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Kinetics of a superlattice array of quasi-one-dimensional electron gases
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Quantum-transport equations and relaxation frequencies are derived for a superlattice array of
quantum wires, taking into account dynamical screening and the tunneling between the wires in
the tight-binding approximation, The momentum relaxation frequency for scattering by volume
and sheet impurities is evaluated and shown to depend on the superlattice period l in a nontrivial
manner. Competition between tunneling and screening effects results in a particular value of E for
which the relaxation frequency is minimum corresponding to a maximum conduction.

I. INTRODUCTION

Recently arrays of quantum wires have been the sub-
ject of several experiment, al and theoretical studies. In
a previous paper we considered transport properties of
arrays of quantum wires assuming that the interwire sep-
aration was such that tunneling between the wires was
negligible. We treated in detail the influence of the in-
terwire Coulomb interaction, which afI'ects the screening,
on the transport properties and showed that it can affect,
e.g. , the mobility drastically. In this paper we generalize
the previous theory by including in the calculations tun-
neling between the wires. The formation of minibands
can change the elastic scattering rate significantly. For
discrete levels the phase space for scattering of electrons
that move along the wire is strongly limited. When mini-
bands appear, scattering within the same band is possi-
ble; as a result the scattering rate increases.

The paper is organized as follows. In the next section
we present the results without electron screening of the
potentials. VVe follow an approach difI'erent from that of
Ref. 3, At the end of the section we show how screen-
ing can be taken into account. The actual superlattice
aspects are presented in Sec. III, Analytical and numer-
ical results for impurity scattering are given in Sec. IV.
A summary follows in the last section and the Appendix
details the evaluation of some results pertinent to Sec. IV.

a discrete spectrum while tunneling between the wires
gives a set of minibands. The state of a particle in this
superlattice is labeled by A = (k, ay, a, ) = (k, a). k

is the continuous wave vector index along the wires, a,
labels the discrete levels along the z direction, and a& de-
notes the band index and the continuous wave vector It;

&

associated with motion, in the band, along the y direc-
tion. The corresponding one-particle eigenfunction (nor-
malized) and eigenvalue of the unperturbed Hamiltonian
are given, respectively, by

and

EA = h~A —h k /2m' + h~„ (2)

the collision integral Stf& is determined by the correla-
tors of the fluctuating parts of the density matrix bp and
of the potential bp and is given by

where ~, = ~,„+u~, . We assume that an electric field
E = Ez is applied along the wires. Then the diagonal
component of the density matrix fA, which is the only
one necessary for calculating the current along the wire,
satisfies the quantum kinetic equation

8fA eE OfA

Bt h Bk

II. QUANTUM TRANSPORT EQUATIONS
zl

A. Quantum kinetic equation

We consider an array of identical quantum wires, of
length I = I., arranged periodically along the y axis,
with period 8, and directed along the z axis as shown

in Fig. 1. The confinement along the z direction gives

2I. 3l

FIG. 1. A superlattice array, with period E, of quantum
wires.
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e
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Here the superscript 0 indicates the so-called "sources"
and

MAB(~) = fa —fA

h(~ —~AB + i0)

with uAB —uA —ua. For an external system with a uni-
form polarizability, characterized by the dielectric func-
tion e, (u, q), we have

2 d3
(8)

Here [, ]+ denotes half the anticommutator and the fluc-
tuating parts satisfy the equations

~pAB(~) = ~pAB(~)+ eMAB(~)~~(~)

~ ABA'a'( )] = aAB'A'(

e lPq di z 1
ImVABBA (~) =

271 Cd (a), q

We then obtain, as usual, StfA ——St„fA+St„fA. The
first term represents electron collisions with the exter-
nal system while the second term describes interelectron
collisions. They are given, respectively, by

2

Std. fA = ——,) l (fA —fa) & ~V.
' &"„

h

e2 rIAB ImVABBA(&AB) l

and

2F L 2st«fA ———
z ) IvAaaeAe (+Aa)l 6(uAB —uA B )

Al Bl

where
X (FBAA'B' —FABBeAe). (12)

bra ——f d r ebe(r) e'e'" %a(r).

In previous papers we have developed a self-
consistent procedure for solving Eqs. (5) and (6) which
takes into account the screening of the scattering poten-
tials by electrons. However, the presence of tunneling
prevents this simple procedure of obtaining the screen-
ing function. We, therefore, follow a different method
neglecting, to begin with, the electron screening. We re-
turn to this point later For th. e moment we use ordinary
perturbation theory to second order.

We substitute Eq. (5) into Eq. (6) and vice versa keep-
ing only terms to second order in the interaction con-
stant. We assume that the sources are uncorrelated, i.e.,
& 6p 6p &=& Bp &( 6p &= 0. For the evaluation
of the average values after the substitution of the solu-
tions of Eqs. (5) and (6) in Eq. (4) we use Eq. (30) of
Ref. 4, a similar equation for p replaced by p, and the
identities ImMAB(ur) = (n'/h)(fA —fa)S(~ —~AB)»d

I

H«e gAB = fA(1 —fB)+ fa(1 —fA) and FABCD ——

fA(1 fa) fc—(1 fD) T—he co.rrelator & & is evaluated
in the Appendix for some particular cases of impurity
scattering. A frequently encountered case is that when
the external system, e.g. , impurities, phonons, etc. , is in
equilibrium at temperature T, . If in this case fA is the
Fermi-Dirac function the condition St„fA

—0 leads to
the fluctuation-dissipation relation

& b(p, 0 & = ——coth
I l ImVA'BBA(~),ez (2I(BT,

where the index 0 denotes equilibrium quantities. With
this relation Eq. (11) can be simplified considerably.
St„fA can be expressed in terms either of the poten-
tial correlator & bp, o & or of the dielectric function if
Eq. (13) is used. The first form is suitable for calcula-
tions involving scattering by impurities while the second
is more suitable for optical-phonon scattering and some-
times for interparticle interactions. Using Eqs. (11), (13),
and (A7) we can write St„fA in the form

2

» ) fA —fa+ gAB t»h
I

"
I dq. ~qvltt~l'lb. '~l' & bv,'o &."'

r BTa
(14)

So far we have not considered the screening of the scat-
tering potentials by electrons. We do it now adapting the
formalism of Ref. 3 which was applied when tunneling
was absent. In the presence of the latter we assume that
the minibands are narrow and that the screening factor
can be treated in the tight-binding approximation. Tech-
nically it means that the above procedure is repeated us-

ing the approximate form (28), see below, for the y part
of Eq. (9). The result for St„fA is given by Eq. (14) with

a factor IS(uAB, q, Eqz) I appearing under the integra-
tion signs where

S(~, q, Eqv) = 1—4e2 dq,
La; Lv q Ea((a), q)

x ) MAB(~)It)~~BI
A, B
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Here we have assumed that the width of the wires is much
smaller than the period S of the array. In most cases we
can safely ignore the tunneling eAect in the screening
factor. For instance, when only the lowest miniband is
occupied we can use for S( .) the forms

S(co, q, Eqy ) = 1 + Acoo(~, q~)

C~ M) q~) qy

In this case the function I/c, (~, q~) is given by

B. Balance equations and relaxation frequencies

From the QKE we derive the momentum and en-
ergy balance equations by applying to it the opera-
tors (2e/I) Pz hk /m' and (2/I. ) Qz h k2/2m', re-
spectively. Denoting the total carrier number, current,
and energy (linear) densities, respectively, by n, j, and c
we have

Bj en'
(eE —R)

t m'

cs(~) qz) ~qy)

dq~

+ 0 + Vyp

and

E'
I—= jE-Pn,

)b' b'"')2

cs(~) qz) qyp) qz)
(17)

Here qyp
—

qy
—2n p/E and the matrix elements involve

the wave functions of separate wells when only the lowest
subband is occupied (indicated by 00).

where —R = ~en &ee and P+Pes+Pee are the friction
force in the z direction against the external system and
the power transferred, per particle, respectively. Now
using Eq (12.) it is easy to see that the terms R„and
P„vanish identically. Hence, using Eq. (11) we obtain,
in matrix form,

d~b(u —~~B)b(k —kp —q )

t'q. & h~
x

~ ~
& b&p, o

)' fg —fn+ g~ggtanh
~) (2o)

For simplicity we model the distribution function f~ by a displaced Fermi-Dirac function at temperature T. That
is, we replace its argument k by k —m u/h, where u is the drift velocity. Then the previous expression takes the
simpler form

2 ) dq d~
~ )

ImAc't(~ —uq, q ) & bp, o )„' tanh
~ ~

coth
~ (

—1

(21)

where the electron dielectric function b, c,&(
. .) is given by Eq. (23) of Ref. 4. Another form of this expression involving

the dielectric function can be written using Eq. (13).
If the electric Geld E is weak we may linearize R over u and P over T —T, and define the momentum v and

energy v, relaxation frequencies through 8 = —m" v~u and P = v (T —T,)~. Using Eq. (21) we obtain

~ ~vT 4~&n'k2 T,2 - q' ( ~ ) 'o "'* sinh(her/k~T, )
'

B & g b

(22)

These expressions neglect the screening of the scattering
potentials by electrons. Again this can be incorporated
by inserting the screening factor S(. . .) given by Eq. (15)
under the integral signs.

III. THE SUPERLATTICE MODEL

For definiteness we choose for both terms the parabolic
forms V(y) = h qfy~/2m* and V(z) = h qzz /2m'.
Moreover, we assume that only the lowest miniband is
occupied, along y; the same holds for the lowest level in
the z direction (a, = 0). First we write the wave func-
tion for an electron in this superlattice potential in the
tight-binding approximation as (ay ~ ky)

We consider a superlattice potential along the y direc-
tion added to a confining potential along the z direction.
The total potential is written as A„(y) = ) e*""'"4o(y—p&), (24)

V(y z) = ). V(y —p&)+V(z) where Po(y) is the wave function of the isolated well and

/E & k„& x/E. Now the tig.ht-binding model is valid
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when only the wave functions of neighboring wells have
a (small) overlap, i.e. , for /qq » 1. We then have the
superlattice dispersion relation Eq„= —ArcosksE, the
width of the miniband being 26t and given by the overlap
integral. All energies are measured from the center of
the miniband. With $0(y) = (q&/~s~)'~exp( —q2~y /2)
we obtain

h q~"(1+0.5q', P).-r" ~'.
2m

For a strongly degenerate electron gas we approximate
f~ by a step function. When the Fermi level E~ lies
in the miniband, i.e., when E~ & b,t, the normalization
condition gives the density of one wire, n = n'E/Ls, as

For E~ && Ar we obtain the standard relation n
2kF/n - 2k' /s.

The superlattice aspects enter the results of the pre-
vious section through the energy spectrum and through
the screening function S( .), cf. Eq. (17), and in partic-
ular through the factor b ",. In the tight-binding limit

(qqE )& 1) with the help of Eq. (24) we can approximately
write

":). b(q, -k, +k,'+q, ), (»)
Iy p= —oo

where qz ——2mp/E

n =, [E2 P" (E+)+E'(E )],
+

(26)
IV. SCATTERING BY CHARGED IMPURITIES

where Ey = g(E~ + b.t)/2br and EF —— —Er +
h2kz2/2m' = I~), k+2/2m'. Further, fC(z) and S(z) are
the complete elliptic integrals, and I.& is the dimension
of the array in the y direction. For E~ —+ —Lp we have
nhk, &/m+2m'A. r If, on. the other hand, the Fermi
level lies above the miniband, i.e., for E~ & Ar, we have

n = 8'(I/E+)
4k@

A. Analytical results

As an application of the formalism we will now evaluate
the momentum relaxation frequency for scattering by a
random distribution of volume or sheet impurities. We
assume that only the lowest level in the z direction is
occupied. Then Eq. (22), taking into account the electron
screening, becomes

Im b, ~'„'„,(~, q, )
3t y

I vT ) 8&su, 'k&Ts " ' & &', ' " ' & ) sinh(hew/kgT, )IS(v, q, lq„)I
k„k'„

(29)

and S( ) is given by Eq. (16).

Volume imyerities

For simplicity we assume that the dielectric function
of the system, c(u, q) can be approximated by the con-

stant e~ and denote the impurity concentration by nl
Further, we use Eq. (A9) with b~~'o ——exp( —q, /4q2) and

I
the expression for the correlator & by~ & 'q~. We then
obtain

8~3e&n~'~
& bp, & = G(qg/v 2q2) b( ),

Lq

where

G(z) = 2z/~s+ (1 —2z )e erfc(z); (31)

here erfc(z) = (2/~s f exp( —t2)dt, G(z (( 1) 1 —z
and G(z &) 1) 2/z~s.

To proceed further we consider a strongly degenerate
electron gas, i.e. , we replace f&~ by a step function. Us-

ing the standard expression for Ae'& together with the
miniband spectrum we obtain from Eqs. (29) and (30)
the result

2e4m'n~'~S 1

2 2

—,+ GI 2+ I~ '(0, Q+, t'q„)+ —, GI
2

I~ '(o, Q-, t'q, ) . (32)

Here Qe = Qe(q„, q) = )Qe + Qe )Qe = /2m'( EEr v)/li, aart Qe = )/qr+Qa. To arrive at Eq. (22)
we have used the property Q&„~„& —

Qq ~ which results from the periodicity. As for the screening factor S( . )
using Eqs. (16), (17), and (28) we obtain
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OO

S(0, q, Eqz) = 1+ e &+(~ I )( «& ~ &)In[It~/Iz
~ ) erfc

~

"
~ Qz,

where ICy = (k~ 6 q /2)~ —(m'k~T, /h q ) and Q„=
v'4+('6 ql) .

In the limit of isolated wires 8 ~ oo we have Ag —+

0, Qt„~ kF, Q+ ~ 2k~, and Q ~ 0. Then Eq. (32)
goes over to Eq. (69) of Ref. 5. If we neglect the elctron
screening and assume qq » n, q~ && n we obtain

4 * (~)
v (l ~ oo) s eq'"(Ixi(Qi„) —It'o(Qi ))

4e mnI
nA

(3)16e m nr
(34)xc hnI

where Qi„—(xn/2qi)2 and I4„(z) is the modified Bessel
function.

8. Sheet impurities

We assume that the impurities are distributed in the

(z, y) plane with surface concentration nl( ) For .the po-
tential correlator we have

3 2 (2)
& bp, &„= 2 s [erfc(q~/2qq)] e~ ~'b(u).

L

In this case v takes the form (33) with

nI G(Qy/2q~)/Q+ replaced by nr [erfc(Qy/2q2)]
xexp(Q+/2q2)/Q+. For I' ~ oo and qi )) n, q2 )) n

we obtain upon neglecting the electron screening

se4m n"'
v (E~oo) =

c2h n2L

l. = q~Z, for qq
——q2 and E~ & Ap. In these figures g =

~n/q, , v; = (e' m'/r'P~)( n,"/q 2), m' = 0 06.7m, , ~L, =
13, T, = 4.2 K, and i = 3 or 2. Further, the solid,
dashed, and dotted curves correspond to g = 0.2, 0.4,
and 1.0, respectively.

The decrease of v with increasing g can be seen from
the limiting expressions (34) and (36): for the degenerate
electron gas we have approximately v n '. This is
better illustrated in Figs. 4 and 5 on which we comment
further below.

The decrease of v for small l can be explained in the
following manner. For small 8 the miniband width be-
comes large. If the Fermi energy is fixed this broadening
of the miniband leads to the appearance of electrons with
energy less than E~ (up to EF —Ar). For electrons with
energy about EI,„ the corresponding relaxation frequency
behaves as (E~ Et. ) '~—2; as a result the frequency in-
creases when the period decreases. Notice that the curves
do not st,art at l: = 0 since the tight-binding model that
we are using is not valid in this case.

The increase of v~ with / for 8 ) 10 is connected with
electron screening: for large l screening becomes weak
and the scattering rate increases. The same behavior of
v with increasing / was reported earlier when tunneling
was not considered, i.e. , for relatively large periods. As
8 ~ oo the curves saturate as expected for isolated wires.

The importance of screening is most clearly seen in

Figs. 4 and 5 where we plot the relaxation frequency as
function of the electron density (g = an/qi). In both
figures the solid and dashed curves correspond to scatter-
ing by volume and sheet impurities, respectively. Notice,

16

As for the screening S( . ) an approximate result S
simpler than that given by Eq. (33) can be obtained as
follows. We evaluate the expression (33) for those values
of the arguments that give the largest contribution to
v as given by Eq. (32). For qiE» 1 and q2E» 1 we

can evaluate the sum over p in Eq. (33) in the opposite
limits n8 » 1 and nS && 1. We can then construct the
interpolation formula

2m e' ( ~'r'n' '~ ~~Sq, ~lS= 1+ 2 In~
~

In +
E,m k&T. & l ~n

&
~one

'

(»)
which covers all values of nZ and is nearly exact in the
opposite limits nZ » 1 and nZ « 1.
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B. Numerical results

In Figs. 2 and 3 we plot the momentum relaxation
frequency v, as evaluated numerically from Eq. (32), as
function of the period Z, using the dimensionless quantity

p~od of the superlattice 8

FIG. 2. Momentum relaxation frequency for scattering by

volume impurities as function of the period E(E = gal) for

different values of the electron density n (g = sn/gr). The
solid, dashed, and dotted curves correspond to g = 0.2, 0.4,
and 1.0, respectively.
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wide miniband samples. Further, our calculations show
that it is very important for the conductivity to take into
account screening since the results can be about five hun-
dred times larger if one does not. We are not aware of any
pertinent experimental data; we hope that our findings
will stimulate the relevant experiments.
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APPENDIX

C(~) =& [by„'tr(~), byI1„(~')ji &

= 2mb(~+ ~') & bp,' &"~ . (A1)

Now denoting by bpe(u, q) the Fourier transform of
bye(r, t) we can write

The correlator which enters Eq. (11) is related to
the correlator C(u), resulting from the substitution of
Eqs. (5) and (6) in Eq. (4), by the expression

Combining the last two equations with Eq. (Al) we ob-
tain

~a( bp2 )AB )bq i2 ( by2 )
8~3 (A4)

& bV.' &." = (I/L) & bV.
' &."~. ~, .

The first two cases can be combined in the form

«~!)."'=„,f ~~.j 4, lb!;I' lb'. "„,„~I'

(A6)

x & bp, &„"' . (A7)

For the system that is uniform in all directions we have

2 a tt 1
& bp, & ' ' = — dq, ib~;~ i & bp, & (A8)

If the scattering system is uniform in the (z, y) paine
and nonuniform in the z direction Eq. (A3) becomes

I

C(to, q) = 8z b(~+~')b(qi + qi) & bpo &~,q~

(A5)

If the system is uniform only in the z direction we can
write

1
bp+II (M) =

8 s d l b~II bv '(~, q).

If the scattering system is uniform we have

(A2)
whereas for that which is uniform only in the (z, y) plane

2 a b 1 I

C(~ q)=& Lbq'(~ q) bV'(~' q')1+ &

= 16m. b(to+ ~')b(q+ q') & bp, & x ( b(P~ &~'q'i . (A9)
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