms what is observed while doing the cal-
culations: the variation of the total energy with each lat-
tice parameter is only weakly coupled to the other lattice
parameters. Table IV shows that there is a qualitative
difference between v=1, 2, and 3 and v=4 and 5 not only
for a but for the force constants as well. As already
remarked, a is nearly constant for v=1, 2, and 3, yet

TABLE V. Calculated uniaxial force constants as a function
of v (eV/a.u.2). The hcp crystal value was obtained by conver-
sion of the uniaxial compressibility given by Ref. 25.

v d’E /da? d’E /ds? d2E /ds?

1 0.40

2 0.35 0.15

3 0.23 0.14

4 0.33 0.06 0.11

5 0.55 0.10 0.14
hep 0.30
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d’E /da? drops steadily with v. That drop appears to be
due to improved screening of the intraplanar neighbors
by the p, states of adjacent layers. Detailed examination
of the numerical results suggests that the 3 L may even be
softer in the a direction than the value of d2E /da?* would
suggest. For @¢=5.70, 5.75, and 5.80 a.u., the energy
minimum as a function of d is nearly a constant. Thus
atoms are nearly free to move over that range of a values
and, at v=4, the intraplanar spacing collapses to what is
nearly the bulk crystalline value. At the same thickness
d’E /da? jumps back up almost to its v=2 value and
rises to 0.55 eV/a.u.? at v=5, a very substantial value
when compared, for example, with the uniaxial crystal-
line force constant for the s direction.

Elsewhere we have considered®'® the scale length L;
for the interplanar energy, which appears in the empiri-
cally discerned universal equation of state.’>** For the 2
L, L; is given unambiguously by

L,=[12E;| /(d*E, /ds?| in)]" s

with the factor of 2 in the numerator to accord with the
definition of L., the surface-surface scaling length, used
by Ref. 32.

It is less straightforward to define a suitably general-
ized interlayer energy for the v layers nor is the proper
choice of force constant completely obvious. If however
the focus is on thickness changes due to displacements of
the two outermost layers, then a plausible choice for the
relevant delamination energy (which reduces to the previ-
ously used value for v=2) is

E;=[v/(2=8,)[E.(v)—(1—2/v)E (v—2)
—(2/v)E,(1)] . (6)

The numerator of the first factor accounts for what
would otherwise be the vanishingly small 1 L contribu-
tion for thick systems while the denominator takes care
of the difference between the number of exterior
thicknesses for v=2 and v>2. The appropriate deriva-
tive with respect to thickness is

d’E . /dt*=[v/(2—8,,)|(d*E, /ds}) 7

since s; is constant for infinitesimal displacement of the
surfaces. L/ isthen

L,=[12E;| /(d?E . /dt?| in)1'"* (8)

For v=2 this expression reduces to the previously used
value. For the limit v— oo the expression becomes

L{(0)=[2|E,(0)—E/ (1| /(d*E ()/dc*)]"/*. 9)

Table VI displays the calculated L; as a function of v.
Notice that the calculated infinite system limit for L/
agrees decently with the completely independent L; value
from Ref. 32. Next note that although L;/(2) is almost
exactly equal to L, (probably fortuitously so), all the
remaining values are much larger and decline with in-
creasing v. This vivid QSE should have consequences for
the equation of state at 7=0 K of these systems. Also
evident is a feature already encountered: even at v=3
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TABLE VI. Scale lengths for the universal equation of state
(see text) of the v layers (a.u.).

v L/ L,
1 1.66
2 1.97 1.89
3 3.30 2.42
4 3.10 2.07
5 2.40 1.62
© 2.05
solid* 1.14
surf-surf® 1.95

#Reference 27.
*Reference 32.

the film does not resemble the crystal.

As remarked already, the intraplanar force constants
are quite stiff compared to the interplanar values for a
given v. Because of the small size of the cross deriva-
tives, an excellent approximation for calculation of the a
axis scale length is

La:[lEbind|/(d2Etot/dazl )]1/2 ’ (10)

min
with E,; 4(v) defined as before (Boettger et al;’ the ex-
pression was misprinted there but the proper expression
was actually used) as

Ebind(v):Ec(v)_Ei(v)/V ’ (11)

that is, a pro rata portion to the interplanar binding ener-
gy is removed for each plane [of course E;(1)=0]. The
values of L,, also tabulated in Table VI, display a very
strong QSE in making a cycle from the 1-L value upward
45% and back down to virtually the starting value by
v=5. The whole range is quite different from the bulk
crystal value. Thus, even though the a parameter itself
has settled nicely to the crystalline value by v=35, the in-
traplanar stress-strain relationship has not.

IV. KOHN-SHAM ONE-ELECTRON ENERGIES

The customary cautions about interpretation of KS ei-
genvalues as proper one-quasi-particle energies apply to
all this section. With that caveat, we show the Kohn-
Sham energy bands and densities of states (DOS) for all
five v layers in Figs. 1-6. The symmetry labels for the
two-dimensional Brillouin zone follow the conventions
given by Terzibaschian and Enderlein.>* Comparison
with the bulk bec,?3 fce,® and hep (Ref. 27) energy
bands produces no surprises when different symmetries,
LDA models, etc. are kept in mind. Wimmer’s 1-L re-
sults’” (which were calculated at the experimentally
determined lattice parameter for the crystal) are also con-
sistent with the present ones.

Three basic band parameters, the work function ®
(= —Ep), the density of states at the Fermi level N(E),
and the occupied band width W, are summarized in
Table VII. An optimistic interpretation of the v depen-
dence of ® and N(Ey) is that they are suggestive of the
quantum size oscillations predicted from jellium mod-
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1-layer film
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FIG. 1. Kohn-Sham energy bands for the Li 1 layer. Ener-
gies are given relative to the Fermi energy, in eV. Solid (dashed)
curves are associated with states of even (odd) symmetry with
respect to reflection in the x,y plane.

els."> However, the amplitude of the nominal oscillation,
0.07 eV, is an order of magnitude smaller than that re-
ported for unrelaxed Al films in Refs. 4 and 7.

In light of the technical limitations to determination of
E (primarily proper representation of the large-z behav-
ior of the charge density), we advance this interpretation
cautiously. However, if the behavior of ®(v) and
N(Eg,v) is a legitimate QSE, the unrelaxed lattice values
of both quantities tabulated parenthetically in Table VII
show clearly that lattice relaxation is critical to the pre-
diction. Especially noteworthy is the behavior of N(Ef)
which differs qualitatively between equilibrium and unre-
laxed cases. The equilibrium values exhibit a clear cycle
in going through v=1,...,5, while the unrelaxed values
are, with the exception of v=4, essentially identical.

In Ref. 9, we had speculated that completion of the Li

2-layer film
3.0

2.0

L

Energy (eV)
Energy (eV)

FIG. 2. Same as 1 but for the 2 layer and with no even-odd
symmetry.
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3-layer film

N

3.0 3.0

Energy (eV)
Energy (eV)

-4.0 -4.0
A M Z K h r

-

FIG. 3. Same as 1 but for the 3 layer.

3-L and 4-L calculations might be sufficient to allow a
judgment as to the existence of QSE in ® and N(Ej) for
v layers of Li. That speculation now seems a trifle op-
timistic; knowledge of v layers of Li through roughly
v=10 may be required to reach a conclusion.

A dramatic quantum size effect does occur in the elec-
tronic density of states function N(E) for the Li
v=1,...,5 sequence, in marked contrast to the situation
with ® and N(E). To our knowledge it is essentially un-
discussed in the literature, even though the underlying
physics is quite straightforward. (Our previous study
mentioned it almost as an afterthought.” Batra et al.’
presented a somewhat related analysis which, however,
obscures the central point for an alkali metal by use of a
model 1-d potential).

For a system with two-dimensional periodicity, it is
easy to show that a single parabolic band will produce a
step-function density of states. This is the case with the
Li 1 L. If addition of a layer perturbs that parabolic

4-layer film
3.0 3.0

7

2.0

1.0

0.0

-1.0

Energy (eV)
Energy (eV)

NS
N

_,
>
k<
N

FIG. 4. Same as 2 but for the 4 layer.
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5-layer film

\.--‘

Energy (eV)
Energy (eV)

FIG. 5. Same as 1 but for the 5 layer.

band only weakly, as is the case with the v layers of Li,
then each integer increment in v should generate an addi-
tional step in the DOS. Precisely such behavior is shown
in the calculated densities of states displayed in Fig. 6. It
is particularly striking that the strong lattice parameter

-4.0 -3I.O -2.0 -1 '.O 0.0 1.0 2.0 3.0 4.0

T

1.2} (a) 1-layer fiim
1.0t
0.8}
0.6}
0.4}
0.2}

1.2} (b) 2-layer film
1.0}
0.8}
0.6}
0.4}
0.2}

+

0-8r (c) 3-layer film
0.6 4
0.4 4

0.2t B

" . . $ " I
T T T T T t

0.8} (d) 4-layer film E
0.6}
0.41
0.2

DOS (states/eV atom)

0.8} (e) 5-layer fiim
0.6}
0.4}
0.2}

-4.0 -31.0 —2‘.0 -1 EO ofo 1 jO 2..0 3..0 4.0
Energy (eV)

FIG. 6. The density of states (states/eV atom) as a function
of one-electron energy (relative to the Fermi energy, eV) for the
lithium films; (a) 1 layer; (b) 2 layer; (c) 3 layer; (d) 4 layer; (e) 5
layer.
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TABLE VII. Calculated work function (®), density of states
at the Fermi level [N(E)], and total occupied bandwidth (W)
for the films, calculated crystalline data, and measured work
function for the crystal. Parenthetical entries are for the film
constrained to have calculated crystalline lattice parameters.

System D (eV) N(Er) (states/eV-atom) W (eV)
1L 3.56 (3.56) 0.49 (0.48) 2.2
2L 3.63 (3.65) 0.55 (0.50) 3.1
3L 3.60 (3.65) 0.58 (0.50) 3.4
4L 3.61 (3.64) 0.46 (0.55) 35
5L 3.56 (3.61) 0.47 (0.50) 3.6

crystal, bec? 0.48 3.6
crystal, bcc® 0.49 3.8
crystal, expt. 2.90
1 Ld 3.53 0.50 22
2 L¢ 3.58 0.56 32

2Reference 35.
"Reference 36.
‘Reference 38.
dReference 9.

differences between the films and the crystal do not com-
bine to mask the effects predicted by the argument of
weakly perturbed parabolic bands. As a result one has a
directly testable prediction of strong one-electron QSE,
namely an experimentally accessible qualitative feature
which is in one-to-one correspondence with layer num-
ber.

We have previously remarked’ on the systematic
disparity between all calculated Li work-function values
and the measured value.’® The present calculations sus-
tain the point: all modern calculations, irrespective of
details of the model and method, give ® about 0.5-0.6
eV larger than the measured value. In fact, the current
value of the work function for the 1 L (3.56 eV) only
differs from that obtained in Ref. 37 using the full-
potential linear augmented plane wave method (3.53 eV)
by 0.03 eV. Given the fact that the work function is the
most sensitive quantity obtained in an LCGTO-FF calcu-
lation, this agreement clearly indicates the absence of any
significant basis set effects in our 1-L results.

The previous 1- and 2-L study’ found that the 2 L has
essentially achieved its separated 1-L limit by an interpla-
nar separation of about 12 a.u. That result led to the sug-
gestion that the 5-L system might very well have its two
surface layers effectively decoupled (since the 5-L thick-
ness would be 17-18 a.u.). This suggestion is confirmed
by the convergence of Ep, N(Ey), and W to stable values
by v=5. The latter two in particular agree well with
theoretical crystalline values (cf. Table VI). The behavior
of N(Eg) is simply an indication that the interior elec-
tronic states of the 5 L are relatively bulklike. However,
the fact that W has stabilized on the calculated crystal-
line value indicates that the surface-layer-to-surface-layer
coupling is insignificant by v=5. In effect, by v=35 the
system is simply filling in the projected bulk bands.
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V. CONCLUSIONS

The Li 1,...,5-L sequence is predicted to display
strong QSE in the density of states and in the intraplanar
force constants. Perhaps ironically, little or no QSE is to
be expected in the conventional QSE quantity, the work
function. Evidently this is a consequence of the fact that,
except for its equilibrium band structure, relatively little
about Li is free-electron-like. The primary feature of Li
electronic states which tends to suppress work-function
QSE is their dominant s-like character and associated low
hybridization.

Several structural QSE manifestations are predicted:
contracted interplanar separations, odd-even alteration of
nearest-neighbor distances and outer layer interplanar
separations, and an island (at v=3, 4, and 5) of stable s /a
ratios reduced with respect to the bulk crystal value. The
intraplanar stress-strain relationship (equation of state) is
also predicted to exhibit strong QSE. For the S layer, the
intraplanar lattice parameter a, N(Eg), and W are all
reasonably crystalline. Otherwise, little about these v
layers resembles the ideal crystal.
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APPENDIX

For fitting E.(s), the cohesive energy as a function of a
single structural parameter s, a least-squares fit to either a
cubic function or to a functional form based on the so-
called universal equation of state (see discussion and
references above),

1371

E (s)=C|[1.0+Cy(s —sy) Jexp[ —C,(s —s4) ]+ C5 ,
(A1)

was used. The form that gave the smaller rms deviation
was used. (Typically there was little to choose between
them.) For fitting the simultaneous variation of E, with
respect to two structural parameters s, ¢ it was convenient
to use the generalized cubic form

3 n
E(s,;t)=3 3 C,,s®"tm .

(A2)
n=0m=0
Six evenly spaced 1-L values in the range

5.60=a =5.85 a.u. were sufficient to determine that the
cubic fit and universal equation-of-state (EOS) fits were
indistinguishable. For the 2 L, E, values for 28 calculat-
ed points (5.65=<a <5.85, s=3.86048, 4.01824, 4.176,
4.33376, 4.48224, 4.64 a.u.; for both @ =5.65 and 5.75,
5 =3.86048 was unneeded) were fitted to the generalized
cubic form.

Essentially the same procedure, but with only 24
points, was used for v=3. Twenty were on the grid
5.65<a=5.85 s=4.176, 4.33376, 4.48224, 4.64 a.u.
The remaining four were a =5.60, 5.90 and s =4.333 76,
4.48224 a.u. This point distribution was driven by the
need to explore and describe the rather long, shallow
minimum as a function of @ which seems to be peculiar to
the 3 L.

For v=4 and 5 the first optimization was with respect
to a sixteen-point s;, s, grid with a fixed at the calculated
bulk value (a=5.65; s;,5,=4.176, 4.33376, 4.48224,
4.64 a.u.), followed by a generalized cubic fit. For v=4,
the fitted s; and s, values (4.38 and 4.32 a.u., respectively)
lay close enough to a mesh point (4.333 76, 4.333 76) that
they could be fixed at those mesh values and a then
varied over five equally spaced values (5.60=<a <5.80
a.u.). Both the cubic form and the universal EOS were
fitted to the resulting calculated values. For the 5 L,
essentially the same procedure was followed except that it
was appropriate to fix s; and s, at the actual fitted values
during the variation of a.
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